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Abstract

WILEY, MATTHEW T., M.S., August 2011, Computer Science

Machine Learning for Diabetes Decision Support (158 pp.)

Director of Thesis: Cynthia R. Marling

This thesis presents work in machine learning that enhances and expands the scope of

the 4 Diabetes Support System™ (4DSS). The 4DSS is a decision support system designed

to assist patients and physicians with the challenge of managing Type 1 diabetes (T1DM).

The objective of the 4DSS is to detect problems in diabetes management and to

recommend therapeutic changes to correct these detected problems. This thesis

contributes three advances: (1) preprocessing noisy data, preparatory to applying machine

learning algorithms; (2) enhancing the automated detection of excessive glycemic

variability, a serious problem for patients with diabetes; and (3) predicting patient blood

glucose levels, in order to preemptively detect and avoid potential health problems.

In this work, the Continuous Glucose Monitoring (CGM) data is smoothed using

cubic spline smoothing with extra weight on fingersticks and local optima. This data

preprocessing improves the accuracy of problem detection and blood glucose prediction.

Previous work in classifying glycemic variability using a naı̈ve Bayes classifier obtained

an accuracy of only 87.1%. Using smoothed CGM data and a rich set of domain

independent pattern recognition features to train multilayer perceptrons and support vector

machines, a best accuracy of 93.8% has now been obtained. This machine learning

classifier improves the ability to detect excessive glycemic variability, an important

indicator of risk for diabetic complications.

Accurately predicting blood glucose levels could enhance patient safety by giving

patients time to intervene before problems occur. Support Vector Regression (SVR) and

AutoRegressive Integrated Moving Average (ARIMA) models were built and tested on

data from ten T1DM patients. This resulted in a best Root Mean Square Error (RMSE) of
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4.5 mg/dl for 30 minute predictions and 17.4 mg/dl for 60 minute predictions. Clarke

Error Grid Analysis (CEGA) showed that 99% of 30 minute predictions and 90% of 60

minute predictions fell within 20% of target, CEGA’s most accurate range.

Approved:

Cynthia R. Marling

Associate Professor of Electrical Engineering and Computer Science
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1 Introduction

This thesis presents research in machine learning for diabetes management. There are

three major contributions:

1. preprocessing noisy data, preparatory to applying machine learning algorithms;

2. enhancing the automated detection of excessive glycemic variability, a serious

problem for patients with diabetes; and

3. predicting patient blood glucose levels, in order to preemptively detect and avoid

potential health problems.

This work enhances the 4 Diabetes Support System™ (4DSS) and expands its scope. The

4DSS is a decision support system designed to assist physicians and patients with

management of Type 1 diabetes (T1DM). T1DM is a disease in which the pancreas is

unable to produce insulin. This requires patients with T1DM to constantly monitor their

blood glucose values and administer dosages of insulin when appropriate. The 4DSS

automatically identifies problems in blood glucose control that require changes to insulin

pump therapy. Once these problems are detected, case-based reasoning is used to find

similar problems, and therapeutic advice is generated.

The goal for patients with T1DM is to control their blood glucose levels such that

they resemble the glucose levels of a person without diabetes. Poor blood glucose control

can lead to serious diabetic complications, such as blindness, kidney failure and death

(American Diabetes Association, 2011). A recent focus of the 4DSS has been to detect

excessive glycemic variability using artificial intelligence (Vernier, 2009). Currently there

is no screen for excessive glycemic variability; however, such a tool would be useful for

diabetes clinicians. Another approach to detecting problems in blood glucose control is to

preemptively detect them using a blood glucose prediction model. As with classification,
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prediction is accomplished using artificial intelligence. A detailed description of diabetes,

4DSS, artificial intelligence techniques, and evaluation techniques is given in Chapter 2.

The first contribution of this thesis is preprocessing data collected for the 4DSS. This

includes inferring missing life event data and smoothing Continuous Glucose Monitoring

(CGM) data. Missing life event data was inferred by exploiting other information

collected by the 4DSS. Several techniques were investigated for smoothing CGM data.

These techniques were evaluated by an endocrinologist, and cubic spline smoothing was

determined to give the best results. A detailed explanation of these data preprocessing

techniques is given in Chapter 3.

The second contribution of this thesis is enhancements to detection of excessive

glycemic variability. These enhancements include smoothing CGM data, using a rich set

of pattern recognition features, and evaluating classification algorithms. Feature selection

was carried out to find a subset of features which gave optimal results on a validation

dataset. This subset of features was then used with k-fold cross validation to evaluate and

compare the previous work with the new enhancements. A detailed explanation with

results is given in Chapter 4.

The last contribution of this thesis is a new module for the 4DSS that predicts blood

glucose values. This module uses data previously collected for the 4DSS to train and

evaluate models that predict blood glucose values. This work motivated the need to

preprocess data as described in Chapter 3. Using the preprocessed data, Support Vector

Regression (SVR) is used to build a prediction model. The SVR model is then evaluated

using walk-forward testing. A detailed description along with results is given in Chapter

5. Comprehensive results for 10 different patients are given in Appendix A.

Chapter 6 describes research related to this work. This includes work on other time

series prediction problems that use SVR models, other work in predicting blood glucose
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values, and work towards an artificial pancreas. Chapter 7 presents opportunities for

future work. Chapter 8 gives a summary and conclusions.
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2 Background

This chapter presents background information relevant to this work. First, diabetes is

defined, and the management challenge for diabetes is described in detail; this section

defines many of the domain specific terms used throughout this thesis. Next is a

description of the 4 Diabetes Support System™, the project within which this work was

conducted. Then, a description of the artificial intelligence techniques employed in this

work is given. Finally, techniques used for evaluating the artificial intelligence algorithms

are described.

2.1 Diabetes

According to the American Diabetes Association (ADA), “Diabetes mellitus

(MEL-ih-tus), or simply, diabetes, is a group of diseases characterized by high blood

glucose levels that result from defects in the body’s ability to produce and/or use insulin”

(American Diabetes Association, 2010a). As of 2011, 10.9 million people age 65 years or

older (26.9%), and 25.6 million people age 20 or older (11.3%) in the United States have

diabetes mellitus (American Diabetes Association, 2011). The total cost of diabetes in the

United States for 2007 was $174 billion dollars (American Diabetes Association, 2011).

There are two prevalent forms of diabetes, Type 1 (T1DM) and Type 2 (T2DM).

T1DM occurs when the body is no longer able to produce insulin. Onset of T1DM is

common in childhood; this disease used to be known as juvenile diabetes. This form of

diabetes is less common; only about 5-10% of people with diabetes have T1DM

(American Diabetes Association, 2010b). T2DM occurs when the body is unable to utilize

the insulin produced or not enough insulin is produced. T2DM is commonly associated

with obesity; however, obesity is not the only high risk factor. Certain ethnicities are

considered to be high risk groups, as large percentages of those ethnicities have diabetes

(American Diabetes Association, 2010c).
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2.1.1 Managing Diabetes

Patients with diabetes need to control their blood glucose levels. Insulin or other

medication may be used to control blood glucose levels. If blood glucose levels are not

adequately controlled, the long term complications can be quite costly in terms of both

health and finance. Such complications include increased risk for heart disease and stroke,

blindness, kidney failure, and even death (American Diabetes Association, 2011).

Typically, patients with T2DM can control their blood glucose levels through medication,

exercise, and proper diet. Patients with T1DM require insulin to survive, either from

injections or from a pump (Centers for Disease Control and Prevention, 2007). Many

patients with T1DM use an insulin pump in conjunction with Continuous Glucose

Monitoring (CGM).

The insulin pump allows the patient to administer any amount of insulin. For patients

using Metronic pumps, this amount is chosen with the help of the Bolus Wizard®. There

are many factors which influence the efficacy of insulin for the patient that the Bolus

Wizard®considers. Insulin sensitivity, which varies from patient to patient, is a measure of

the patient’s responsiveness to insulin. The carb ratio, which is also patient specific,

describes the amount of insulin required to cover carbohydrates for a meal. When

calculating a recommended bolus amount, the Bolus Wizard® uses the insulin sensitivity

and carb ratio parameters, along with a recent bolus history and the current blood glucose

reading.

There are two major problems in blood glucose control: hyperglycemia and

hypoglycemia. Hyperglycemia, or high blood glucose levels, occurs during diabetes in the

absence of treatment. In T1DM, it is pronounced when the insulin pump fails or when the

patient does not administer enough insulin. Hypoglycemia, or low blood glucose levels,

occurs when the patient administers too much insulin. Recent research indicates that

glycemic variability, or fluctuation between highs and lows, is a third problem
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contributing to increased risk of complications (Ceriello and Ihnat, 2010; Hirsch and

Brownlee, 2005; Kilpatrick et al., 2010; Kilpatrick et al., 2006; Monnier and Colette,

2008; Monnier et al., 2006).

Patients with diabetes must regularly monitor their blood glucose levels using

fingersticks. A fingerstick is obtained by drawing a small amount of blood for analysis by

a personal glucose meter. Fingersticks are used by the Bolus Wizard® for recommending

insulin dosages. For patients using CGM, fingersticks are used to calibrate the sensor.

Patients are advised to calibrate their sensor three times a day. This calibration may cause

discontinuities in the CGM values. However, fingerstick data is more accurate than CGM

data and is relied upon when readings disagree. The CGM sensor records sample blood

glucose values every five minutes, which allows the patient to closely monitor their blood

glucose levels. The CGM sensor lags the real blood glucose values by 10 to 15 minutes,

providing values within ±20% of the actual values. (Mastrototaro et al., 2008).

The system of using a CGM sensor and an insulin pump to control blood glucose

values is open loop; the patient must intervene with the system for everything to be in flux.

Closing the loop with an artificial pancreas is an idea proposed by Dr. Arnold Kadish that

dates back to 1964 (Juvenile Diabetes Research Foundation, 2010). If an artificial

pancreas could supply the patient with insulin such that the system would not cause

hypoglycemia or hyperglycemia, then it would be possible to build a closed-loop system.

However, the major challenge to building a closed-loop system is the dynamics of the

efficacy of insulin. Every patient reacts differently to insulin. Even the same patient may

react differently to insulin at different times. Factors known to influence the efficacy of

insulin include exercise, diet, stress and other life events. These factors present many

challenges to open loop, as well as closed-loop, control.
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2.2 The 4 Diabetes Support System Project

The work described in this thesis was conducted within the context of the 4 Diabetes

Support System™ (4DSS) project. The 4DSS is a case-based decision support system

aimed to facilitate both physician and patient management of T1DM. The 4DSS completes

this task in 3 steps: detecting problems in blood glucose control, generating solutions to

these detected problems, and remembering which solutions worked for future reference.

4DSS research and development has been conducted over the course of three clinical

research studies, the third of which is still ongoing. These studies are described next.

2.2.1 The Preliminary Study

The purpose of the first 4DSS study was to determine if a decision support system

could be developed to help manage patients with T1DM. Before the study was conducted,

it was approved by the Institutional Review Board (IRB) at Ohio University. Twenty

human subjects with T1DM enrolled for a period of 6 weeks per subject, and 12 subject

completed the entire protocol. A variety of patient information was collected, including:

background information, insulin pump data, CGM data, and daily life event data. Daily

life event data included meal information, sleep information, work information, stress,

illness, and other miscellaneous information. In addition, each patient filled out an exit

survey at the end of their participation in the study. Using the collected data, a 4DSS

prototype was built by knowledge engineers and evaluated by both diabetes experts and

knowledge engineers. This study showed that a decision support system for T1DM would

be feasible. It identified the needs to address additional problems in blood glucose control

and to reduce data entry time for patients (Marling et al., 2008; Schwartz et al., 2008;

Marling et al., 2009a).

At the end of the preliminary study, the 4DSS prototype consisted of four different

modules and a case base with 49 cases. These modules included a website for data entry, a
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database for recording patient information, situation assessment for detecting problems,

and a case retrieval module for identifying cases with similar problems to those detected

by situation assessment. The website for data entry was developed by Anthony Maimone

(Maimone, 2006). The database was developed by Anthony Maimone with the help of

Kathleen Evans-Romaine and Wesley Miller (Maimone, 2006). The situation assessment

module was developed by Wesley Miller (Miller, 2009). The case retrieval module was

developed by Donald Walker (Walker, 2007). The case-base was created by the diabetes

experts and knowledge engineers, using the collected data.

2.2.2 The Second Study

The purpose of the second 4DSS study was to evaluate the capabilities of the

situation assessment and case retrieval modules developed during the preliminary study.

The second study received approval from the IRB at Ohio University prior to its

beginning. Twenty-six adult human subjects with T1DM enrolled for a period of 5 weeks

per subject. Twenty-three subjects completed the entire protocol. Since the case base was

built using data from the first study, patients who participated in the first study did not also

participate in the second study. This was done to prevent any bias in the evaluation. As in

the first study, patient data was recorded in the database (Schwartz et al., 2010).

Evaluation of the problem detection and the case retrieval module were presented in

(Schwartz et al., 2010; Marling et al., 2009b; Marling et al., 2009c; Vernier, 2009). For

detecting problems, this evaluation showed that the problems detected were correct and

useful a majority of the time. The patients’ own physicians evaluated these detections and

found that 97.9% of the detected problems were correct, and 96.1% were useful. Four

diabetes experts evaluated the case retrieval module. The experts found that 79% of the

cases retrieved had problems that were similar to the problem that was detected, and 82%
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of the associated solutions were helpful to the patients experiencing the problems

(Schwartz et al., 2010).

2.2.3 The Third Study

The evaluation from the second study showed that there was room for improvement

in the case retrieval module. Collecting more data and adding cases to the case base is one

way to improve this performance. This motivated the need for a third study. As with the

first two studies, the third study was approved by the IRB at Ohio University. So far,

seventeen human subjects with T1DM enrolled for a period of 3 months per subject, and

twelve have completed the entire protocol. This study led to several improvements and

extensions for the 4DSS project.

