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CS/EE 217 GPU Architecture and Parallel 
Programming 

 
Lecture 10 

Reduction Trees  
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Objective 

•  To master Reduction Trees, arguably the most widely 
used parallel computation pattern 
–  Basic concept 
–  Performance analysis 

•  Memory coalescing 
•  Control divergence 
•  Thread utilization 

 
 



Partition and Summarize 
•  A commonly used strategy for processing large input 

data sets 
–  There is no required order of processing elements in a data 

set  (associative and commutative) 
–  Partition the data set into smaller chunks 
–  Have each thread to process a chunk 
–  Use a reduction tree to summarize the results from each 

chunk into the final answer 

•  We will focus on the reduction tree step for now. 
•  Google and Hadoop MapReduce frameworks are 

examples of this pattern 
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Reduction enables other techniques 

•  Reduction is also needed to clean up after some 
commonly used parallelizing transformations 

•  Privatization 
–  Multiple threads write into an output location 
–  Replicate the output location so that each thread has a 

private output location 
–  Use a reduction tree to combine the values of private 

locations into the original output location 
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What is a reduction computation 

•  Summarize a set of input values into one value using a 
“reduction operation” 
–  Max 
–  Min 
–  Sum 
–  Product 
–  Often with user defined reduction operation function as long 

as the operation 
•  Is associative and commutative 
•  Has a well-defined identity value (e.g., 0 for sum) 
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An efficient sequential reduction 
algorithm performs N operations - O(N) 
•  Initialize the result as an identity value for the 

reduction operation 
–  Smallest possible value for max reduction 
–  Largest possible value for min reduction 
–  0 for sum reduction 
–  1 for product reduction 

•  Scan through the input and perform the reduction 
operation between the result value and the current 
input value 
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A parallel reduction tree algorithm 
performs N-1 Operations in log(N) steps 
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A tournament is a reduction tree  
 

8 What is the reduction operation?



A Quick Analysis 

•  For N input values, the reduction tree performs 
–  (1/2)N + (1/4)N + (1/8)N + … (1/N) = (1- (1/N))N = N-1 

operations 
–  In Log (N) steps – 1,000,000 input values take 20 steps 

•  Assuming that we have enough execution resources 

–  Average Parallelism (N-1)/Log(N)) 
•  For N = 1,000,000, average parallelism is 50,000 
•  However, peak resource requirement is 500,000! 

•  This is a work-efficient parallel algorithm 
–  The amount of work done is comparable to sequential 

•  Many parallel algorithms are not work efficient 

–  But not resource efficient… 9 



10 

A Sum Reduction Example 

•  Parallel implementation: 
–  Recursively halve # of threads, add two values per thread 

in each step 
–  Takes log(n) steps for n elements, requires n/2 threads 

•  Assume an in-place reduction using shared memory 
–  The original vector is in device global memory 
–  The shared memory is used to hold a partial sum vector 
–  Each step brings the partial sum vector closer to the sum 
–  The final sum will be in element 0 
–  Reduces global memory traffic due to partial sum values 
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Vector Reduction with Branch Divergence 
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A Sum Example 
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Simple Thread Index to Data Mapping 

•  Each thread is responsible of an even-index location 
of the partial sum vector  
–  One input is the location of responsibility 

•  After each step, half of the threads are no longer 
needed 

•  In each step, one of the inputs comes from an 
increasing distance away 
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A Simple Thread Block Design 

•  Each thread block takes 2* BlockDim input elements 
•  Each thread loads 2 elements into shared memory 

__shared__ float partialSum[2*BLOCK_SIZE]; 
 
unsigned int t = threadIdx.x; 
 
unsigned int start = 2*blockIdx.x*blockDim.x; 
 
partialSum[t] = input[start + t]; 
 
partialSum[blockDim+t] = input[start+ blockDim.x+t]; 
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The Reduction Steps 
 

for (unsigned int stride = 1;  
   stride <= blockDim.x;  stride *= 2)  

{ 
  __syncthreads(); 
  if (t % stride == 0) 
   partialSum[2*t]+= partialSum[2*t+stride]; 

} 

Why do we need syncthreads()?



Back to the Global Picture 

•  Thread 0 in each thread block write the sum of the 
thread block in partialSum[0] into a vector indexed by 
the blockIdx.x 

•  There can be a large number of such sums if the 
original vector is very large 
–  The host code may iterate and launch another kernel 

•  If there are only a small number of sums, the host can 
simply transfer the data back and add them together. 
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Some Observations 

•  In each iteration, two control flow paths will be sequentially 
traversed for each warp 
–  Threads that perform addition and threads that do not 
–  Threads that do not perform addition still consume execution resources 

•  No more than half of threads will be executing after the first step 
–  All odd-index threads are disabled after first step 
–  After the 5th step, entire warps in each block will fail the if test, poor 

resource utilization but no divergence. 
•  This can go on for a while, up to 5 more steps (1024/32=16= 25), where each 

active warp only has one productive thread until all warps in a block retire  
–  Some warps will still succeed, but with divergence since only one 

thread will succeed 



Thread Index Usage Matters 

•  In some algorithms, one can shift the index usage to 
improve the divergence behavior 
–  Commutative and associative operators 

•  Example - given an array of values, “reduce” them to 
a single value in parallel 

–  Sum reduction: sum of all values in the array 
–  Max reduction: maximum of all values in the array 
–  … 
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A Better Strategy 

•  Always compact the partial sums into the first 
locations in the partialSum[] array 

•  Keep the active threads consecutive 
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Thread 0

An Example of 16 threads 
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A Better Reduction Kernel 
 
for (unsigned int stride = blockDim.x;  
   stride > 0;  stride /= 2)  

{ 
  __syncthreads(); 
  if (t < stride) 
   partialSum[t] += partialSum[t+stride]; 

} 



A Quick Analysis 

•  For a 1024 thread block 
–  No divergence in the first 5 steps 
–  1024, 512, 256, 128, 64, 32 consecutive threads are active 

in each step 
–  The final 5 steps will still have divergence  
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A Story about an Old Engineer 

•  From Hwu/Yale Patt 
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Parallel Algorithm Overhead 
__shared__ float partialSum[2*BLOCK_SIZE]; 
 
unsigned int t = threadIdx.x; 
unsigned int start = 2*blockIdx.x*blockDim.x; 
partialSum[t] = input[start + t]; 
partialSum[blockDim+t] = input[start+ blockDim.x+t]; 
for (unsigned int stride = blockDim.x/2;  
   stride >= 1;  stride >>= 1)  

{ 
  __syncthreads(); 
  if (t < stride) 
   partialSum[t] += partialSum[t+stride]; 

} 
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Parallel Algorithm Overhead 
__shared__ float partialSum[2*BLOCK_SIZE]; 
 
unsigned int t = threadIdx.x; 
unsigned int start = 2*blockIdx.x*blockDim.x; 
partialSum[t] = input[start + t]; 
partialSum[blockDim+t] = input[start+ blockDim.x+t]; 
for (unsigned int stride = blockDim.x/2;  
   stride >= 1;  stride >>= 1)  

{ 
  __syncthreads(); 
  if (t < stride) 
   partialSum[t] += partialSum[t+stride]; 

} 



Parallel Execution Overhead 
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Although the number of “operations” is N, each “operation 
involves much more complex address calculation and 

intermediate result manipulation. 

If the parallel code is executed on a single-thread hardware, 
it would be significantly slower than the code based on the 

original sequential algorithm.



ANY MORE QUESTIONS? 
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