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CS/EE 217 
 

GPU Programming and Architecture 
 
 

Lecture 1: Introduction 
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Course Goals 
•  Learn how to program GPGPU processors 

and achieve 
–  high performance 
–  functionality and maintainability 
–  scalability across future generations 

•  Technical subjects 
–  principles and patterns of parallel algorithms 
–  processor architecture features and constraints 
–  programming API, tools and techniques 
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Course Staff 
•  Professor: 

Nael Abu-Ghazaleh 
WCH-441, (951) 827-2347 
Use 217 to start your e-mail subject line 
 Office hours: TBD soon; or by appointment 

•  Teaching Assistants:  
–  We will have one! 

•  If we can find one 

–  Office hours: TBA 

•  Class may be moving in time and space  
–  Sorry, I will let you know soon 
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Web Resources 
•  Course website: 

http://www.cs.ucr.edu/~nael/217-f15 
–  Handouts and lecture slides 
–  Resources, announcements, projects, … 
–  Note: While we’ll make an effort to post announcements 

on the web, we can’t guarantee it, and won’t make any 
allowances for people who miss things in class. 

•  Piazza for discussions 
–  Channel for electronic announcements 
–  Forum for Q&A – course staff read the board, and your 

classmates often have answers 

•  iLearn for submissions and grades 
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Grading  
•  Exam+Final: 35% 

•  Labs (Programming assignments): 35% 

•  Project: 30% 
– Design Document: 25% 
– Project Presentation: 25% 
– Demo/Functionality/Performance/Report: 50% 
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Academic Honesty 
•  You are allowed and encouraged to discuss 

assignments with other students in the class.  
Getting verbal advice/help from people who’ve 
already taken the course is also fine. 

•  Any reference to assignments from previous terms 
or web postings is unacceptable 

•  Any copying of non-trivial code is unacceptable 
–  Non-trivial = more than a line or so 
–  Includes reading someone else’s code and then going off 

to write your own. 
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Academic Honesty (cont.) 

•  Giving/receiving help on an exam is 
unacceptable 

•  Penalties for academic dishonesty: 
– Zero on the assignment for the first occasion 
– Automatic failure of the course for repeat 

offenses 
– UCR academic honesty policy trumps any 

instructor policies 
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Team Projects 

•  Work can be divided up between team 
members in any way that works for you 

•  However, each team member will demo the 
final checkpoint of each project individually, 
and will get a separate demo grade 
– This will include questions on the entire design 
– Rationale:  if you don’t know enough about the 

whole design to answer questions on it, you 
aren’t involved enough in the project 
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Text/Notes 
1.  D. Kirk and W. Hwu, “Programming Massively 

Parallel Processors – A Hands-on Approach, 
Second Edition”  

2.  CUDA by example, Sanders and Kandrot  
3.  Nvidia CUDA C Programming Guide 

–  https://docs.nvidia.com/cuda/cuda-c-programming-guide/ 

4.  Occasional research papers  
5.  Lecture notes on class website 

–  Tentative schedule on class website 
–  Will try to assign reading ahead of time 



Blue Waters Hardware 
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• >300 Cray System & Storage cabinets: 

• >25,000 Compute nodes: 

• >1 TB/s Usable Storage Bandwidth: 

• >1.5 Petabytes System Memory: 

• 4 GB Memory per core module: 

• 3D Torus Gemin Interconnect Topology: 

• >25 Petabytes Usable Storage: 

• >11.5 Petaflops Peak performance: 

• >49,000 Number of AMD Interlogos processors: 

• >380,000 Number of AMD x86 core modules: 

• >3,000 Number of NVIDIA Kepler GPUs: 



Cray XK7 Compute Node 
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Y	  

X	  

Z	  

HT3 
HT3 

PCIe Gen2 

XK7 Compute Node 
Characteristics 

AMD Series 6200 (Interlagos) 

NVIDIA Kepler  

Host Memory 
32GB 

1600 MT/s DDR3 

NVIDIA Tesla X2090 Memory 
6GB GDDR5 capacity 

Gemini High Speed Interconnect 

Keplers in final installation 



CPU and GPU have very different 
design philosophy 

GPU  
Throughput Oriented Cores 

Chi
p Compute Unit 
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SIMD  
Unit 