New cases were created from the collected data and added to the case-base. This

gave the case retrieval module more cases to select from. However, to make retrieved

solutions specific to individual patients, solutions needed to be adapted. This resulted in

the fifth module of the 4DSS project, which is adaptation. This module was developed by

Tessa Cooper (Cooper, 2010). The purpose of this module is to tailor the solution found

by the case retrieval module to the specific needs of the patient. An example of a solution

requiring adaptation is one that suggests the patient should increase their basal rate before

bedtime from 0.9 to 1.0 units. However, if the patient’s current basal rate before bedtime

is 0.6, adjusting it to 1.0 would not be ideal. The adaptation module can tailor the advice

such that an appropriate basal rate is suggested.

Stan Vernier added new functionality to the situation assessment module to

automatically detect days containing excessive glycemic variability (Marling et al., 2011;

Vernier, 2009). As indicated in Section 2.1.1, excessive glycemic variability may lead to

an increased risk of diabetic complications. This work is discussed in greater detail in

Chapter 4.
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The current work not only enhances the 4DSS, but also expands its scope. Detection

of excessive glycemic variability (Vernier, 2009) has been improved as described in

Chapter 4. Prediction of future blood glucose values, described in Chapter 5, is new

functionality that is useful for the 4DSS in multiple ways. If the predictor were used in

real-time, problems could be detected preemptively and prevented. A real-time predictor

would also allow the patient to posit hypothetical situations. This would allow the patient

to see what could possibly happen in the future if they were to eat a meal or administer a

certain amount of insulin. The predictor could act as an educational tool, for example,

demonstrating to a patient what could be done to avoid a hypoglycemic episode. The

adaptation module could consult the prediction module when generating solutions. This

would allow the adaptation module to test solutions before suggesting them. Figure 2.1

gives an overview of all the modules included in the 4DSS project and how these modules

are connected.

2.3 Artificial Intelligence

This section describes artificial intelligence techniques and formulations that were

used for this work. These techniques include the machine learning algorithms Multilayer

Perceptrons (MP)s, Support Vector Machines (SVM) for classification, and Support

Vector Regression (SVR). The formulation of a time series prediction problem is

important for predicting blood glucose values.

2.3.1 Multilayer Perceptrons

A multilayer perceptron is a type of feedforward neural network. This algorithm is a

variant of the perceptron algorithm proposed by (Rosenblatt, 1958). Perceptrons are

described in detail in (Rumelhart et al., 1986; Bishop, 1995; Theodoridis and

Koutroumbas, 2009; Bishop, 2006; Mitchell, 1997; Rosenblatt, 1958). In this work, MPs
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Figure 2.1: A flowchart specifying the modules of the 4DSS project.

are used for classification of glycemic variability. A brief introduction to MPs is given in

the remainder of this section.

The perceptron algorithm is guaranteed to converge if the data x is linearly separable.

Linear separability implies that there exists some hyperplane w such that:

w>x + b > 0 ∀t ∈ ω1 (2.1)

w>x + b < 0 ∀t ∈ ω2 (2.2)
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where w ≡ (w1,w2, . . . ,wN)> is a weight vector, x ≡ (x1, x2, . . . , xN)> is an input vector, b

is an offset, t is the example label, and ω represents the class label. The perceptron is said

to converge when Equations 2.1 and 2.2 have been satisfied, meaning that the data has

been linearly separated. In the case of the data not being linearly separable, the multilayer

perceptron achieves convergence with the use of hidden layers and backpropagation.

Separation of the data is learned by updating the weight vector w using a learning rule.

When there is an example which does not satisfy Equations 2.1 and 2.2, the learning rule

is activated for the hidden layer(s), which updates the weight vector in the following

manner:

∆w (τ) = −η 5 E
∣∣∣w(τ) + α ∆w (τ − 1) (2.3)

where τ is the iteration step of the perceptron, ∆w (τ) is the weight vector increment at

step τ, 5E
∣∣∣w(τ) is the gradient of the error function in the weight space at step τ, η is the

learning rate, and α is the momentum. The learning rate η controls the step size of the

weight adjustments. The momentum parameter α – which acts as an exponential decay

with values between zero and one – helps the perceptron achieve convergence quicker.

This parameter controls the influence of past weight changes on the current weight

change, which adds inertia to the weight space. A full derivation of this formula is given

in (Bishop, 1995; Rumelhart et al., 1986). An advantage of MPs is that a backpropagation

network with enough hidden nodes can approximate any decision surface (Hornik and

White, 1989).

2.3.2 Support Vector Machines

SVMs were first described in 1979 in (Vapnik, 1979). The books (Vapnik, 1998;

Vapnik, 1995) present an introduction and overview of SVMs. An excellent tutorial on

SVMs for pattern recognition is given in (Burges, 1998) and the books (Theodoridis and

Koutroumbas, 2009; Bishop, 2006) have chronicled many of the recent developments with
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SVMs. In this work, SVMs are used for classifying glycemic variability and predicting

blood glucose values. A brief introduction to SVMs for classification is given in the rest of

this section.

Like perceptrons, SVMs attempt to find a hyperplane that separates the data;

however, an SVM tries to maximize the margin separating the classes. Figure 2.2

illustrates this maximum margin approach. Consider a decision boundary which satisfies

Equations 2.1 and 2.2 for a binary classification problem. It can be shown that the distance

between a given point xn and the decision boundary is given as:

tny (xn)
‖w‖

where tn ∈ {−1, 1} and corresponds to the label for the nth example, xn is the nth feature

vector, ||w|| ≡
√

w>w ≡
√

w2
1 + . . . + w2

|xn |
and y (xn) = w>φ (xn) + b where φ(xn) is a

feature space transformation and b is an offset (Bishop, 2006). We want to find the point

xn with the closest perpendicular distance to the decision boundary while optimizing the

parameters w and b to maximize the distance of the margin. This is formulated in (Bishop,

2006), as a quadratic programming optimization problem, J (w, b), where we wish to

minimize the norm of the weight vector w, as shown in Equation 2.4:

J (w, b) =
1
2
‖w‖2 (2.4)

subject to:

tn
(
w>φ (xn) + b

)
≥ 1, for all n = 1, . . . ,N (2.5)

This problem can be solved by introducing Lagrange multipliers, an ≥ 0, for each

constraint defined in Equation 2.5. The primal form becomes Equation 2.6:

Lp (w, b, a) =
1
2
‖w‖2 −

N∑
n=1

an
{
tn

(
w>φ (xn) + b

)
− 1

}
(2.6)
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Figure 2.2: Illustration of the maximum margin.

where a ≡ (a1, . . . , aN)>. Minimizing w and b is achieved by setting the derivatives of

Lp (w, b, a) with respect to w and b to zero. This gives the equality constraints of the dual

formulation problem, as defined in Equations 2.7 and 2.8:

w =

N∑
n=1

antnφ (xn) (2.7)

0 =

N∑
n=1

antn (2.8)
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Substituting these constraints into Equation 2.6 gives the dual formulation, shown in

Equation 2.9:

Ld(a) =

N∑
n=1

an −
1
2

N∑
n=1

N∑
m=1

anamtntmk (xn, xm) (2.9)

subject to:

an ≥ 0, n = 1, . . . ,N (2.10)

0 =

N∑
n=1

antn (2.11)

where k(xn, xm) = φ> (xn) φ (xm) is the kernel function. The unique aspect of this dual

formulation is that the input is represented as a dot product of feature vectors. Introducing

slack variables allows SVMs to converge without linearly separable data. The new

constraints with the slack variables, denoted as ξn, are defined in Equation 2.12:

tnyn (xn) ≥ 1 − ξn, n = 1, . . . ,N (2.12)

The purpose of these slack variables is to allow for some of the points to be outside of the

decision boundary, while maximizing the margin; this is soft margin maximization. The

optimization problem can then be rewritten per Equation 2.13:

1
2
‖w‖2 + C

N∑
n=1

ξn (2.13)

The constant C is known as the regularization constant. A larger C will put more emphasis

on training errors, whereas a smaller C will put more emphasis on minimizing the norm of

the weight vector. A full derivation with theorems is contained within the tutorial in

(Burges, 1998).

It has been shown that the only points needed for classification are points either on or

inside the margin, illustrated in Figure 2.2 (Bishop, 2006). These examples are known as

support vectors. Only support vectors will have non-zero Lagrange multipliers, resulting

in sparse solutions. Kernel substitution can be applied to the kernel for SVMs, which
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allows the kernel to be transformed into a polynomial, or radial basis function (RBF). The

kernel function k (xn, xm) is valid if the result is positive semidefinite for all xn (Bishop,

2006). This type of kernel transformation is the biggest advantage of SVMs because it

allows the original feature space to be projected into a higher dimensional space. This

transformation is key to separating data that is not linearly separable, i.e., when there is no

hyperplane w that satisfies Equations 2.1 and 2.2. An example of a RBF kernel is given in

Equation 2.14:

k (u, v) = exp
(
−
‖u − v‖2

σ2

)
(2.14)

where u and v are two input examples, and σ is the width of the hypersphere in the infinite

dimensional feature space corresponding to k (u, v) = φ> (u) φ (v).

2.3.3 Support Vector Regression

SVMs were originally used for solving classification problems. They have since been

extended to solve regression and ranking problems. Regression analysis with SVMs is

known as Support Vector Regression (SVR). Smola and Scholkopf have published a

comprehensive tutorial explaining SVR (Smola, A.J. and Scholkopf, B., 2004). The use of

SVR to solve a time series prediction problem has became a topic of interest over the past

decade (Sapankevych and Sankar, 2009). One appealing aspect of using SVR for time

series prediction is that it does not require a predefined mathematical model. The

prediction of future values is driven by the training data. In this work, SVR is used to

predict future blood glucose values.

Before delving into SVMs for regression, we start by looking at ridge regression. In

ridge regression, we seek to minimize a regularized error function given as:

1
2

N∑
n=1

{y (xn | w) − tn}
2 +

λ

2
‖w‖2 (2.15)
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where the constant 1
2 is included for convenience, y (xn | w) =

∑|w|
i=0 wi xk giving the

predicted value, tn is the actual value, and λ is the ridge parameter. The quadratic error

function results in solutions which are not sparse; therefore the quadratic error function is

replaced with an ε-insensitive error function in terms of the prediction y (x) (Vapnik,

1995). This function allows for examples to have zero error if the absolute difference

between the predicted value and actual value is less than some constant ε. A linear cost

function is shown in Equation 2.16:

Eε (y (x) − t) =


0, if |y (x) − t| < ε

|y (x) − t| , otherwise
(2.16)

The Eε function allows points to have an error of zero that are inside of an ε insensitive

region – also known as the ε tube – illustrated as the shaded region in Figure 2.3. This

results in sparse solutions. The objective is to find an optimal weight vector w such that

Figure 2.3: Illustration of the ε tube.

the Euclidean norm (||w2||) and the error generated by the estimation process are
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minimized, as shown in Equation 2.17.

J (w, b) =
1
2
‖w‖2 + C

N∑
n=1

Eε (y (xn) − tn)2 (2.17)

This objective is known as the regularized risk. C is the regularization constant, which is

used to give significance to the regularized risk (the error generated by Eε). The quadratic

error function (the second term of Equation 2.17), is known as the empirical risk. Slack

variables ξ and ξ̂ are introduced for points outside of the ε tube with the following

conditions:

tn ≤ y (xn) + ε + ξn (2.18)

tn ≥ y (xn) − ε − ξ̂n (2.19)

Then, Equation 2.16 can be rewritten as:

J (w, b) =
1
2
||w||2 + C

N∑
n=1

(ξn + ξ̂n) (2.20)

As with SVMs for classification, this minimization can be solved using Lagrange

multipliers and optimizing the Lagrangian; resulting in a similar dual formulation

(Bishop, 2006).

The objective is to minimize both the norm of the weight vector and the empirical

risk. The regularization constant C governs the amount of trust the model gives the

training data. A large value for C will result in a model that will put emphasis on

minimizing the slack errors. This would result in a model that would attempt to perfectly

fit the training data, but which would not generalize well on unseen data.

2.3.4 Time Series Prediction

A time series is an ordered sequence of observations from the present and past. Time

series datasets differ from regular datasets because there is a natural ordering to the

observations. Another unique feature of these datasets is that adjacent observations are
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dependent (Box et al., 2008). Examples of these types of datasets are common, such as the

daily closing price of the Dow Jones index, the monthly sales for a car dealership, and the

daily electricity use of New York City, to name a few. Observations are typically

measured at uniformly spaced intervals, but this is not always the case, due to missing

data points or the general nature of the time series.

Exploiting information from observations up to time t to estimate a future value at

time t + l is known as time series prediction. A time series prediction problem can be

generalized abstractly as shown in equation 2.21.

ŷt+l = f (yt, yt−1, yt−2, . . . , yt−n) (2.21)

For an observed time series y with n points, where t refers to the most recent observation

and t − n is the most distant observation, a future value at t + l can be estimated with a

function f . Function f is known as the model, which is used to obtain an estimated value

ŷt+l.

A time series is stationary if the joint probability distribution does not depend on

time. In regards to SVM, any information that influences the output and is not encoded

into the model is considered noise; it is impossible to exploit all information that

influences real-world time series. Prediction of nonlinear time series that are both noisy

and non-stationary is considered to be difficult. In many real-world examples of time

series, the datasets are noisy and non-stationary. Blood glucose prediction, financial

market prediction, and electricity utility load forecasting are examples of noisy and

non-stationary time series.

Real-world time series that exhibit these properties require advanced algorithms to

model predictions. This motivates the use of techniques such as SVMs and neural

networks. SVMs outperform neural networks and other advanced prediction techniques

on time series that are non-stationary, noisy, and not defined a-priori; as shown by many
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publications listed in (Sapankevych and Sankar, 2009). Due to sparse representation of the

solution, SVMs tend to have good generalization performance and testing is done much

quicker with SVMs than their counterparts. Therefore, SVMs are favored over other

advanced techniques.

CGM data can be formulated as a time series, where the current blood glucose

reading is yt, and the future blood glucose value is yt+l. The goal is to learn a function, f ,

from CGM data such that the predicted value from the model ŷt+l is as close as possible to

the actual value yt+l. The function f can be obtained using many different learning models.

