
© David Kirk/NVIDIA and Wen-mei W. Hwu,
University of Illinois, 2007-2012!

1

CS/EE 217 GPU Architecture and Parallel
Programming

Lecture 12

Parallel Computation Patterns –
Parallel Prefix Sum (Scan) Part-2

2

Recall: a Slightly Better Parallel Inclusive
Scan Algorithm

1.  Read input from
device memory to
shared memory

Each thread reads one value from the input
array in device memory into shared memory array T0.

Thread 0 writes 0 into shared memory array.

T0 3 1 7 0 4 1 6 3

3

A Slightly Better Parallel Scan Algorithm

1.  (previous slide)

2.  Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

•  Active threads: stride to n-1 (n-stride threads)
•  Thread j adds elements j and j-stride from T0 and
writes result into shared memory buffer T1 (ping-pong)

Iteration #1
Stride = 1

T1 3 4 8 7 4 5 7 9

Stride 1

T0 3 1 7 0 4 1 6 3

4

A Slightly Better Parallel Scan Algorithm

T1 3 4 8 7 4 5 7 9

T0 3 4 11 11 12 12 11 14

Stride 1

Stride 2

1.  Read input from
device memory to
shared memory.

2.  Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
mem arrays)

Iteration #2
Stride = 2

T0 3 1 7 0 4 1 6 3

5

A Slightly Better Parallel Scan Algorithm

T1 3 4 11 11 15 16 22 25

1.  Read input from
device memory to
shared memory. Set
first element to zero
and shift others right
by one.

2.  Iterate log(n)
times: Threads stride
to n: Add pairs of
elements stride
elements apart.
Double stride at each
iteration. (note must
double buffer shared
memory arrays)

3.  Write output from
shared memory to
device memory

Iteration #3
Stride = 4

T1 3 4 8 7 4 5 7 9

T0 3 4 11 11 12 12 11 14

Stride 1

Stride 2

T0 3 1 7 0 4 1 6 3

Stride 4

6

Work Efficiency Considerations

•  The first-attempt Scan executes log(n) parallel iterations
–  The steps do (n-1), (n-2), (n-4),..(n- n/2) adds each
–  Total adds: n * log(n) - (n-1) à O(n*log(n)) work

•  This scan algorithm is not very work efficient
–  Sequential scan algorithm does n adds
–  A factor of log(n) hurts: 20x for 10^6 elements!

•  A parallel algorithm can be slow when execution resources are
saturated due to low work efficiency

7

Improving Efficiency

•  A common parallel algorithm pattern:
Balanced Trees

–  Build a balanced binary tree on the input data and sweep it to and
from the root

–  Tree is not an actual data structure, but a concept to determine what
each thread does at each step

•  For scan:
–  Traverse down from leaves to root building partial sums at internal

nodes in the tree
•  Root holds sum of all leaves

–  Traverse back up the tree building the scan from the partial sums

Parallel Scan - Reduction Step

8

+

+

+ + +

+

+

x0! x3! x4! x5! x6! x7!x1! x2!

∑x0..x1! ∑x2..x3! ∑x4..x5! ∑x6..x7!

∑x0..x3!
∑x4..x7!

∑x0..x7!

Time!

In place calculation !
Final value after reduce

Inclusive Post Scan Step

9

+

x0! x4! x6!x2!∑x0..x1! ∑x4..x5!∑x0..x3! ∑x0..x7!

∑x0..x5!

Move (add) a critical value to a
central location where it is

needed!

Inclusive Post Scan Step

10

+

x0! x4! x6!x2!∑x0..x1! ∑x4..x5!∑x0..x3! ∑x0..x7!

∑x0..x5!

+ +

∑x0..x2! ∑x0..x4!

+

∑x0..x6!

Putting it Together

11

Reduction Step Kernel Code

12

 // XY[2*BLOCK_SIZE] is in shared memory

for(int stride=1; stride <= BLOCK_SIZE; stride=stride*2)
 {
 int index = (threadIdx.x+1)*stride*2 - 1;
 if(index < 2*BLOCK_SIZE)
 XY[index] += XY[index-stride];
 stride = stride*2;

 __syncthreads();
 }

threadIdx.x+1 = 1, 2, 3, 4….!
stride = 1, index = !
 !

Putting it together

13

Post Scan Step

14

for(int stride=BLOCK_SIZE/2; stride > 0; stride /= 2)
 {
 __synchthreads();
 int index = (threadIdx.x+1)*stride*2 - 1;
 if(index + stride < 2*BLOCK_SIZE)
 {

 XY[index+stride] += XY[index];
 }
 stride = stride / 2;
}
 __syncthreads();
if(I < InputSize) Y[i] = XY[threadIdx.x];

Work Analysis

•  Work efficient kernel executes log(n) iterations in
reduction step
–  Identical to reduction; O(n) operations.

•  log(n)-1 iterations in post reduction reverse step
–  2-1, 4-1, 8-1, … n/2 -1 operations in each
–  Total? (n-1) – log(n) or O(n) work

•  Both perform no more than 2*(n-1) adds
•  Is this ok? What needs to happen for the parallel

implementation to be better than sequential?

15

Some Tradeoffs

•  Work efficient kernel is normally superior
–  Better energy efficiency (why?)
–  Less execution resource requirements

•  However, the work inefficient kernel could be better
under some special circumstances
–  What needs to happen for that?
–  Small lists where there are sufficient execution resources

16

(Exclusive) Prefix-Sum (Scan) Definition

17

Definition: The all-prefix-sums operation takes a binary
associative operator ⊕, and an array of n elements!

