
Slide credit: Slides adapted from !
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012!

1

CS/EE 217

GPU Programming and Architecture

Lecture 1: Introduction

2

Course Goals
•  Learn how to program GPGPU processors

and achieve
–  high performance
–  functionality and maintainability
–  scalability across future generations

•  Technical subjects
–  principles and patterns of parallel algorithms
–  processor architecture features and constraints
–  programming API, tools and techniques

3

Course Staff
•  Professor:

Nael Abu-Ghazaleh
WCH-441, (951) 827-2347
Use 217 to start your e-mail subject line
 Office hours: TBD soon; or by appointment

•  Teaching Assistants:
–  We will have one!

•  If we can find one

–  Office hours: TBA

•  Class may be moving in time and space
–  Sorry, I will let you know soon

4

Web Resources
•  Course website:

http://www.cs.ucr.edu/~nael/217-f15
–  Handouts and lecture slides
–  Resources, announcements, projects, …
–  Note: While we’ll make an effort to post announcements

on the web, we can’t guarantee it, and won’t make any
allowances for people who miss things in class.

•  Piazza for discussions
–  Channel for electronic announcements
–  Forum for Q&A – course staff read the board, and your

classmates often have answers

•  iLearn for submissions and grades

5

Grading
•  Exam+Final: 35%

•  Labs (Programming assignments): 35%

•  Project: 30%
– Design Document: 25%
– Project Presentation: 25%
– Demo/Functionality/Performance/Report: 50%

6

Academic Honesty
•  You are allowed and encouraged to discuss

assignments with other students in the class.
Getting verbal advice/help from people who’ve
already taken the course is also fine.

•  Any reference to assignments from previous terms
or web postings is unacceptable

•  Any copying of non-trivial code is unacceptable
–  Non-trivial = more than a line or so
–  Includes reading someone else’s code and then going off

to write your own.

7

Academic Honesty (cont.)

•  Giving/receiving help on an exam is
unacceptable

•  Penalties for academic dishonesty:
– Zero on the assignment for the first occasion
– Automatic failure of the course for repeat

offenses
– UCR academic honesty policy trumps any

instructor policies

8

Team Projects

•  Work can be divided up between team
members in any way that works for you

•  However, each team member will demo the
final checkpoint of each project individually,
and will get a separate demo grade
– This will include questions on the entire design
– Rationale: if you don’t know enough about the

whole design to answer questions on it, you
aren’t involved enough in the project

9

Text/Notes
1.  D. Kirk and W. Hwu, “Programming Massively

Parallel Processors – A Hands-on Approach,
Second Edition”

2.  CUDA by example, Sanders and Kandrot
3.  Nvidia CUDA C Programming Guide

–  https://docs.nvidia.com/cuda/cuda-c-programming-guide/

4.  Occasional research papers
5.  Lecture notes on class website

–  Tentative schedule on class website
–  Will try to assign reading ahead of time

Blue Waters Hardware

10

• >300 Cray System & Storage cabinets:

• >25,000 Compute nodes:

• >1 TB/s Usable Storage Bandwidth:

• >1.5 Petabytes System Memory:

• 4 GB Memory per core module:

• 3D Torus Gemin Interconnect Topology:

• >25 Petabytes Usable Storage:

• >11.5 Petaflops Peak performance:

• >49,000 Number of AMD Interlogos processors:

• >380,000 Number of AMD x86 core modules:

• >3,000 Number of NVIDIA Kepler GPUs:

Cray XK7 Compute Node

 11

Y	

X	

Z	

HT3
HT3

PCIe Gen2

XK7 Compute Node
Characteristics

AMD Series 6200 (Interlagos)