SVR is explored in this work due to its resilience to noise, good generalization

performance, and sparse solution properties. This allows the SVR to learn from a large

number of training examples and features within a practical training time. There are also

some theoretical twists that are easily applied to the SVR to boost performance for blood

glucose prediction, as explained in Chapter 5.

2.4 Evaluation Techniques

This section describes evaluation techniques used to evaluate classification and

regression models. Two different types of evaluation were performed. The first is k-fold

cross validation, which was used for evaluating models for classification of glycemic

variability. The second is walk-forward testing, which was used for evaluating blood

glucose prediction models.

2.4.1 K-fold Cross Validation

To identify a superior machine learning method, k-fold cross validation is performed.

This is a standard technique for comparing the performances of different methods using

small datasets. A formal explanation of k-fold cross validation is given in (Mitchell,

1997). Using the results from k-fold cross validation, a p-value indicating statistical

significance can be obtained. Given that this p-value is small enough, we can accept one
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method as superior to the other. K-fold cross validation partitions the dataset into k folds.

Then, all but one fold is used for training, and the fold that is held out is used as a test set.

This is done k times, once for each fold. An illustration of this process is given in Figure

2.4. In this case, a development dataset is used for tuning parameters. This dataset is kept

Figure 2.4: Illustration of k-fold cross validation.

separate from the k folds used for training and testing, such that the parameters are not

tuned on any test data. For SVM, the regularization constant C and the kernel parameters

are tuned. For the MP, the learning rate η and momentum parameter α are tuned.

2.4.2 Walk-forward testing

Walk-forward testing is a commonly used method for assessing the generalization

performance of a time series prediction model. For example, this type of testing has been

employed for financial time series forecasting in (Refenes et al., 1997; Cao and Tay, 2003;

Tay and Cao, 2002a). This method works by using an out-of-sample tuning and testing

dataset. The idea is to test the regression model in real time. This is done by partitioning

the test dataset, and walking forward through the test set in a certain increment of time,
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updating each dataset (train, validation, and test) appropriately. Figure 2.5 illustrates this

type of testing.

Figure 2.5: Illustration of walk-forward testing.

At each step, the validation set is used to tune the parameters of the SVR. Then, the

performance of the test set is calculated and the error measures are recorded. Once testing

is complete for that step, the starting and ending times of all datasets are updated by a

predefined step size. The data that was previously used for testing becomes part of the

validation set and, perhaps, the training set if the validation set is smaller than the test set.

The data that was previously used as validation data becomes part of the training dataset.

This type of walk-forward testing continues until the test dataset space has been

exhausted. The results at each step can be averaged together to get an overall result for the

system. Upon completion, the results of the walk-forward testing can be used for

statistical significance testing. Statistical significance is used to compare two different

learning models for blood glucose prediction.
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3 Data Preprocessing

This chapter describes data preprocessing techniques that were carried out on patient

data prior to classification and prediction. Features engineered to classify glycemic

variability are derived from the values recorded by the CGM sensor. Therefore, noise

recorded by the CGM sensor is also encoded in these features. The intuition is that

filtering noise before encoding features will improve the discriminative power of these

features, resulting in better performance of the classifiers.

Features used to predict blood glucose values depend on CGM data as well as on

other data recorded by the patient. As in classification, features derived from CGM data

will retain noise. Furthermore, noisy CGM readings can confuse the regression model

with unrealistic examples. This motivates preprocessing the CGM data before generating

features and examples for prediction. Data recorded by the patient may be missing or

invalid, causing incomplete or corrupt features. However, correctly recorded patient data

should correspond to changes in blood glucose levels, improving the accuracy of blood

glucose prediction models. This motivates the inference of missing data values that were

recorded by the patient.

Two forms of data were collected for the 4DSS. These forms are automated data and

user-entry data. Automated data consists of CGM data, bolus information, basal

information, and fingerstick information. All of this data is recorded automatically by the

insulin pump worn by the patient. Automated data is always present and as accurate as the

equipment recording the data. User-entry data represents life event information such as

exercise, meals, work, and sleep information. This data is collected via a web interface

that is filled out by the user. Unlike automated data, user-entry data may be inaccurate or

missing. Both forms of data need to undergo noise and/or anomaly detection to obtain

accurate examples. For user-entry data, this involves identifying corrupt or missing data,

and then removing corrupt records or inferring the missing data. For automated data, this
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involves smoothing noisy CGM data. The quality of the CGM data is further improved

with the use of fingerstick information. This information allows anomalous CGM data

points to be detected and corrected.

Anomaly detection is the process of identifying unexpected patterns in data

(Chandola et al., 2009). Noise is different from anomalies in that noise comes from

inaccuracy in the sensor recording the data. The survey presented in (Chandola et al.,

2009) defines 3 different types of anomalies: point anomalies, contextual anomalies, and

collective anomalies. Point and collective anomalies are not applicable to CGM data.

However, contextual anomalies are quite common for CGM data. These anomalies occur

when the CGM sensor becomes uncalibrated. An uncalibrated CGM sensor is corrected

when the patient performs a fingerstick. The data points sampled while the CGM sensor is

uncalibrated are contextual anomalies. The fingerstick information is used to correct these

anomalous readings. Ridge regression and cubic spline smoothing described in Sections

3.2.4 and 3.2.5 attempt to correct these contextual anomalies.

Section 3.1 describes inference techniques that were used for user-entry data. This

includes inferring information from two sources: a typical daily schedule specified by the

patient and extra information recorded by the insulin pump. Section 3.2 describes

techniques used to filter noise from CGM data. Filtering of CGM data was performed for

two different tasks: classification of glycemic variability; and prediction of blood glucose

values.

3.1 Inferring missing data

At the beginning of each patient’s participation in the study, routine information such

as wake/sleep times and to/from work times are collected for each day of the week. This

information can be used to infer missing data that the patient might have forgotten to

record. For example, if the patient forgot to enter the time they went to work on Monday,
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their daily schedule can be consulted to infer the time the patient was working. However,

not all information can be inferred from a daily schedule. For example, patients do not

typically eat meals at the same time every day. It is important that the meal information is

accurate, as the regression model will learn how carbohydrates affect the patient’s blood

glucose values.

Meal information is available from two different sources. When the patient does not

forget, meal information is recorded by the patient via the web interface. Meal

information is also recorded when the patient administers a meal bolus using the Bolus

Wizard®. The Bolus Wizard® takes the estimated number of carbohydrates for the meal

as input, and recommends a bolus amount to the patient. The estimated number of

carbohydrates recorded by the patient is captured in the insulin pump data. This data may

be more accurate and consistent than the user-entry meal data. Every patient is advised to

use the Bolus Wizard® at the time of the meal; the Bolus Wizard® records the estimated

carbohydrates with a time stamp. Considering that the patient uses the Bolus Wizard®at

the time of the meal, this time stamp will also represent the time of the meal. On the other

hand, the time of the user-entry meals are estimated by the user. These times may be

estimated inconsistently, causing confusing examples for the regression model. Therefore,

the information recorded by the Bolus Wizard® is used whenever possible.

Inferring missing data from the daily schedule helps deal with missing patient data in

respect to sleep and work information. In the case of meal information, daily schedules

are not as accurate, and the Bolus Wizard® is used. The patient is expected to use the

Bolus Wizard® whenever carbohydrates are consumed, with the exception of correcting

for a hypoglycemic episode. Hypoglycemic episodes are recorded by the patient, and

while the times are estimated, having this information is better than not having any

information at all. Using the estimated carbohydrates from the Bolus Wizard® in
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combination with the estimated carbohydrates consumed during hypoglycemic episodes

gives the most information possible for meal data.

3.2 Filtering Techniques

Smoothing and filtering CGM data has gained interest in the diabetes technology

community recently (Bequette, 2010; Sparacino et al., 2008). This is due to the fact that

the CGM sensors do not record data with 100% accuracy. The sensors used in this study

are known to record values at ±20% of the actual blood glucose level (Mastrototaro et al.,

2008). A physician implicitly smooths the values recorded by the CGM sensor when

considering the data. An explicit example of how a physician smooths a CGM data plot is

shown in Figure 3.1.

Figure 3.1: CGM data annotated by a physician with a smoothed curve.
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An endocrinologist was asked to smooth 10 CGM plots like the one shown in Figure

3.1. In smoothing, the physician gave extra weight to local optima and fingerstick data;

fingersticks are known to be more accurate than CGM data. This motivated the use of

fingerstick data, along with CGM data, when smoothing. Different techniques were

investigated to smooth the CGM data. These techniques included simple moving averages,

exponential moving averages, ridge regression, low pass discrete Fourier transform filters,

and cubic spline smoothing. The smoothing technique identified by the physicians as

matching the implicit smoothing process the closest was cubic spline smoothing.

The original CGM plots annotated by physicians to classify glycemic variability did

not contain any fingerstick information. Therefore it was not possible to incorporate

fingerstick data while smoothing and the cubic spline smoothing defined in Equation 3.15

was used weighting local optima without fingerstick information. However, fingerstick

data was available for blood glucose prediction. Therefore, it was possible to use the cubic

spline smoothing defined in Equation 3.15 with local optima and fingerstick information

as preferred by physicians.

3.2.1 Simple Moving Average

A moving average filter for CGM data was investigated in depth by (Sparacino et al.,

2008), and was found to be inadequate for smoothing CGM data. To verify these findings,

this work investigates moving average filters as well. A simple moving average, ŷt, of

order k is defined as follows:

ŷt =
1

k + 1

k∑
i=0

yt−i (3.1)

where t represents an index in the time series, yt is the data point for which the moving

average is calculated, and k is the number of data points before yt which are included in

the calculation.
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Figure 3.2: Examples of smoothing with moving averages of different orders.

One problem with this type of smoothing is that the moving average tends to lag

behind the real blood glucose values. Figure 3.2 shows this type of lag with moving

averages of orders 3, 4 and 5. To combat this problem, we came up with a different

formulation for the moving average, which could be called the middle moving average. A

middle moving average, also denoted by ŷt, of order k is defined as:

ŷt =
1

2k + 1

yt +

k∑
i=1

yt−i +

k∑
i=1

yt+i

 (3.2)

where yt is the data point for which the moving average is calculated, and k is the number

of neighbors on each side of point yt included in the calculation.

This type of moving average is resistant to the lag noticed with the first moving

average. Figure 3.3 shows examples of smoothing with middle moving averages of orders
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2, 3 and 4. As shown in this figure, using more points (higher orders) yields less noise, but

it also shortens the peaks and nadirs of the original CGM data.

Figure 3.3: Examples of smoothing with middle moving averages of different orders.

3.2.2 Exponential Moving Average

A slight modification to the simple moving average is the exponential moving

average. The exponential moving average takes a parameter λ, with values between 0 and

1, that acts as an exponential decay. This type of exponential decay was also investigated

in (Sparacino et al., 2008). If λ is 1, then this becomes a simple moving average. An

exponential moving average, ŷt, of order k and decay λ is defined as:

ŷt =

∑k
i=0 yt−iλ

i∑k
i=0 λ

i
(3.3)
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where yt is the data point for which the exponential moving average is calculated, k is the

number of data points before yt which are included in the calculation, and λ is the decay

parameter.

The exponential moving average also lagged like the simple moving average,

motivating the need for a middle exponential moving average. The middle exponential

moving average is defined as:

ŷt =
yt +

∑k
i=1 yt−iλ

i +
∑k

i=0 yt+iλ
i

1 +
∑k

i=1 2λi
(3.4)

where yt is the data point for which the moving average is calculated, k is the number of

neighbors on each side of point yt included in the calculation, and λ is the decay parameter.

Smoothing with a middle exponential moving average can be used to reduce the

influence of distant points. Smoothing with a λ of 0.5 is compared to smoothing with a

simple middle moving average in Figure 3.4. A smaller value for λ results in a smoothed

graph closer to that of the original CGM data.

Moving averages produce smooth curves. However, moving averages can

over-smooth important aspects of data such as true physiological peaks and nadirs.

Moving averages can also preserve noise in the CGM data. To reduce noise, it is possible

to include the more accurate fingerstick data into the moving average formulations.

However, if this information was included, it would be over-smoothed. It would be ideal if

the smoothed curve passed through each fingerstick, as is done by the endocrinologist.

This is not possible using moving averages, which motivates the use of other smoothing

techniques.

3.2.3 Low Pass Discrete Fourier Transform

A Discrete Fourier Transform (DFT) of N CGM measurements yields N complex

sinusoidal components (Stanley et al., 1983). This transformation (Equation 3.5) from the
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Figure 3.4: The middle exponential moving average compared to a simple middle moving
average.

time domain to the frequency domain is helpful because high frequencies in the frequency

domain can be discarded as noise. The sequence of complex sinusoidal components in the

frequency domain can be transformed to the time domain using the inverse DFT (Equation

3.6). The original CGM measurements can be reconstructed using all of the frequency

information when performing the inverse DFT. Equation 3.5 shows how the DFT is

computed:

Xk =

N−1∑
n=0

xn exp
(
−

2πi
N

kn
)
, k = 0, . . . ,N − 1 (3.5)
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where N is the number of CGM measurements, xn is an individual CGM data point, and i

is
√
−1. Equation 3.6 shows how the inverse DFT is computed:

xn =
1
N

N−1∑
k=0

Xk exp
(
2πi
N

kn
)
, n = 0, . . . ,N − 1 (3.6)

where N is the number of sinusoidal components, Xk is the frequency obtained from

Equation 3.5, and i is
√
−1.

A low pass DFT zeros out all frequencies above a certain threshold. This filter is

useful as the lowest frequencies contain a majority of the information about the original

signal. This is because each frequency, X(k), represents a sinusoidal component of k/N

cycles per day. High frequencies correspond to sinusoidal components with short periods.

Noise from the CGM data appears in frequencies with short periods. By ignoring high

frequencies, this noise is ignored while a majority of the original CGM data is preserved.