! ![x0, x1, …, xn-1]!
!
and returns the array!
!

! ! [0, x0, (x0 ⊕ x1), …, (x0 ⊕ x1 ⊕ … ⊕ xn-2)].!
!
Example: If ⊕ is addition, then the all-prefix-sums operation
on the array ! ![3 1 7 0 4 1 6 3],!
would return! ![0 3 4 11 11 15 16 22].!

Why Exclusive Scan

•  To find the beginning address of allocated buffers

•  Inclusive and Exclusive scans can be easily derived
from each other; it is a matter of convenience

18

! ![3 1 7 0 4 1 6 3]!
!
Exclusive ![0 3 4 11 11 15 16 22]!
!
Inclusive ! [3 4 11 11 15 16 22 25]!
!

Simple exclusive scan kernel

•  Adapt work inefficient scan kernel
•  Block 0:

–  Thread 0 loads 0 in XY[0]
–  Other threads load X[threadIdx.x-1] into XY[threadIdx.x]

•  All other blocks:
–  Load X[blockIdx.x*blockDim.x+threadIdx.x-1] into

XY[threadIdx.x]

•  Similar adaptation for work efficient kernel, except
each thread loads two values – only one zero should
be loaded

19

Alternative (read Harris Article)

•  Uses add-move operation pairs
•  Similar in complexity to the work efficient algorithm
•  We’ll quickly overview

20

An Exclusive Post Scan Step
(Add-move Operation)

21

+

x0! x4! x6!x2!∑x0..x1! ∑x4..x5!∑x0..x3! 0!

0!

∑x0..x3!

Exclusive Post Scan Step

22

+

x0! x4! x6!x2!∑x0..x1! ∑x4..x5!∑x0..x3! 0!

0!

++

∑x0..x3!

∑x0..x3! ∑x0..x5!
∑x0..x1!0!

++++

∑x0..x6!∑x0..x5!∑x0..x4!∑x0..x3!∑x0..x1! ∑x0..x2!x0!0!

23

Exclusive Scan Example – Reduction Step
T 3 1 7 0 4 1 6 3

Assume array is already in shared memory

24

Reduction Step (cont.)
T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

Stride 1 Iteration 1, n/2 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each corresponds
to a single thread.

25

Reduction Step (cont.)
T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

Stride 1

Stride 2 Iteration 2, n/4 threads

Iterate log(n) times. Each thread adds value stride elements away to its own value

Each corresponds
to a single thread.

26

Reduction Step (cont.)
T 3 1 7 0 4 1 6 3

T 3 4 7 7 4 5 6 9

T 3 4 7 11 4 5 6 14

T 3 4 7 11 4 5 6 25

Iterate log(n) times. Each thread adds value stride elements away to its own value.

Note that this algorithm operates in-place: no need for double buffering

Iteration log(n), 1 thread

Stride 1

Stride 2

Stride 4

Each corresponds
to a single thread.

27

Zero the Last Element

T 3 4 7 11 4 5 6 0

We now have an array of partial sums. Since this is an exclusive scan,
set the last element to zero. It will propagate back to the first element.

28

Post Scan Step from Partial Sums
T 3 4 7 11 4 5 6 0

29

Post Scan Step from Partial Sums (cont.)

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 1
1 thread

Stride 4

Each corresponds
to a single thread.

30

Post Scan From Partial Sums (cont.)

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

Iterate log(n) times. Each thread adds value stride elements away to its own value,
and sets the value stride elements away to its own previous value.

Iteration 2
2 threads

Stride 4

Stride 2

Each corresponds
to a single thread.

31

Post Scan Step From Partial Sums (cont.)

T 3 4 7 0 4 5 6 11

T 3 4 7 11 4 5 6 0

T 3 0 7 4 4 11 6 16

T 0 3 4 11 11 15 16 22

Done! We now have a completed scan that we can write out to device memory.

Total steps: 2 * log(n).
Total work: 2 * (n-1) adds = O(n) Work Efficient!

Iteration log(n)
n/2 threads

Stride 2

Stride 4

Stride 1

Each corresponds
to a single thread.

32

Work Analysis

•  The parallel Inclusive Scan executes 2* log(n) parallel iterations

–  log(n) in reduction and log(n) in post scan
–  The iterations do n/2, n/4,..1, 1, …., n/4. n/2 adds
–  Total adds: 2* (n-1) à O(n) work

•  The total number of adds is no more than twice of that
done in the efficient sequential algorithm
–  The benefit of parallelism can easily overcome the 2X work

when there is sufficient hardware

Working on Arbitrary Length Input
•  Build on the scan kernel that handles up to

2*blockDim.x elements
•  Have each section of 2*blockDim elements assigned

to a block
•  Have each block write the sum of its section into a

Sum array indexed by blockIdx.x
•  Run parallel scan on the Sum array

–  May need to break down Sum into multiple sections if it is
too big for a block

•  Add the scanned Sum array values to the elements of
corresponding sections

33

Overall Flow of Complete Scan

34

ANY MORE QUESTIONS?
READ CHAPTER 9

© David Kirk/NVIDIA and Wen-mei W. Hwu,
University of Illinois, 2007-2012!

35

