
© David Kirk/NVIDIA and Wen-mei W. Hwu
University of Illinois, 2007-2012

1

CS/EE 217 GPU Architecture and Parallel
Programming

Lecture 10

Reduction Trees

2

Objective

•  To master Reduction Trees, arguably the most widely
used parallel computation pattern
–  Basic concept
–  Performance analysis

•  Memory coalescing
•  Control divergence
•  Thread utilization

Partition and Summarize
•  A commonly used strategy for processing large input

data sets
–  There is no required order of processing elements in a data

set (associative and commutative)
–  Partition the data set into smaller chunks
–  Have each thread to process a chunk
–  Use a reduction tree to summarize the results from each

chunk into the final answer

•  We will focus on the reduction tree step for now.
•  Google and Hadoop MapReduce frameworks are

examples of this pattern
3

Reduction enables other techniques

•  Reduction is also needed to clean up after some
commonly used parallelizing transformations

•  Privatization
–  Multiple threads write into an output location
–  Replicate the output location so that each thread has a

private output location
–  Use a reduction tree to combine the values of private

locations into the original output location

4

What is a reduction computation

•  Summarize a set of input values into one value using a
“reduction operation”
–  Max
–  Min
–  Sum
–  Product
–  Often with user defined reduction operation function as long

as the operation
•  Is associative and commutative
•  Has a well-defined identity value (e.g., 0 for sum)

5

An efficient sequential reduction
algorithm performs N operations - O(N)
•  Initialize the result as an identity value for the

reduction operation
–  Smallest possible value for max reduction
–  Largest possible value for min reduction
–  0 for sum reduction
–  1 for product reduction

•  Scan through the input and perform the reduction
operation between the result value and the current
input value

6

A parallel reduction tree algorithm
performs N-1 Operations in log(N) steps

7

3 1 7 0 4 1 6 3

3 7 4 6

max max max max

max max

7 6

max

7

A tournament is a reduction tree

8 What is the reduction operation?

A Quick Analysis

•  For N input values, the reduction tree performs
–  (1/2)N + (1/4)N + (1/8)N + … (1/N) = (1- (1/N))N = N-1

operations
–  In Log (N) steps – 1,000,000 input values take 20 steps

•  Assuming that we have enough execution resources

–  Average Parallelism (N-1)/Log(N))
•  For N = 1,000,000, average parallelism is 50,000
•  However, peak resource requirement is 500,000!

•  This is a work-efficient parallel algorithm
–  The amount of work done is comparable to sequential

•  Many parallel algorithms are not work efficient

–  But not resource efficient… 9

10

A Sum Reduction Example

•  Parallel implementation:
–  Recursively halve # of threads, add two values per thread

in each step
–  Takes log(n) steps for n elements, requires n/2 threads

•  Assume an in-place reduction using shared memory
–  The original vector is in device global memory
–  The shared memory is used to hold a partial sum vector
–  Each step brings the partial sum vector closer to the sum
–  The final sum will be in element 0
–  Reduces global memory traffic due to partial sum values

11

Vector Reduction with Branch Divergence

0 1 2 3 4 5 76 1098 11

0+1 2+3 4+5 6+7 10+118+9

0...3 4..7 8..11

0..7 8..15

1

2

3

Partial Sum elements

steps

Thread 0 Thread 4Thread 1 Thread 2 Thread 3 Thread 5

Dat
a

12

A Sum Example

3 1 7 0 4 1 6

4 7 5 9

11 14

25

1

2

3
steps

Thread 0 Thread 1 Thread 2 Thread 3

Dat
a

3

Active Partial
Sum elements

Simple Thread Index to Data Mapping

•  Each thread is responsible of an even-index location
of the partial sum vector
–  One input is the location of responsibility

•  After each step, half of the threads are no longer
needed

•  In each step, one of the inputs comes from an
increasing distance away

13

A Simple Thread Block Design

•  Each thread block takes 2* BlockDim input elements
•  Each thread loads 2 elements into shared memory

__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;

unsigned int start = 2*blockIdx.x*blockDim.x;

partialSum[t] = input[start + t];

partialSum[blockDim+t] = input[start+ blockDim.x+t];

 14

15

The Reduction Steps

for (unsigned int stride = 1;
 stride <= blockDim.x; stride *= 2)

{
 __syncthreads();
 if (t % stride == 0)
 partialSum[2*t]+= partialSum[2*t+stride];

}

Why do we need syncthreads()?