Once these frequencies have been zeroed out, the inverse transform is computed, resulting

in a smoothed curve. Figures 3.5(a) and 3.5(b) show examples of this type of smoothing.

(a) Low pass DFT with all but the first 10

frequencies discarded.

(b) Low pass DFT with all but the first 20

frequencies discarded.

Figure 3.5: Examples of the low pass DFT filter.
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The low pass DFT filter ignores noise from the original CGM data when performing

the inverse transform. On the other hand the moving averages include noise in the

averaged data values. This aspect of the low pass DFT filter makes it superior to the

moving averages for smoothing CGM data. However, the disadvantage of the DFT filter is

the lack of an obvious way to integrate fingerstick information.

3.2.4 Ridge Regression

Ridge regression is a statistical approach for solving non-linear least squares

problems, first appearing formally in (Hoerl and Kennard, 1970). The basic idea is that

any signal containing K points can be fit exactly with a polynomial, y (x | w), of degree K.

Equation 3.7 shows the formula for this polynomial:

y (x | w) =

K∑
i=0

wi xk (3.7)

where w ≡ (w0,w1, . . . ,wK)>, and xk is x raised to the power of k. The values of w can be

realized by minimizing the mean square error distance between y (x | w) and the original

points. Forcing a polynomial line to fit every single point from the original signal results

in large coefficients, and a volatile curve. Ridge regression addresses this problem by

minimizing a trade-off between the mean square error and the norm of the weight vector

squared. Equation 3.8 shows how the objective L (w) is minimized with this trade-off:

L (w) =
1
2

N∑
n=1

(y (xn | w) − tn)2 +
λ

2
||w||2 (3.8)

where 1
2 is included for mathematical convenience, N is the number of CGM points, tn is

the original value of the nth CGM point, λ is the ridge parameter, and

||w||2 ≡ w>w ≡ w2
0 + w2

1 + . . . + w2
K . The ridge parameter controls the aforementioned

trade-off. An appealing aspect of ridge regression is that Equation 3.8 can be modified to

weigh fingerstick examples more heavily, as shown in Equation 3.9.
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L (w) =

N∑
n=1

Cn

2
(y (xn | w) − tn)2 +

λ

2
||w||2 (3.9)

where Cn is defined as:

Cn =


P, if n is a fingerstick example

1, otherwise
(3.10)

where P is any positive integer greater than one. The solution is found by setting the

gradient of the objective function (Equation 3.9) with respect to w equal to zero, as shown

in equation 3.11.

w = X>X
(
X>Y + λI

)−1 (3.11)

where X is the Vandermone matrix of the form X ≡ (x0, x1, . . . , xN)> where

xi ≡
(
1, xi, x2

i , . . . , x
K
i

)>
, Y ≡ (t1, t2, . . . tN)>, and I is the identity matrix. For a weighted

solution, each xi and ti are scaled by
√

Ci. Thus, solving for w can be written as a system

of linear equations with or without weighting. A full derivation can be found in (Bishop,

2006).

Figures 3.6(a) to 3.6(d) show examples of this type of ridge regression. Figure 3.6(a)

illustrates ridge regression without fingerstick data. Figure 3.6(b), demonstrates the

advantages of weighting fingersticks for this type of smoothing. Figure 3.6(c), shows how

the ridge regression reacts to a different weighting of fingersticks. When the CGM curve

becomes more complex, a higher degree polynomial can be used to obtain a more

complex line, as shown in Figure 3.6(d).

The biggest drawback to ridge regression is that, with a large order, ridge regression

becomes numerically unstable with a monomial basis function. Unfortunately this yields

inconsistent results, making it inappropriate for smoothing CGM data where a larger order

is needed due to the complexity of the CGM plot.
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(a) Ridge regression with order = 100, ridge

= exp−33, and fingerstick weight = 0.

(b) Ridge regression with order = 100, ridge

= exp−33, and fingerstick weight = 100.

(c) Ridge Regression with order = 100, ridge

= exp−33, and fingerstick weight = 50.

(d) Ridge regression with order = 200, ridge

= exp−33, and fingerstick weight = 100.

Figure 3.6: Examples of ridge regression.

3.2.5 Cubic Spline Smoothing

Cubic spline smoothing is a regularized cubic spline interpolation, described in great

detail in (Pollock, 1993). Given a set of n points (xi, yi), the objective of the spline

interpolation is to connect adjacent points using cubic functions S i. Each spline function
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S i(x) is computed as per Equation 3.12, where x takes values in the range xi to xi+1, with

the condition that adjacent functions S i and S i−1 give the same value for point (xi, yi).

S i (x) = ai (x − xi)3 + bi (x − xi)2 + ci (x − xi) + di ∀x ∈ [xi, xi+1] (3.12)

where ai, bi, ci, and di are the coefficients for the cubic spline function S i.

While this type of interpolation produces smooth curves, noise from the CGM data is

preserved. This noise can be smoothed away by allowing the spline functions S i to deviate

from the original data points, while requiring that the first and second derivatives of the

spline function are continuous at all points (xi, yi). This is achieved by minimizing a

trade-off between the error of the spline functions and the second derivative of the spline

functions. The second derivative of Equation 3.12 is given in Equation 3.13.

S
′′

i (x) = 6ai (x − xi) + 2bi (3.13)

For spline interpolation, the coefficients ai and bi grow large. Large coefficients result

in volatile convex/concave curves between data points. By forcing the spline to minimize

the area under the second derivative, the smoothed curve is less volatile, as it does not

attempt to pass through all of the original data points. The estimated plot L is found with

this minimization as shown in Equation 3.14:

L =

n∑
i=0

(Yi − S i)2 +
λ

xn − x0

∫ xn

x0

S
′′

(x)
2
dx (3.14)

where S i is the cubic spline function, Yi is the original CGM data point, λ is the ridge

parameter, S
′′ (x) is the second derivative of the spline function S i, and x0, and xn are the

first and last CGM points which are smoothed.

The first term corresponds to the total square error of the original points and the

points produced by the spline functions S i. The second term corresponds to the average
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curvature of the splines. By minimizing the curvature, noise is smoothed away from the

CGM graph. When λ = 0, Equation 3.14 results in an interpolating spline that passes

through every data point. At the other extreme, a large value for λ results in a straight line.

To avoid issues with missing data points and different starting times of the first CGM

reading, the area under the second derivative is divided by the range of the X values. The

implementation used to compute the smoothed cubic spline follows pseudo-code found in

(Pollock, 1993).

As with ridge regression, an advantage to cubic spline smoothing is that weights can

be given to specific examples. This allows for extra weighting of fingersticks.

Furthermore, it is a concern of the physicians that true peaks and nadirs in the CGM data

are not smoothed away, as reflected in Figure 3.1. Therefore, CGM data points

corresponding to local minima or maxima should be given extra weight, so that the

smoothed curve will pass through these points as well as fingersticks. This is done by

modifying Equation 3.14, as shown in Equation 3.15.

L =

∑n
i=0 wi (Yi − S i)2∑n

i=0 wi
+

λ

xn − x0

∫ xn

x0

S
′′

(x)
2
dx (3.15)

where S i is the cubic spline function, Yi is the original CGM data point, λ is the ridge

parameter, S
′′ (x) is the second derivative of the spline function S i, x0, and xn are the first

and last CGM points which are smoothed, and wi is the weight associated with the ith

point. Each wi is defined as:

wi =


P, if (xi, yi) is a fingerstick or local optima

1, otherwise
(3.16)

where P is any positive integer greater than one. The square error should be divided by the

sum of the weight vector to achieve consistent results with the spline smoothing. This is

because the patients do not take the same number of fingersticks every day nor is the

number of local optima constant. Local optima are determined automatically by
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examining a window of time around each CGM point. If the point is the maximum or

minimum value out of all points in the window, then that point is considered to be a local

optimum. For this work, all CGM points 90 minutes before and after the CGM point in

question are included in this check.

Weighting of local optima and fingersticks becomes problematic when these two

events occur close to each other. We propose a technique for dealing with these cases. The

weight of a local optimum depends on the distance of the closest fingerstick. If there is not

a fingerstick within one hour before or after the local optimum, a weight of k is used.

Otherwise, the weight of the local optimum depends on two distances, xFC and yFC.

The distance xFC is the absolute difference in minutes between the fingerstick time

and the local optimum time. The distance yFC is the absolute difference in mg/dl between

the fingerstick reading and the closest CGM reading. The objective is to formulate these

two distances such that the local optimum weight shrinks as the value of xFC shrinks or the

value of yFC grows. A large value for yFC implies that the CGM sensor is uncalibrated with

respect to the fingerstick, and more emphasis is given to the fingerstick value. A small

value for xFC implies that the fingerstick is close to the local optimum, and more emphasis

is given to the fingerstick value. This type of formulation is defined in Equation 3.17:

wi = P −
(
ap ybp

FC (60 − xFC)cp
)

(3.17)

where ap, bp, and cp are positive real numbers greater than 0, P is the weight value used in

equation 3.16, xFC is the distance between the closest fingerstick and local optimum in

minutes, and yFC is the distance between the fingerstick and the closest CGM reading. A

constant of 60 is used as it is the maximum value for xFC; when this maximum is reached,

the resulting equation only depends on yFC.

An example of cubic spline smoothing with ridge exp−20, P = 1000, and

ap = bp = cp = 1 is shown in Figure 3.7(a). An example of cubic spline smoothing
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without fingerstick information, with λ = exp−20, P = 1000 for local optima, and

ap = bp = cp = 1 is shown in Figure 3.7(b). Due to the ability to use fingerstick and local

optimum weighting, along with consistent smoothed curves across different patients, the

physicians identified cubic spline smoothing as the best CGM smoothing technique.

(a) Cubic spline smoothing with ridge exp−20,

P = 1000, and ap = bp = cp = 1.

(b) Example of cubic spline smoothing ignor-

ing fingersticks with ridge exp−20 and P =

1000.

Figure 3.7: Examples of cubic spline smoothing.
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4 Classification of Glycemic Variability

This chapter describes work in classifying daily CGM plots as having excessive or

non-excessive glycemic variability. Much of this chapter has been submitted, verbatim, to

the International Conference on Machine Learning and Applications (ICMLA) 2011

(Wiley et al., 2011).

A primary concern of diabetes management is blood glucose control. This is because

there is no known cure for diabetes; however, diabetes can be treated and managed with

blood glucose control. Good blood glucose control can delay or prevent serious diabetic

complications, including heart disease, kidney failure, blindness, and strokes (The

Diabetes Control and Complications Trial Research Group, 1993). Recent work has

shown that excessive glycemic variability is a significant aspect of blood glucose control

that contributes to diabetic complications (Ceriello and Ihnat, 2010; Hirsch and Brownlee,

2005; Kilpatrick et al., 2010; Kilpatrick et al., 2006; Monnier and Colette, 2008; Monnier

et al., 2006).

In spite of this, patients are not currently screened for excessive glycemic variability

in clinical practice. This is due, in part, to there being no definitive measure for glycemic

variability. Even without a definitive measure, diabetes specialists are able to recognize

excessive glycemic variability when they see it in daily CGM plots. One way to capture

this clinician perception is to build a machine learning classification system, which could

act as an automated screen for excessive glycemic variability. Such a system was first

explored in (Vernier, 2009). The research described in this chapter extends Vernier’s

preliminary work, significantly improving system performance.

4.1 Background

The 4DSS was previously extended to automatically detect excessive glycemic

variability on daily CGM plots (Vernier, 2009). Blood glucose values were collected using



53

a CGM sensor that recorded sample blood glucose values at 5-minute intervals. Figure

4.1(a) represents a day of excessive variability, while Figure 4.1(b) represents a day of

acceptable variability.

(a) Excessive glycemic variability

(b) Acceptable glycemic variability

Figure 4.1: Blood glucose plots obtained through continuous glucose monitoring sensors.
Figure to appear in the Journal of Diabetes Science and Technology (Marling et al., 2011).

In the original experiment, two physicians individually classified over 300 days of

blood glucose plots as excessively variable or not. The physicians were in agreement on

218 days of the data, which was used to create a training dataset. To evaluate the system,

100 days were chosen at random and presented to the physicians twice. Examples were

saved when the physicians were in agreement and consistent with themselves, resulting in

61 examples. Several machine learning classifiers were investigated using the
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aforementioned datasets with three domain dependent features, described in Section 4.1.1.

This was done using the Weka machine learning toolkit (Hall et al., 2009). A naı̈ve Bayes

classifier had the best performance, with 85% accuracy.

4.1.1 Domain Dependent Variability Measures

Three different domain dependent metrics were used in the original experiment for

classifying glycemic variability (Vernier, 2009). These measures included: Mean

Amplitude of Glycemic Excursion (MAGE), Distance Traveled (DT), and Excursion

Frequency (EF). MAGE was chosen as it is the most prominent measure for measuring

glycemic variability (Service et al., 1970). The physicians developed two additional

measures for classifying glycemic variability along with MAGE (Marling et al., 2011).

These measures are DT and EF. The purpose of these two measures is to supplement the

information provided by MAGE, as MAGE by itself is insufficient for classifying

glycemic variability.

4.1.1.1 MAGE

The first measurement for glycemic variability was MAGE (Service et al., 1970),

which is still considered to be the “gold standard” for measuring glycemic variability

(Robard, 2009; Bolli, 2006; Monnier and Colette, 2008). MAGE is computed as follows.

First, the standard deviation for the daily plot of CGM data is computed. Next, each blood

glucose excursion which exceeds the standard deviation is detected. The heights of these

detected excursions are then averaged together. Depending on which type of excursion

occurs first, only peak-to-nadir or nadir-to-peak excursions are included in the calculation.

Figure 4.2 shows a twenty-four hour blood glucose plot with the MAGE calculation.

The standard deviation in this case is 63. The first blood glucose excursion which exceeds

the standard deviation is a peak-to-nadir excursion starting at 1 am. Therefore, only
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peak-to-nadir excursions are included. The final value for the MAGE calculation is

72+126+236
3 = 144.6.