Threading 

CPU 
Latency Oriented Cores 

Chi
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Local Cache 

Registers 

SIMD Unit 

C
ontrol 



CPUs: Latency Oriented Design  
•  Large caches 

–  Convert long latency memory 
accesses to short latency 
cache accesses 

•  Sophisticated control 
–  Branch prediction for 

reduced branch latency 
–  Data forwarding for reduced 

data latency 
•  Powerful ALU 

–  Reduced operation latency 
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GPUs: Throughput Oriented 
Design 

•  Small caches 
–  To boost memory throughput 

•  Simple control 
–  No branch prediction 
–  No data forwarding 

•  Energy efficient ALUs 
–  Many, long latency but heavily 

pipelined for high throughput 

•  Require massive number of 
threads to tolerate latencies 
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DRAM 

GPU 



Heterogeneous Computing: Use 
Both CPU and GPU  

•  CPUs for sequential 
parts where latency 
matters 
–  CPUs can be 10+X faster 

than GPUs for sequential 
code 

•  GPUs for parallel parts 
where throughput wins 
–  GPUs can be 10+X faster 

than CPUs for parallel 
code 
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Heterogeneous parallel computing is 
catching on. 

•  280 submissions to GPU Computing Gems 
–  110 articles included in two volumes 
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Parallel Programming Work Flow 

•  Identify compute intensive parts of an 
application 

•  Adopt scalable algorithms 
•  Optimize data arrangements to maximize 

locality 
•  Performance Tuning 
•  Pay attention to code portability and 

maintainability 



Software Dominates System Cost 

9/25/15! (c) Wen-mei Hwu, Cool 
Chips 

•  SW lines per chip 
increases at 2x/10 
months 

•  HW gates per chip 
increases at 2x/18 
months 

•  Future system must 
minimize software 
redevelopment 



 
•  Scalability 

Keys to Software Cost Control 
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•  Scalability 

– The same application runs efficiently on new 
generations of cores 

Keys to Software Cost Control 
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•  Scalability 

– The same application runs efficiently on new 
generations of cores 

– The same application runs efficiently on more of 
the same cores 

Keys to Software Cost Control 
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Scalability and Portability 
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•  Performance growth with HW generations 
–  Increasing number of compute units 
–  Increasing number of threads 
–  Increasing vector length 
–  Increasing pipeline depth 
–  Increasing DRAM burst size 
–  Increasing number of DRAM channels 
–  Increasing data movement latency 

•  Portability across many different HW types 
–  Multi-core CPUs vs. many-core GPUs 
–  VLIW vs. SIMD vs. threading 
–  Shared memory vs. distributed memory 



•  Scalability 
•  Portability 

– The same application runs efficiently on 
different types of cores 

Keys to Software Cost Control 
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•  Scalability 
•  Portability 

–  The same application runs efficiently on different types 
of cores 

–  The same application runs efficiently on systems with 
different organizations and interfaces 

Keys to Software Cost Control 
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Parallelism Scalability 
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Algorithm Complexity and Data 
Scalability 
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Why is data scalability important? 

9/25/15!

•  Any algorithm complexity higher than linear 
is not data scalable 
–  Execution time explodes as data size grows even for an n*log(n) 

algorithm 

•  Processing large data sets is a major 
motivation for parallel computing 

•  A sequential algorithm with linear data 
scalability can outperform a parallel 
algorithm with n*log(n) complexity 
–  log(n) grows to be greater than degree of HW parallelism and makes 

parallel algorithm run slower than sequential algorithm 



Parallelism cannot overcome 
complexity for large data sets 

9/25/15!



A Real Example of Data Scalability 
Particle-Mesh Algorithms 

9/25/15!
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Massive 
Parallelism - 
Regularity 



Load Balance 

•  The total amount of time to complete a 
parallel job is limited by the thread that takes 
the longest to finish 

good bad! 



Global Memory Bandwidth 
Ideal Reality 



Conflicting Data Accesses Cause 
Serialization and Delays 

•  Massively parallel 
execution cannot 
afford serialization 

•  Contentions in accessing 
critical data causes 
serialization 



What is the stake? 

•  Scalable and portable software lasts through 
many hardware generations 

Scalable algorithms and libraries can be 
the best legacy we can leave behind from 

this era 



QUESTIONS? 
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