Back to the Global Picture

•  Thread 0 in each thread block write the sum of the
thread block in partialSum[0] into a vector indexed by
the blockIdx.x

•  There can be a large number of such sums if the
original vector is very large
–  The host code may iterate and launch another kernel

•  If there are only a small number of sums, the host can
simply transfer the data back and add them together.

16

17

Some Observations

•  In each iteration, two control flow paths will be sequentially
traversed for each warp
–  Threads that perform addition and threads that do not
–  Threads that do not perform addition still consume execution resources

•  No more than half of threads will be executing after the first step
–  All odd-index threads are disabled after first step
–  After the 5th step, entire warps in each block will fail the if test, poor

resource utilization but no divergence.
•  This can go on for a while, up to 5 more steps (1024/32=16= 25), where each

active warp only has one productive thread until all warps in a block retire
–  Some warps will still succeed, but with divergence since only one

thread will succeed

Thread Index Usage Matters

•  In some algorithms, one can shift the index usage to
improve the divergence behavior
–  Commutative and associative operators

•  Example - given an array of values, “reduce” them to
a single value in parallel

–  Sum reduction: sum of all values in the array
–  Max reduction: maximum of all values in the array
–  …

18

A Better Strategy

•  Always compact the partial sums into the first
locations in the partialSum[] array

•  Keep the active threads consecutive

19

20

Thread 0

An Example of 16 threads

0 1 2 3 … 13 1514 181716 19

0+16 15+31

Thread 1 Thread 2 Thread 14Thread 15

21

A Better Reduction Kernel

for (unsigned int stride = blockDim.x;
 stride > 0; stride /= 2)

{
 __syncthreads();
 if (t < stride)
 partialSum[t] += partialSum[t+stride];

}

A Quick Analysis

•  For a 1024 thread block
–  No divergence in the first 5 steps
–  1024, 512, 256, 128, 64, 32 consecutive threads are active

in each step
–  The final 5 steps will still have divergence

22

A Story about an Old Engineer

•  From Hwu/Yale Patt

23

24

Parallel Algorithm Overhead
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start+ blockDim.x+t];
for (unsigned int stride = blockDim.x/2;
 stride >= 1; stride >>= 1)

{
 __syncthreads();
 if (t < stride)
 partialSum[t] += partialSum[t+stride];

}

25

Parallel Algorithm Overhead
__shared__ float partialSum[2*BLOCK_SIZE];

unsigned int t = threadIdx.x;
unsigned int start = 2*blockIdx.x*blockDim.x;
partialSum[t] = input[start + t];
partialSum[blockDim+t] = input[start+ blockDim.x+t];
for (unsigned int stride = blockDim.x/2;
 stride >= 1; stride >>= 1)

{
 __syncthreads();
 if (t < stride)
 partialSum[t] += partialSum[t+stride];

}

Parallel Execution Overhead

26

3 1 7 0 4 1 6 3

4 7 5 9

+ + + +

+ +

7 6

+

7

Although the number of “operations” is N, each “operation
involves much more complex address calculation and

intermediate result manipulation.

If the parallel code is executed on a single-thread hardware,
it would be significantly slower than the code based on the

original sequential algorithm.

ANY MORE QUESTIONS?

© David Kirk/NVIDIA and Wen-mei W. Hwu,
University of Illinois, 2007-2012

27