Figure 4.2: Calculation of MAGE for an actual patient’s daily blood glucose plot. Figure
to appear in the Journal of Diabetes Science and Technology (Marling et al., 2011).

4.1.1.2 Distance Traveled

The DT metric quantifies the total change in blood glucose levels for a given day.

This is done by summing the absolute values of the differences between consecutive blood

glucose samples. The intuition for this measure is that an excessively variable day will

have a greater Distance Traveled than a day exhibiting acceptable glycemic variability.

Figure 4.3 shows how DT is calculated.

4.1.1.3 Excursion Frequency

This measure computes the total number of blood glucose excursions exceeding 75

mg/dl that leave the normal range. The 75 mg/dl Excursion Frequency measurement was

created to supplement the information from MAGE and DT. Unlike MAGE, it considers
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Figure 4.3: Calculation of DT for an actual patient’s daily blood glucose plot. Figure to
appear in the Journal of Diabetes Science and Technology (Marling et al., 2011).

both nadir-to-peak and peak-to-nadir excursions. Unlike DT, it does not consider

fluctuations that occur within the normal range. Figure 4.4 shows how EF is calculated.

Figure 4.4: Calculation of EF for an actual patient’s daily blood glucose plot. Figure to
appear in the Journal of Diabetes Science and Technology (Marling et al., 2011).
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4.2 Enhancements

Three different enhancements were investigated to improve the classification of

glycemic variability. The first was to smooth the CGM data to eliminate noise, as

explained in Chapter 3. CGM data was smoothed via cubic spline smoothing with extra

weight for local optima. The second enhancement was to develop a rich set of pattern

recognition features that capture aspects of glycemic variability not captured by MAGE,

DT, and EF. Optimal subsets of these pattern recognition features in conjunction with the

three domain dependent features were obtained using feature selection algorithms on a

development dataset. These subsets were obtained both independent of, and with the

guidance of, the machine learning algorithm. The last approach was to train and evaluate

Support Vector Machines (SVM) and Multilayer Perceptrons (MP), both of which are

machine learning algorithms known to obtain state-of-the-art generalization performance

in several domains. These algorithms were then compared to the original naı̈ve Bayes

(NB) approach.

4.3 Feature Engineering

Numerous pattern recognition features were added to the original set of domain

dependent features to improve the discriminative performance of the machine learning

algorithms. A summary of the features investigated in this chapter is found in Table 4.1.

Features MAGE, EF, DT are defined in Section 4.1.1. The following subsections

describe each of these pattern recognition features in further detail. A description of the

feature selection methods is found in Section 4.4.
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Table 4.1: Features that were investigated for classification of glycemic variability.

Feature Description

MAGE Mean Amplitude of Glycemic Excursion

EF Excursion Frequency

DT Distance Traveled

σ Standard Deviation

AUC Area Under the Curve

µpq 2-Dimensional central moments of order p + q ≤ 3

ε Eccentricity

FFi Amplitudes of low DFT frequencies for 1 ≤ i ≤ 24

RR Roundness Ratio

BE Bending Energy

DCi Direction Codes, for 1 ≤ i ≤ 3

4.3.1 Standard Deviation

This feature is computed as the sample standard deviation over the set of blood

glucose measurements. The intuition is that an excessively variable day will have a higher

standard deviation than an acceptable day.

4.3.2 Area Under the Curve

This feature is computed as the total area between the CGM graph and a horizontal

line corresponding to the minimum blood glucose level measured for that day. Figure 4.5

shows a blood glucose plot in which the shaded region is used to compute the Area Under

the Curve (AUC). The intuition is that a larger area correlates with increased glycemic

variability.
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Figure 4.5: Area Under the Curve of an actual patient’s CGM plot.

4.3.3 Central Image Moments

Image moments are computed on the pixel intensities of a given image and can be

used to derive useful properties of the image such as the total intensity, centroid,

orientation, and moment of inertia. To compute the image moments of a CGM graph, we

use the 2-dimensional region between the CGM graph and the horizontal line

corresponding to the minimum blood glucose level, as shown previously in Figure 4.5. If

we use C to denote this region, then the binary intensity f (x, y) at any pixel position can

be defined as in Equation 4.1.

f (x, y) =


1, (x, y) ∈ C

0, otherwise
(4.1)

Using these intensity values, image moments of order p + q are calculated as shown

in Equation 4.2.

mpq =
∑

x

∑
y

xpyq f (x, y) (4.2)

For m00, this equation computes the total number of points in the object. If the entire

image contains N × M pixels, then the N × M moments (mpq) of order p + q uniquely

determine the image, where 0 ≤ p ≤ N and 0 ≤ q ≤ M. The lower order moments can
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therefore be used to summarize the image. Since glycemic variability does not change

when the CGM region is translated, we will be using instead the lower order central

moments, modified versions of image moments that are translation invariant.

Using m00 along with m10 and m01, the center of mass of each axis can be computed,

which then gives the centroid of the shape (x̄, ȳ):

x̄ =
m10

m00
, ȳ =

m01

m00

The central image moments are then computed as follows:

µpq =
∑

x

∑
y

(x − x̄)p (y − ȳ)q f (x, y) (4.3)

As features for variability detection we use central moments of order up to 3, i.e. µ11, µ20,

µ02, µ21, µ12, µ30, and µ03. Moment µ00 is excluded, since it is equivalent to the already

considered AUC feature.

4.3.4 Eccentricity

Eccentricity is the ratio between the maximum and minimum distance from the

boundary of the object to its centroid (Theodoridis and Koutroumbas, 2009). Eccentricity

conveys how much the shape of an object deviates from being circular, or equivalently,

how elongated the object is. Eccentricity can be computed as shown in Equation 4.4,

using central image moments:

ε =
(µ20 − µ02)2 + 4µ11

µ00
(4.4)

The intuition behind using this feature is that an acceptable day is expected to be more

elongated than an excessively variable day, and consequently will have a higher

eccentricity.
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4.3.5 Discrete Fourier Transform Amplitudes

Using the Discrete Fourier Transform (DFT), the sequence {yi} of n CGM

measurements in the time domain is transformed into a sequence {Yk} of n complex

sinusoidal components in the frequency domain, as shown in Equation 4.5 below (Stanley

et al., 1983), where exp
(
−

2π j
n

)
is the n-th complex root of unity:

Yk =

n−1∑
i=0

yi exp
(
−

2π j
n ki

)
, where k = 0, 1, . . . , n−1 (4.5)

The corresponding time points {xi} are sampled every 5 minutes for an entire day,

resulting in n = 288 samples {yi}. The complex numbers {Yk} represent the magnitude and

the phase of the sinusoidal components of the sampled input function {yi}. A particular Yk

corresponds to a sinusoidal component with frequency k/n cycles per day. Like the image

moments, the DFT uniquely determines the original signal; therefore, we can use the

lower frequencies to summarize the CGM graph. Since very rapid fluctuations are

indicative of noise, we use as features the magnitudes of the first 24 components, i.e.

{‖Yk‖ , 1 ≤ k ≤ 24}. By ignoring the very first component Y0 (a real number), we make the

DFT feature set translation invariant.

4.3.6 Roundness Ratio

This feature is a ratio between the perimeter of the CGM graph squared and its area.

If {pi = (xi, yi)} is a sequence of n CGM points, then the perimeter and the roundness ratio

are defined as in Equation 4.6 below:

RR =
P2

4πµ00
, where P =

n−1∑
i=1

‖pi+1 − pi‖ (4.6)

In the general case of 2D objects, this feature will take the value of 1 for a perfect circle,

and larger values as the objects deviate more from a circular shape. If an acceptable day

resembles a rectangle and an excessively variable day resembles a similar rectangle that is

much more jagged (a similar area with a larger perimeter), then the roundness ratio of the
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excessively variable day will be larger than that of the acceptable day. Due to its

dependence on the perimeter, smoothing CGM data is expected to enhance the

discriminative power of this feature.

4.3.7 Bending Energy

Bending energy computes the average curvature of the CGM graph {(xi, yi)}, as

shown in Equation 4.7 below, in which P refers to the perimeter.

BE =
1
P

n−2∑
i=1

(θi+1 − θi)2 , where θi = arctan
(

yi+1 − yi

xi+1 − xi

)
(4.7)

Due to larger and more frequent fluctuations in blood glucose levels, an excessively

variable day should have a higher bending energy than a day with acceptable variability.

Smoothing CGM data is expected to improve the discriminative power of this feature

because the angles between consecutive points become less sensitive to random noise.

4.3.8 Direction Codes

A direction code (DC) is the absolute difference between the values of two

consecutive blood glucose readings. Consequently, a CGM plot with n blood glucose

measurements has n − 1 direction codes. Direction codes for the entire day are placed into

bins, depending on their value. A bin bi is defined by a minimum DC value lowi and a

maximum DC value highi, i.e. bi = [lowi, highi). If ci is the total number of direction

codes falling into bin bi, then the corresponding direction code feature is defined as

DCi = ci/ (n − 1). The bins used to define the DC features for this application are

b1 = [0, 3), b2 = [3, 6), and b3 = [6, 9). We arrived at this particular set of bins by

analyzing histograms of direction codes on the CGM data.

Figures 4.6(a) to 4.6(d) present different situations used to determine the appropriate

width and number of bins. Figure 4.6(a) shows the histogram of direction codes on raw

CGM data for the excessively variable day presented in Figure 3.1. Figure 4.6(c) shows a
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(a) Excessively variable day with raw

data.

(b) Excessively variable day with

smoothed data.

(c) Acceptable day with raw data. (d) Acceptable day with smoothed data.

Figure 4.6: Histograms of direction codes.

histogram for a different day with acceptable variability. The width of each bin in these

two histograms is 5 mg/dl. When comparing Figure 4.6(a) with Figure 4.6(c), there is an

obvious shift of distribution into the first bin, indicating fewer 5-minute blood glucose

spikes on the acceptable day. This behavior was consistent across different days of data.

Figures 4.6(b) and 4.6(d) present histograms of direction codes on smoothed data, for

the same days used in Figures 4.6(a) and 4.6(c), respectively. The width of each bin in

these two histograms is smaller, at 2 mg/dl. The shift in distributions to the first bin is even

more obvious in the case of smoothed data. Based on the analysis of these histograms, a

bin width of 3 mg/dl was chosen. With a limit of 9 mg/dl these bins would only introduce
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three DC features, adding finer granularity to the raw data histograms and capturing most

of the distribution variation in the smoothed data histograms. Using the three bins

b1 = [0, 3), b2 = [3, 6), and b3 = [6, 9) means that direction codes with value greater than 9

are ignored (these direction codes are still counted in the total number n − 1).

4.4 Feature Selection

Automatic feature selection of the features defined in Table 4.1 was performed on the

development dataset for both raw and smooth CGM data. Two different filter methods

plus one wrapper method were investigated. The filter methods were based on the

Pearson’s Correlation Coefficient (PCC) and Welch’s t-test. A wrapper approach was

investigated using greedy backward elimination with SVM and MP as evaluators.

4.4.1 Filter Methods

Features from Table 4.1 were ranked using the PCC and Welch’s t-test. Features

below a threshold were filtered out based on these rankings. Table 4.2 shows features

ranked by PCC and Table 4.3 shows features ranked by Welch’s t-test.

4.4.1.1 Ranking with PCC

The PCC was used to compute the correlation between each feature and the output

label. For feature X and label Y , the linear dependence between the two, ρ(X,Y) is

calculated as shown in Equation 4.8:

ρ (X,Y) =

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)
√∑n

i=1

(
Xi − X̄

)2
√∑n

i=1

(
Yi − Ȳ

)2
(4.8)

where X is the feature, X̄ is the sample mean of feature X, Y is the output label, and Ȳ is

the sample mean of the output label. The PCC is the covariance between the feature and

the label divided by the product of their standard deviations. Using the development

dataset to find a threshold, features were filtered from the superset defined in Table 4.1.
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No set of features selected by the PCC performed better than the original set of features

defined in (Vernier, 2009) for the development dataset. Therefore, the PCC results were

not used in for the rest of the experiments.

Table 4.2: Feature Ranking using PCC.

PCC Filter (correlation)

Raw Smooth

DC1 (68%) DC1 (70%)

DC3 (66%) DT (66%)

AUC (65%) AUC (65%)

DT (62%) DC3 (64%)

EF (60%) EF (61%)

σ (60%) σ (61%)

MAGE (56%) DC2 (52%)

µpq (52%) MAGE (51%)

FFi (50%) FFi (50%)

DC2 (42%) RR (49%)

ε (33%) BE (38%)

RR (23%) µpq (37%)

BE (11%) ε (35%)
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4.4.1.2 Ranking with t-test

An unpaired, two sampled, unequal variance t-test (Welch’s t-test) was carried out on

the features and the output label. The formula for Welch’s t-test is given in Equation 4.9:

t =
X̄ − Ȳ√

s2
x

Nx

s2
y

Ny

(4.9)

where X̄, s2
x, and Nx are the sample mean, sample variance and sample size for positive

examples, and Ȳ , s2
y , and Ny are the sample mean, sample variance and sample size for

negative examples. Using this t-value with the degrees of freedom approximated from the

Welch-Satterthwaite equation, p-values can be computed (Welch, 1947). The p-values

obtained from this test were used to filter features using the development dataset. Table

4.3 shows the ranking of the features based on these p-values. Features shown in bold

represent the subset which obtained the best performance on the development dataset.

4.4.2 Wrapper Methods

Greedy backward elimination was performed 10 times on the development dataset,

using all but one of the 10-folds as training data. This was done starting with the feature

set defined in Table 4.1. The features which were most common from the results of

wrapper selections across the 10 folds were chosen. This was done with both raw and

smooth data. The features selected using these wrapper methods are shown in bold in

Table 4.3.

4.4.3 Discussion

The results of the t-test filter and the backward elimination wrapper are shown in

bold in Table 4.3. The four sets of selected features shown in Table 4.3 are quite different

from each other. No feature appears in all four sets. Direction Codes, Excursion

Frequency, Standard Deviation, and Distance Traveled were the only features that
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Table 4.3: Feature Selection using t-test and Backward Elimination.