NVIDIA Kepler

Host Memory
32GB

1600 MT/s DDR3

NVIDIA Tesla X2090 Memory
6GB GDDR5 capacity

Gemini High Speed Interconnect

Keplers in final installation

CPU and GPU have very different
design philosophy

GPU
Throughput Oriented Cores

Chi
p Compute Unit

Cache/Local Mem

Registers

SIMD
Unit

Threading

CPU
Latency Oriented Cores

Chi
p Core

Local Cache

Registers

SIMD Unit

C
ontrol

CPUs: Latency Oriented Design
•  Large caches

–  Convert long latency memory
accesses to short latency
cache accesses

•  Sophisticated control
–  Branch prediction for

reduced branch latency
–  Data forwarding for reduced

data latency
•  Powerful ALU

–  Reduced operation latency
13

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU

GPUs: Throughput Oriented
Design

•  Small caches
–  To boost memory throughput

•  Simple control
–  No branch prediction
–  No data forwarding

•  Energy efficient ALUs
–  Many, long latency but heavily

pipelined for high throughput

•  Require massive number of
threads to tolerate latencies

14

DRAM

GPU

Heterogeneous Computing: Use
Both CPU and GPU

•  CPUs for sequential
parts where latency
matters
–  CPUs can be 10+X faster

than GPUs for sequential
code

•  GPUs for parallel parts
where throughput wins
–  GPUs can be 10+X faster

than CPUs for parallel
code

15

Heterogeneous parallel computing is
catching on.

•  280 submissions to GPU Computing Gems
–  110 articles included in two volumes

Financial
Analysis

Scientific
Simulation

Engineering
Simulation

Data
Intensive
Analytics

Medical
Imaging

Digital
Audio

Processing

Computer
Vision

Digital Video
Processing

Biomedical
Informatics

Electronic
Design

Automation

Statistical
Modeling

Ray Tracing
Rendering

Interactive
Physics

Numerical
Methods

16

Parallel Programming Work Flow

•  Identify compute intensive parts of an
application

•  Adopt scalable algorithms
•  Optimize data arrangements to maximize

locality
•  Performance Tuning
•  Pay attention to code portability and

maintainability

Software Dominates System Cost

9/25/15! (c) Wen-mei Hwu, Cool
Chips

•  SW lines per chip
increases at 2x/10
months

•  HW gates per chip
increases at 2x/18
months

•  Future system must
minimize software
redevelopment

•  Scalability

Keys to Software Cost Control

9/25/15!

App

Core A

•  Scalability

– The same application runs efficiently on new
generations of cores

Keys to Software Cost Control

9/25/15!

App

Core A Core A
2.0

•  Scalability

– The same application runs efficiently on new
generations of cores

– The same application runs efficiently on more of
the same cores

Keys to Software Cost Control

9/25/15!

App

Core A Core A Core A

Scalability and Portability

9/25/15!

•  Performance growth with HW generations
–  Increasing number of compute units
–  Increasing number of threads
–  Increasing vector length
–  Increasing pipeline depth
–  Increasing DRAM burst size
–  Increasing number of DRAM channels
–  Increasing data movement latency

•  Portability across many different HW types
–  Multi-core CPUs vs. many-core GPUs
–  VLIW vs. SIMD vs. threading
–  Shared memory vs. distributed memory

•  Scalability
•  Portability

– The same application runs efficiently on
different types of cores

Keys to Software Cost Control

9/25/15!

App

Core A

App

Core C

App

Core B

•  Scalability
•  Portability

–  The same application runs efficiently on different types
of cores

–  The same application runs efficiently on systems with
different organizations and interfaces

Keys to Software Cost Control

9/25/15!

App

App

App

Parallelism Scalability

9/25/15!

Algorithm Complexity and Data
Scalability

9/25/15!

Why is data scalability important?

9/25/15!

•  Any algorithm complexity higher than linear
is not data scalable
–  Execution time explodes as data size grows even for an n*log(n)

algorithm

•  Processing large data sets is a major
motivation for parallel computing

•  A sequential algorithm with linear data
scalability can outperform a parallel
algorithm with n*log(n) complexity
–  log(n) grows to be greater than degree of HW parallelism and makes

parallel algorithm run slower than sequential algorithm

Parallelism cannot overcome
complexity for large data sets

9/25/15!

A Real Example of Data Scalability
Particle-Mesh Algorithms

9/25/15!

5/24/2012! (c) Wen-mei Hwu,
CTHPC 2012

Massive
Parallelism -
Regularity

Load Balance

•  The total amount of time to complete a
parallel job is limited by the thread that takes
the longest to finish

good bad!

Global Memory Bandwidth
Ideal Reality

Conflicting Data Accesses Cause
Serialization and Delays

•  Massively parallel
execution cannot
afford serialization

•  Contentions in accessing
critical data causes
serialization

What is the stake?

•  Scalable and portable software lasts through
many hardware generations

Scalable algorithms and libraries can be
the best legacy we can leave behind from

this era

QUESTIONS?

© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2012! 35