T -test Filter (p-value) Backward Elimination

Raw Smooth Raw Smooth

AUC (2×10−11) DC1 (2×10−9) DC1 DT

EF (3×10−10) DT (4×10−8) FF1 FF12 RR

DT(3×10−9) AUC (5×10−8) EF DC3

σ (5×10−9) DC3 (1×10−7) µ20 MAGE

DC1 (1×10−8) EF (6×10−7) ε σ

DC3 (4×10−8) σ (7×10−7) σ AUC

MAGE (1×10−7) µpq (2×10−5) DT EF

µpq (2×10−7) DC2 (3×10−5) MAGE ε

DC2 (1×10−3) MAGE (4×10−5) RR DC1

ε (2×10−3) FFi (8×10−5) DC3 DC2

FFi (3×10−2) RR (9×10−5) BE BE

RR (0.12) BE (2×10−3) AUC FFi

BE (0.30) ε (5×10−3) DC2 µpq

appeared in three of the four feature sets. The only features that were not selected in any

of the four sets are: Eccentricity and Bending Energy. Although the four feature sets are

very different, there is no substantial difference in their performance (Section 4.5.1). This

may indicate that the features overlap in terms of the CGM plot information they encode.

In the backward elimination setting, the Fourier features were selected only when using

raw data. This behavior is consistent with our expectation that smoothing eliminates some

of the random noise from CGM data.



68

4.5 Experimental Evaluation

From the original work in (Vernier, 2009), the best performing algorithm for

glycemic variability detection was a naı̈ve Bayes learning algorithm. We now believe that

this algorithm is not the most appropriate for solving this problem. The naı̈ve Bayes

algorithm assumes features are independent of each other given the class label, which is

not the case for our set of features. For example, EF and DT are not independent in the

presence of excessive variability, since a larger DT is likely to increase the number of

excursions greater than 75 mg/dl. The DC bins are clearly not independent – as the

number of data points distributed among the bins is always constant. This means that if

the value of one bin grows, the values of the other bins must shrink. This motivated us to

explore Multilayer Perceptrons (MP) (Bishop, 1995) and Support Vector Machines (SVM)

(Scholkopf, B. and Smola, A.J., 2002; Vapnik, 1995), two learning algorithms that can

seamlessly accommodate overlapping features. MPs that are implemented as a

backpropagation network with enough hidden nodes can approximate any decision surface

(Hornik and White, 1989). Similarly, an SVM with a Gaussian kernel is a flexible learning

model, as it can approximate non-linear decision boundaries. SVMs are known to be

resilient to overfitting and to have good generalization performance, due to the

max-margin criterion used during optimization. Furthermore, while the MP solution may

be only a local optimum, the SVM is guaranteed to converge to a global optimum due to

the corresponding convex optimization.

The MP and SVM parameters are tuned using a grid search on a separate

development dataset – the same data that is also used for feature selection. There are 262

unique examples in the entire glycemic variability dataset, 187 positive and 75 negative.

The development dataset is created from 52 randomly chosen examples, 37 positive and

15 negative. The remaining data is used for training and evaluating the models, using

10-fold cross validation, as described in Section 2.4.1. The distribution of the output label
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in the development set is similar to the label distribution in each of the 10 folds. The

overall evaluation process is illustrated in Figure 2.4. The same setting (same folds, and

same development data) is used for evaluating all of the systems.

As fully described in Chapter 2, the MP uses the development set to find optimal

values for the learning rate and momentum, parameters that control the speed at which the

MP corrects itself. The SVM uses the development set to find the best kernel, and then it

re-uses the development set to find optimal parameters for the regularization parameter

and the kernel parameters. In all tuning experiments, the Gaussian kernel obtained the

best performance. The width of the Gaussian kernel was then optimized on the same

development data. CGM data was smoothed using Equation 3.14 ignoring fingerstick

information with ridge parameter λ = exp−20, and local optima weight P = 1000. We used

the Weka implementation (Hall et al., 2009) for the naı̈ve Bayes model and the Multilayer

Perceptron. We used LIBSVM (Chang and Lin, 2011) for the SVM implementation.

4.5.1 Results and Discussion

Classified examples are categorized as true positive (TP), true negative (TN), false

positive (FP), or false negative (FN). We report performance using accuracy, sensitivity,

and specificity, three error metrics that are commonly used for analyzing the performance

of classifiers in the medical domain.

Accuracy =
T P + T N

T P + T N + FP + FN
, Sensitivity =

T P
T P + FN

, Specificity =
T N

T N + FP

We evaluated the model developed in the preliminary study by training a naı̈ve Bayes

classifier on raw data using only the three original features: MAGE, Excursion Frequency,

and Distance Traveled. The 10-fold cross validation results are shown in Table 4.4 as NB

Raw.
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Table 4.5 shows the results of the 10-fold cross validation evaluation for each of the

three learning models, using the features automatically selected by the t-test filter. This is

shown for both raw and smoothed CGM data. Similarly, Table 4.6 shows the performance

of the three learning models when the features are automatically selected using greedy

backward elimination.

Table 4.4: Preliminary results using 10-fold cross validation.

Model Accuracy Sensitivity Specificity

NB Raw 87.1% 78.3% 90.6%

Table 4.5: Results of 10-fold evaluation using t-test filtering of features

Model Accuracy Sensitivity Specificity

NB Raw 87.1% 81.6% 89.3%

NB Smooth 91.9% 91.6% 92.0%

MP Raw 90.0% 83.3% 92.6%

MP Smooth 91.4% 85.0% 94.0%

SVM Raw 89.5% 78.3% 93.3%

SVM Smooth 92.8% 88.3% 94.6%

When using automatic feature selection, the best accuracy of 93.8% is obtained by

the MP model trained on smooth data, with a feature set selected through greedy

backward elimination. Smoothing the data increases the performance consistently when

using feature sets selected through the t-test, however it degrades the performance for the

SVM and NB models in the greedy backward elimination setting. A one sided, paired
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Table 4.6: Results of 10-fold evaluation using greedy backward elimination of features

Model Accuracy Sensitivity Specificity

NB Raw 91.9% 88.3% 93.3%

NB Smooth 89.5% 85.0% 91.3%

MP Raw 91.4% 85.0% 94.0%

MP Smooth 93.8% 86.6% 96.6%

SVM Raw 92.8% 85.0% 96.0%

SVM Smooth 91.4% 80.0% 96.0%

t-test was performed to investigate the significance in improvement between the two best

systems shown in bold in Tables 4.5, 4.6, and the previous NB system shown in Table 4.4.

The improvements are significant at levels p < 0.01. Figure 4.5.1 shows the receiver

operating characteristic (ROC) curves computed for: the previous NB system (Table 4.4),

the current best accuracy system (Table 4.6), and the best accuracy system using a t-test

filter (Table 4.5).

One interesting result is that, in terms of area under the ROC curve, the best system is

the SVM trained on smooth data with filtered features, and not the MP with greedy

backward elimination that obtained the best accuracy.
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5 Blood Glucose Prediction

This chapter presents the results for blood glucose prediction. It describes the

features and models used to predict blood glucose values along with the error metrics used

to measure the performance of the prediction models.

5.1 Background

As described in Section 2.3.4, using information up to a certain point in time, t, to

predict a future value at time t + l, is known as time series prediction. In this work,

Support Vector Regression (SVR) was used to train a model to predict future blood

glucose values at time t + l (Section 2.3.3). A development dataset was used to evaluate

sets of features generated by the feature templates. For each feature template, the feature

which scored the best Root Mean Square Error (RMSE) on the development data was

incorporated into the feature vector utilized by the SVR model. The SVR model was

compared to two baselines, a naı̈ve baseline which assumes the blood glucose value is

constant, and an AutoRegressive Integrated Moving Average (ARIMA) model. The three

models were tested using walk-forward testing as described in Section 2.4.2. The results

from each step were then used to generate three domain independent error measures:

Mean Absolute Error (MAE), RMSE, and coefficient of determination (R2). There is also

one domain dependent error metric, the Clarke Error Grid Analysis (CEGA). Blood

glucose values were smoothed using cubic spline smoothing with extra weight for

fingerstick and local optima examples, as described in Section 3.2.5. Furthermore, the

SVR model was improved by adapting the C and ε parameters for each training example.

5.2 Baselines

Two baselines were used for comparing performance to the SVR model: the t0

baseline, and the ARIMA model.
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5.2.1 t0 Baseline

The t0 baseline simply uses the current blood glucose value as the predicted future

value, as shown in Equation 5.1:

ŷt+l = yt (5.1)

where yt represents the blood glucose value at time t, and ŷt+l represents the estimated

blood glucose value at the future time t + l.

5.2.2 Autoregressive Integrated Moving Average Model

ARIMA models are described in detail in (Box et al., 2008). An ARIMA model of

order (p, d, q) is useful for describing both stationary and nonstationary time series, which

makes these models appropriate for analysis of any time series. The orders p, d, q are

integers greater than or equal to zero, which refer to the order of the autoregressive,

difference, and moving average components respectively.

A time series y = (yt, yt−1, . . . , y1) is described by an ARIMA model via Equation 5.2.

yt = φ1yt−1 + . . . + φd+pyt−d−p − β1et−1 − . . . − βqet−q + et (5.2)

where t denotes an index in the time series y, yt is the value of the time series at index t,(
φ1, . . . , φd+p

)
are the parameters of the autoregressive component,

(
β1, . . . , βq

)
are the

parameters of the moving average component, and et denotes a random shock at index t. A

random shock is a white noise term that represents the forecast error at index t. If we

define the lag operator B, such that Byt = yt−1 and Biyt = yt−i, then, the ARIMA definition

can be written in a concise form, as shown in Equation 5.3.1 − p∑
i=1

ΦiBi

 (1 − B)d yt =

1 − q∑
i=1

βiBi

 et (5.3)

where
(
Φ1, . . . ,Φp

)
are the parameters of the autoregressive component. This equation

illustrates the effect of the order d with (1 − B)d. If d is greater than zero, the time series is
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stationarized (Box et al., 2008). Consider the time series y = (y1, y2, . . . , yn). Using a

difference of 1, this time series is transformed to (x1, x2, . . . , xn−1) where xi = yi+1 − yi.

The goal in forecasting is to predict a value at time t + l using the parameters solved

by fitting the ARIMA model to the time series y. It can be shown that the minimum mean

square error forecast is the conditional expected value of that same step (Box et al., 2008),

as illustrated in equation 5.4.

ŷt+1 = E
[
yt+1|y

]
(5.4)

where E denotes the expected value, y = (yt, yt−1, . . . , y1). Once the value for ŷt+1 is

obtained, it is appended to y, and a forecast ŷt+2 for the future time yt+2 can be made. To

calculate the conditional expectations for any horizon t + l, the rules defined in Equation

5.5 are used.

[yt− j] = yt− j j = 0, 1, 2, . . .

[yt+ j] = ŷt+ j j = 1, 2, . . . (5.5)

[et− j] = et− j j = 0, 1, 2 . . .

[et+ j] = 0 j = 1, 2, . . .

where j is a nonnegative integer and brackets denote the expected value at time t; e.g.

Et
[
yt+i

]
=

[
yt+i

]
and Et [et+i] = [et+i]. These rules allow ARIMA to forecast up to any

horizon, t + l using information from previous forecasts ŷt+i where 0 < i < l. Expanding

the right hand side of Equation 5.4 gives Equation 5.6.

ŷt+l =
[
yt+l

]
= φ1

[
yt+l−1

]
+ . . . + φd+p

[
yt+l−p−d

]
− β1 [et+l−1] − . . . − βq

[
et+l−q

]
+ [et+l] (5.6)

where the rules defined in Equation 5.5 are used for each yi and ei. The ARIMA model

and its forecasts are based solely on previous values of the time series y. Using ARIMA to

predict blood glucose values implies that only the actual blood glucose values are used for

prediction, other factors such as insulin and life event data are not considered.
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Consider a time series y represented by an ARIMA model of order (1, 1, 0) in the

form of Equation 5.3, with Φ1 = 0.8:

(1 − 0.8B) (1 − B) yt+1 = et+1

which can be written as: (
1 − 1.8B + 0.8B2

)
yt+1 = et+1

Carrying the yt+1 term through gives:

yt+1 − 1.8yt + 0.8yt−1 = et+1

Generalizing this equation for any horizon t + l, gives Equation 5.7.

yt+l = 1.8yt+l−1 − 0.8yt+l−2 + et+l (5.7)

Using the rules from Equation 5.5, the forecasts at the origin t are given as:

ŷt+1 = 1.8yt − 0.8yt−1

ŷt+2 = 1.8ŷt+1 − 0.8yt (5.8)

ŷt+l = 1.8ŷt+l−1 − 0.8ŷt+l−2 l = 3, 4, . . .

This example shows how the forecasts generated by the ARIMA model are computed in

the recursive order, ŷt+1, ŷt+2, . . .

The ARIMA model used in this work is implemented in the R statistical package (R

Development Core Team, 2011). Identifying the model was completed with the R

statistical function auto.arima, which chooses (p, d, q) based on the examples provided.

The Bayes information criterion is used to determine the orders p and q. The

Phillips-Perron unit root test is used to determine order d.
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5.3 Feature Templates

This section defines the templates used to create features for predicting blood glucose

values. Each template defines a set of possible features which can be employed by the

SVR feature vector.

5.3.1 Baseline Features

The two baselines described in Section 5.2 are also used as features for the SVR

model. The t0 feature is defined in Equation 5.9 and the ARIMA feature is defined in

equation 5.10.

ϕt0(x, t) = yt (5.9)

where x is the patient, t is the index of the time series, and yt is the blood glucose value at

time t.

ϕARIMA(x, t, l) = ŷt+l (5.10)

where ŷt+l is the expected value from the ARIMA model for time t + l.

5.3.2 Moving Average

This template defines features that encode a moving average of past observations

starting from a time t for patient x. The moving average feature template is defined in

Equation 5.11.

ϕMVA (x, t, n, λ) =

n∑
i=0

λiyt−i

n∑
i=0

λi

(5.11)
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where n is the number of past observations, and λ is a decay factor between zero and one.

If λ = 1 then there is no decay, and Equation 5.11 computes a simple moving average.

5.3.3 Rate of Change

This template defines features that encode the rate of change in blood glucose over a

specified period of time. These features are similar to taking the average of a differenced

time series with d = 1. For example, this feature template computes the average of the

series (x1, x2, . . . , xn−1) where xi = yi+1 − yi. The rate of change feature template is defined

in Equation 5.12.

ϕRoC (x, t, n, λ) =

n−1∑
i=0

λi [yt−i − yt−i+1
]

n−1∑
i=0

λi

(5.12)

where n is the number of past observations, and λ is a decay factor between zero and one.

5.3.4 Bolus

This template defines features that compute the total amount of insulin administered

with a bolus over a given period of time. The type of bolus needs to be considered, as a

square wave bolus releases a specified amount of insulin over time, whereas a regular

bolus releases insulin instantaneously. The bolus feature template is defined in equation

5.13.

ϕBolus (x, t,∆) = ϕBolus (x, t − ∆, t) (5.13)

where ∆ is the period of time to use before time t, and ϕBolus (x, t − ∆, t) is the total amount

of insulin from all boluses between time t − ∆ and t, including any insulin from a square

wave bolus which overlaps the period (t − ∆, t).
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5.3.5 Basal Rate

This template defines features that compute the total amount of insulin from the

patient’s basal rate. While this template is similar to the bolus template in the sense that it

measures insulin, when tuning the bolus and basal rate templates separately, different

values were obtained for the size of the bin and the number of bins for the two templates.

This indicates that the SVR model exploits the basal and bolus features in different ways,

and these features should be more useful if they are represented as separate features. The

basal rate feature template is defined in Equation 5.14.

ϕBasal (x, t,∆) = ϕBasal (x, t − ∆, t) (5.14)

where ∆ is the period of time to use before time t, and ϕBasal (x, t − ∆, t) is the total amount

of insulin from the basal rate over the period (t − ∆, t).

5.3.6 Basal Rate Area from Mean

The purpose of this template is to encode drastic changes in the patient’s basal rate,

such as a temporary basal or pump suspension event. For each bin that this feature

encodes, the mean basal rate is calculated. Then, the absolute area between the basal rates

in the bin and the mean is computed. The basal area from mean feature template is defined

in Equation 5.15.

ϕBasalArea (x, t,∆) =

∫ t

t−∆

|ϕBasal (x, t) − ϕ̄Basal (x, t − ∆, t)| dt (5.15)

where ∆ is the period of time to use before time t, ϕBasal (x, t) is the basal rate at time t, and

ϕ̄Basal (x, t − ∆, t) is the average basal rate over the period (t − ∆, t).
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5.3.7 Carbohydrates

This template defines features that encode the estimated number of carbohydrates

from the Bolus Wizard® and hypoglycemic episodes over a given period of time. The

carbohydrate feature template is defined in Equation 5.16.

ϕMeal (x, t,∆) = ϕBWZ (x, t − ∆, t) + ϕHE (x, t − ∆, t) (5.16)

where ϕBWZ (x, t − ∆, t) is the number of estimated carbohydrates entered into the Bolus

Wizard® between time t − ∆ and t, and ϕHE (x, t − ∆, t) is the number of estimated

carbohydrates from hypoglycemic episodes between time t − ∆ and t.

5.3.8 Exercise

This template defines features that describe the amount of time the patient is

exercising over a given period of time. The exercise feature template is defined in

Equation 5.17.

ϕExercise (x, t,∆) =
1
∆

∫ t

t−∆

Exercise (x, t) dt (5.17)

where Exercise (x, t) is 1 if the patient is exercising at time t, and 0 otherwise.

5.3.9 Work

This template defines features that describe the amount of time the patient is at work

over a given period of time. The work feature template is defined in Equation 5.18.

ϕWork(x, t,∆) =
1
∆

∫ t

t−∆

Work (x, t) dt (5.18)

where Work (x, t) is 1 if the patient is at work at time t, and 0 otherwise.
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5.3.10 Sleep

This template defines features that describe the amount of time the patient is sleeping

over a given period of time. The sleep feature template is defined in Equation 5.19.

ϕS leep(x, t,∆) =
1
∆

∫ t

t−∆

S leep (x, t) dt (5.19)

where S leep (x, t) is 1 if the patient is sleeping at time t, and 0 otherwise.

5.4 Adapting Parameters

Two different parameters can be adapted for the SVR such that more recent training

examples are given more emphasis than distant training examples. The intuition is that

examples from the recent past will likely resemble examples in the near future.

5.4.1 Ascending C

The C parameter for the SVR controls the emphasis given to errors within the

training data (Section 2.3.2). By increasing the value of C for more recent examples, the

SVR model will put more emphasis on errors from recent examples and less emphasis on

errors of distant examples. This idea first appeared as a back propagation rule for neural

networks in (Refenes et al., 1997). Tay and Cao later adapted this idea for SVM (Cao and

Tay, 2003; Tay and Cao, 2002a).

The index of each example in the time series is exploited to compute its C value. An

index of 1 denotes the most distant training example, and an index of n denotes the most

recent training example. Using this formulation, the value of C for each example is

computed as shown in Equation 5.20.

Ci = C
2

1 + exp
(
a − 2a i

n

) (5.20)
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where i represents the index of the training example, n is the total number of training

examples, and a is the parameter that controls the rate at which C is increased. This

function resembles a logistic function that is centered about the midpoint of the data.

When i = n
2 , the corresponding Ci will have a weight of C. As i approaches zero, the value

of Ci will reach its minimum. As i approaches n, the value of Ci approaches 2C. This type

of function is illustrated in Figure 5.1, for n = 4000.
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Figure 5.1: Illustration of ascending the C parameter.

5.4.2 Descending Epsilon

The ε parameter controls the sparsity of solutions by ignoring training errors within a

certain distance of the target value. As described in Section 2.3.3, this represents a tube

around the output label, illustrated in Figure 2.3. By decreasing the value of ε for more

recent examples, the SVR model will be more precise when learning from recent training
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examples. Tay and Cao proposed descending the ε parameter in (Tay and Cao, 2002b; Cao

and Tay, 2003).

As with adapting the C parameter, the index of each example is exploited to compute

its ε value. An index of 1 denotes the most distant training example, and an index of n

denotes the most recent training example. The value of ε for each example is computed as

shown in Equation 5.21.

εi = ε
1 + exp

(
b − 2b i

n

)
2

(5.21)

where i represents the index of the training example, n is the total number of training

examples, and b is the parameter which controls the rate at which ε is descended. This

function resembles an exponential decay which passes through 1 at the midpoint of the

training data. When i = n
2 , the corresponding εi will have a weight of ε. This type of

function with n = 4000 is illustrated in Figure 5.2.

5.5 Error Metrics

This section describes the error metrics used to measure and compare the

performance of the two baselines and the SVR model. These metrics are Mean Absolute

Error (MAE), Root Mean Square Error (RMSE), coefficient of determination (R2), and the

Clarke Error Grid Analysis (CEGA).

5.5.1 Mean Absolute Error

The mean absolute error represents the average overall error between the actual and

predicted values. The definition is given in Equation 5.22.

MAE =

n∑
i=1

|yi − ŷi|

n
(5.22)
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Figure 5.2: Illustration of descending the ε parameter.

where yi is the actual value, ŷi is the predicted value, and n is the number of test examples.

5.5.2 Root Mean Square Error

The Root Mean Square Error is similar to the standard deviation of the error. It is

defined in Equation 5.23.

RMS E =

√√√√√√√ n∑
i=1

(yi − ŷi)2

n
(5.23)

where yi is the actual value and ŷi is the predicted value.

5.5.3 Coefficient of Determination

R2, or the coefficient of determination, provides information about the goodness of fit

of the model. An R2 score of 1 means a perfect fit.
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R2 = 1 −
ES S
TS S

(5.24)

where ES S is the residual sum of squares error and TS S is the total sum of squares,

defined as follows:

ES S =

n∑
i=1

(yi − ŷi)2 (5.25)

TS S =

n∑
i=1

(yi − ȳ)2 (5.26)

where ȳ is the mean of the actual values.

5.5.4 Clarke Error Grid Analysis

The Clarke Error Grid Analysis (CEGA) is used to analyze clinical accuracy of blood

glucose values. It was first proposed in (Clarke et al., 1987), and it has become a clinical

standard for assessing the quality of blood glucose sensors as well as predictions

(Kovatchev et al., 2004). The grid breaks down a scatter plot into 5 regions as illustrated

in Figure 5.3.

These regions are defined, from best to worst, as:

A Predicted values within 20% of the actual values

B Points outside of 20% that would not lead to inappropriate treatment

C Points leading to unnecessary treatment

D Points indicating a potentially dangerous failure to detect hypoglycemia or

hyperglycemia

E Points that would confuse treatment of hypoglycemia for hyperglycemia or

vice-versa
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Figure 5.3: The Clarke Error Grid.

5.6 Experimental Evaluation

Data from ten different patients who completed the third study of the 4DSS™ was

used to predict blood glucose values. For each patient, a pivot date was chosen such that it

was always a Sunday about 1 month into the patient’s study. The feature templates were

tuned using a grid search with 2 weeks of training data and 1 week of development data

prior to the pivot point. This gave ten unique feature vectors tailored for each individual at

each prediction horizon. The next 14 days after this pivot date were used for testing, while

the 14 days prior to the pivot date were used for training, and the pivot date itself was used

for tuning. Walk-forward testing, as defined in Section 2.4.2, was performed with a step
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size of 1 on all 14 days of test data. For each test day, the RMSE, MAE, R2, and CEGA

were computed for the t0 baseline, ARIMA baseline, and the SVR model. All results are

on smoothed data, using cubic spline smoothing with extra weight for local optima and

fingersticks. A ridge parameter of λ = exp−20, a local optima and fingerstick weight of

P = 1000, and ap = bp = cp = 1 were used.
(
ap, bp, cp

)
are the constants from Equation

3.17 which decay a local optimum’s weight due to a fingerstick within one hour of the

optimum’s time.

The ARIMA model was built using 4 days of training data. An exploratory data

analysis showed that 4 days gave the lowest RMSE for the ARIMA model. While the

ARIMA model uses 10 fewer days of data than the SVR model, the ARIMA model is

slower to train and predict than the SVR model. The tuning dataset was used to tune the

parameters for the SVR. A grid search is carried out with a linear, polynomial, and Radial

Basis Function (RBF) kernels. Along with the type of kernel, the regularization parameter

C, the degree of the polynomial kernel, the width of the hypersphere γ, and the tube width

ε are tuned. Then, the tuning dataset was used again to tune the a and b parameters; a

controls the rate at which C is increased, and b controls the rate at which ε is decreased.

This experiment is carried out for prediction horizons at 30 and 60 minutes, or l = {6, 12}.

For each horizon, two different feature vectors are used for the SVR model, one including

both insulin and life event data, and one without this data.

Appendix A contains the details for each patient’s feature vector that was tuned using

the feature templates in Tables 5.1 and 5.2. Table 5.1 defines templates for the SVR model

that include insulin and life event data, defined as S VR1. Table 5.2 defines templates for

the SVR model that exclude insulin and life event data, defined as S VR2. For the moving

average and rate of change features, the decay parameter λ was tuned. For the life event

features, the size of the bin, k, and the number of bins of that size are tuned.
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Table 5.1: Feature vector with insulin and life event data for the SVR model, S VR1.

Feature Description

ϕt0(x, t) Glucose value at time t

ϕARIMA(x, t, k) ARIMA forecast at time t, k = l

ϕMVA(x, t, k, λ) Moving Average, k = {3, 6, 9, 12}

ϕRoC(x, t, k, λ) Rate of Change, k = {3, 6, 9, 12}

ϕBolus(x, t − k, k) Bolus

ϕBasal(x, t − k, k) Basal Rate

ϕBasalArea(x, t − k, k) Basal Rate Area from Mean

ϕMeal(x, t − k, k) Carbohydrates

ϕExercise(x, t − k, k) Exercise

ϕWork(x, t − k, k) Work

ϕS leep(x, t − k, k) Sleep

Table 5.2: Feature vector without insulin and life event data for the SVR model, S VR2.

Feature Description

ϕt0(x, t) Glucose value at time t

ϕARIMA(x, t, k) ARIMA forecasts at time t, k = l

ϕMVA(x, t, k, λ) Moving Average, k = {3, 6, 9, 12}

ϕRoC(x, t, k, λ) Rate of Change, k = {3, 6, 9, 12}
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5.6.1 Results and Discussion

This section reports the results for the 30 minute and 60 minute prediction horizons.

At each prediction horizon, the average RMSE for each patient and the error metrics

averaged over all patients are reported. Also reported is the RMSE results of walk-forward

testing for two patients, along with two examples of one day’s predictions and CEGA.

Comprehensive results for each patient can be found in Appendix A.

5.6.1.1 30 Minutes

This section presents results for predictions made at 30 minutes. Table 5.3 presents

the four error metrics averaged over all 10 patients. An interesting result is that for a 30

minute prediction horizon, the ARIMA and S VR2 models, which do not use insulin or life

event data, scored a better RMSE and MAE than S VR1, which included them. These

results suggest that a model based only on blood glucose values may be appropriate for

making 30 minute predictions.

Table 5.4 shows the average RMSE for each patient’s test data. For 30 minute

predictions, insulin and life event data either had no effect or hindered the performance of

Table 5.3: Averages over all patients for each error metric with a 30 minute prediction
horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 19.5 4.5 4.7 4.5

MAE 15.2 3.2 3.5 3.4

R2 0.80 0.98 0.98 0.98

CEGA (A%) 87% 99% 99% 99%
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Table 5.4: RMSE for each patient with a 30 minute prediction horizon.

Patient t0 ARIMA S VR1 S VR2

301 15.6 2.8 3.2 3.1

302 17.0 5.3 5.5 5.3

304 20.7 4.0 4.4 4.2

306 26.5 6.1 6.1 6.0

307 17.6 4.2 4.6 4.3

308 19.2 4.8 5.2 4.9

309 22.2 4.9 5.0 4.9

310 22.0 5.8 6.1 5.8

312 15.6 3.3 3.6 3.6

313 18.2 3.1 3.4 3.3

the S VR1 model when compared with S VR2. Figure 5.4 shows the average daily RMSE

for patients 309 and 313 over the entire 2 weeks of testing. For patient 309, the curves for

S VR1 and S VR2 intersect each other, indicating that, on different days, different models

gave the best performance. On Friday, the 16th, S VR1 greatly outperformed S VR2 for

patient 309. Figure 5.5 shows the predictions for this day in detail along with the CEGA

results. As this figure illustrates, S VR1 was more accurate at the peaks and nadirs of the

actual blood glucose plot. Furthermore, the CEGA shows the predictions for S VR1 are

closer to the target values, although all predicted values for both models fall within the

ideal A range of the Clarke error grid. For patient 313, S VR2 consistently outperformed

S VR1. However, ARIMA did better than S VR2 on many of the test days as well, such as

Wednesday the 24th. Figure 5.6 shows the predictions and CEGA for ARIMA and S VR2
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on this day. As this figure illustrates, even though S VR2 has a higher RMSE than the

ARIMA model, its predictions are contained within the A range of the Clarke error grid.
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(a) RMSE for patient 309 with a 30 minute horizon.

(b) RMSE for patient 313 with a 30 minute horizon.

Figure 5.4: Walk-forward testing results over 2 weeks for patients 309 and 313 with a 30
minute prediction horizon.
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(a) 30 minute predictions for S VR1 and S VR2, along with the actual target values.

(b) S VR1 CEGA (c) S VR2 CEGA

Figure 5.5: 30 minute predictions and CEGA results for patient 309.
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(a) 30 minute predictions for S VR2 and ARIMA, along with the actual target values.

(b) S VR2 CEGA (c) ARIMA CEGA

Figure 5.6: 30 minute predictions and CEGA results for patient 313.
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5.6.1.2 60 Minutes

This section presents results for predictions made at 60 minutes. Table 5.5 presents

the four error metrics averaged over all 10 patients. For 60 minute predictions, S VR2 was

the most accurate, followed by S VR1. These results are consistent with the conclusions

made in Duke’s thesis (Duke, 2009), that autoregressive models tend to be less accurate

for prediction horizons longer than 45 minutes. While the S VR2 model outperformed

S VR1 across all patients, some patients benefited from the insulin and life event data, as

shown in Table 5.6. Patients 301, 309, and 312 had lower RMSEs when using the S VR1

model. Figure 5.7 shows the average daily RMSE for patients 301 and 312 over 2 weeks

of testing. As can be seen from this figure, the improvement from including insulin and

life event data in S VR1 was consistent for patient 301. The best improvement observed

from using S VR1 is on Thursday, the 18th. The predictions and CEGA for this day for

S VR1 and S VR2 are shown in detail in Figure5.8. For patient 312, there were different

days on which each SVR model outperformed the other. For example, on Sunday the 23rd,

S VR2 outperformed S VR1, while on Saturday the 22nd, S VR1 outperformed S VR2. The

predictions and CEGA for the 23rd for S VR1 and S VR2 are shown in Figure 5.9.

Table 5.5: Averages over all patients for each error metric with a 60 minute prediction
horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 35.5 17.9 17.7 17.4

MAE 27.9 13.5 13.4 13.2

R2 0.36 0.82 0.82 0.83

CEGA (A%) 63% 89% 89% 90%
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Table 5.6: RMSE for each patient with a 60 minute prediction horizon.

Patient t0 ARIMA S VR1 S VR2

301 28.8 12.5 12.0 12.2

302 29.7 18.2 18.4 17.5

304 37.7 17.2 17.3 17.2

306 47.7 23.9 24.7 23.7

307 26.0 16.8 16.7 16.5

308 34.3 18.4 18.2 18.2

309 40.7 20.7 19.6 19.9

310 40.0 23.7 23.2 22.4

312 29.2 13.7 12.6 12.9

313 33.8 14.3 14.0 13.7
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(a) RMSE for patient 301 with a 60 minute horizon.

(b) RMSE for patient 312 with a 60 minute horizon.

Figure 5.7: Walk-forward testing results for patients 301 and 312 over 2 weeks with a 60
minute prediction horizon.
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(a) 60 minute predictions for S VR1 and S VR2, along with the actual target values.

(b) S VR1 CEGA (c) S VR2 CEGA

Figure 5.8: 60 minute predictions and CEGA results for patient 301.
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(a) 60 minute predictions for S VR1 and S VR2, along with the actual target values.

(b) S VR1 CEGA (c) S VR2 CEGA

Figure 5.9: 60 minute predictions and CEGA results for patient 312.
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6 Related Research

This chapter reviews research related to SVR for time series prediction as well as

other approaches to blood glucose prediction.

6.1 Support Vector Regression for Time Series Prediction

SVR for time series prediction, while new to diabetes management, has been applied

in other application domains, including financial market prediction and electric utility load

forecasting.

6.1.1 Financial Market Prediction

Financial market prediction has been the most focused application of SVR for time

series prediction. Sapankevych and Sankar discuss 21 research publications for financial

market prediction using SVR (Sapankevych and Sankar, 2009). Between 2001 and 2003,

Tay and Cao published a series of four articles on the application of SVR for financial

market prediction (Tay and Cao, 2001; Tay and Cao, 2002a; Tay and Cao, 2002b; Cao and

Tay, 2003). These articles show various ways the SVR algorithm can be optimized for this

domain.

The first publication of the series gives a comprehensive description of the datasets,

input and output variables, and error metrics (Tay and Cao, 2001). The datasets consist of

the daily closing price for five real futures contracts. A transformation of the five day

relative difference in price is applied to the closing prices. The output variable for

observation ti is replaced with ti − ti−5. Tay and Cao (2001a) show two important

properties of this transformation by comparing histograms of the datasets. This

transformation modifies the datasets such that the distribution is more symmetrical and

normal. Once the output variable has been transformed to relative differences, a three day

exponential moving average is applied to smooth the data. Taking a relative difference and
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smoothing the data with an exponential moving average generally increases predictive

accuracy in neural networks and SVR (Tay and Cao, 2001).

The authors also give a comparison between SVR and multi-layered

back-propagation (BP) neural networks (Tay and Cao, 2001). Four metrics were used for

comparing the performance of the two algorithms on test data: Normalized Mean Square

Error (NMSE), Mean Absolute Error (MAE), Directional Symmetry (DS), and Weighted

Directional Symmetry (WDS). The SVR outperformed the BP network on all four

metrics. The authors conclude that SVR is much more promising than BP networks due to

the following reasons: BP networks tries to minimize the training error, even when using a

validation dataset; over-fitting can degrade accuracy. In contrast, SVR try to minimize the

generalization error. This is known as the structural risk minimization principal, and

generally results in better performance on test data. A BP network has many free

parameters, whereas a SVR model only has three. This makes obtaining an optimal

combination of parameters much easier for the SVR. Finally, the BP network uses a

gradient descent algorithm, which is not guaranteed to find a global optimum, whereas the

solution for a SVR model is a global optimum due to its solving a constraint optimization

problem (Tay and Cao, 2001).

The other three articles had a common theme for improving performance in financial

market prediction using SVR (Cao and Tay, 2003; Tay and Cao, 2002a; Tay and Cao,

2002b). All three articles address properties of financial time series that make accurate

forecasting hard for the SVR. These properties are the non-stationarity of the financial

time series and the natural dependence of time between observations. The dependence

comes from the notion that recent observations have more influence than distant

observations. To account for this property, the authors suggest making modifications to

both parameters C and ε such that recent training points are given more weight than

distant training points. The C parameter controls the emphasis given to errors in the
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training data (Section 2.3.2); The ε parameter is used to give zero error to training

examples within the distance ε from the target value (Section 2.3.3). By ascending the

value of the C parameter, ε-insensitive errors of recent observations have a heavier penalty

(Tay and Cao, 2002a). This is done with a logistic function, centered about the midpoint

of the training dataset. The logistic function used takes one parameter, which controls the

rate at which C is increased. Descending the ε parameter with respect to time also has a

similar effect on the penalty of recent training points (Tay and Cao, 2002b). An

exponential function was used to increase the value of ε for distant points. These

modifications resulted in a solution with fewer support vectors, and improvement in

generalization performance was observed over standard SVR (Cao and Tay, 2003).

Another interesting application in financial market forecasting is using SVM to

predict the direction of the daily price change in the Korea composite stock price index

(KOSPI) (Kim, 2003). This is different from many of the other publications presented in

(Sapankevych and Sankar, 2009), as (Kim, 2003) used SVM rather than SVR for

prediction. The authors extracted 3000 examples from 10 years of data for training and

tuning different machine learning algorithms. Twelve features were created from the

datasets. These features included a relative change in price, moving averages of the

relative change, rate of change, distance of the current price and the moving averages, and

price oscillators between two moving averages. Using these features, SVM, three-layer

back-propagation network, and case-based reasoning (nearest neighbor) models were

compared. Experimental results from the study showed that the SVM outperformed the

back-propagation network and case-based reasoning systems (Kim, 2003). The authors

attribute this increase in performance to the structural risk minimization principle of

SVMs.

Blood glucose prediction and financial market prediction data have similar

characteristics. In both cases the data is nonlinear, non-stationary, and noisy. The data is
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nonlinear in the sense that there is not a linear equation that can easily solve the

forecasting problem. Dynamic trends in the time series data implies non-stationarity.

These trends change over time. In the case of stock markets, the trends can be influenced

by the time of the year. For blood glucose prediction, trends change according to the state

of the patient; even an individual’s trends may change over time due to small factors such

as stress, illness, or lack of sleep. The noise aspect is demonstrated by the fact that there

are many features that influence the output of both prediction problems. Not all features

can be exploited for prediction, and these missing factors are considered to be noise (Tay

and Cao, 2001).

The non-stationarity of blood glucose time series can be addressed in the same way

that Tay and Cao address non-stationarity of financial market data. Emphasis can be put

on more recent training examples by modifying the C and ε parameters to obtain a more

accurate prediction. This technique trains the SVR to ignore examples that are distant

from the present, and puts a greater emphasis on training errors close to the horizon (Cao

and Tay, 2003; Tay and Cao, 2002a; Tay and Cao, 2002b). This same kind of

transformation of parameters would be useful for blood glucose prediction. To put more

emphasis on minimizing the error of recent training examples, the value of C is increased

and the value of ε is decreased.

6.1.2 Electric Utility Load Forecasting

Another area of application for time series prediction is the forecasting of electrical

power consumption demands. The ability to forecast these demands on a short term basis

is essential for system stability, as the voltage generated by the utility must match the

demand. Mid-term and long term forecasts allow for better maintenance scheduling, more

efficient use of generated electricity, and lower costs for both consumers and suppliers.
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The SVR survey presents 17 different research publications related to this problem

(Sapankevych and Sankar, 2009).

In 2001, the EUNITE network held a competition for predicting the daily maximum

electricity load of the next 31 days. The winning solution to the problem used SVR

(Chang et al., 2001). The competitors were given 2 years of electricity load demand data

where the demand was recorded every half hour, the average daily temperature for three

years, and the dates of holidays for the training and testing datasets.

The authors point out some interesting patterns in the data that is given. The value for

the maximum daily load has a seasonal pattern: higher demand during the winter and

lower demand during the summer. The data values are also periodic throughout the week,

as there is lower demand during the weekend and higher demand during the weekdays.

There is a negative correlation between the average daily temperature and the daily

maximum electricity load. The demand for electricity is lower on holidays, and certain

holidays, such as Christmas, have a bigger effect on demand.

Several steps were taken to prepare the data for the SVR model. Binary calendar

attributes, such as the day of the week, weekday vs. weekend, and holiday information is

encoded. Temperature was not used as a feature, because it was not given for the test set

and would be difficult to estimate with the limited data. Information about previous daily

maximums was included as well; however, for the test dataset, these values were

estimated. The last step for preparing the data was segmenting the data based on the

season. The authors argued that training a model for each season separately would

improve the overall performance, because of the non-stationary aspect of the time series.

The authors concluded that choosing the appropriate data segments was the key to

enhancing performance.

Pai and Hong present an interesting twist to SVR for forecasting Taiwanese

electricity load (Pai and Hong, 2005). Their SVR uses simulated annealing (SA) for
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choosing the free parameters σ, C, and ε. The SA algorithm initializes random values for

these parameters, and randomly adjusts them until a stopping criterion is reached.

The dataset consisted of 59 years of load data, which was used for training, tuning,

and testing. The objective was to predict the total electricity load of the last 9 years using

the first 50 years for training and tuning. The input for the SVR was the electricity load

for each year over a predefined time span. The authors found that encoding the total

electric load from the past 30 years as features gave the best performance using the

training and tuning set. An ARIMA model and a general regression neural network model

are compared to the SVR with SA. The SVR greatly outperformed the other two models.

The authors attribute this success to using the SA algorithm to choose the free parameters

and to the structural risk minimization principle of SVM.

Electric utility load forecasting has some similarities to blood glucose prediction.

Electric utility load data is cyclic over time, as was shown with the periodicity of the data

in (Chang et al., 2001). The same is true for blood glucose values. Blood glucose patterns

differ if the patient is sleeping or awake. There are also differences for exercise, work, and

the day of the week. As with electric utility load data, holidays have profound effects on

blood glucose values. This is primarily due to extra carbohydrates typically ingested on

holidays. There are also cyclic aspects of blood glucose levels with respect to changing

the insulin reservoir. The FDA recommends that the reservoir be changed every 72 hours.

The efficacy of insulin may depend on the time since the insulin reservoir was changed.

6.2 Blood Glucose Prediction

This section presents research in the area of blood glucose prediction. Three projects,

the Artificial Pancreas project, the Intelligent Diabetes Assistant, and the AIDA1 diabetes

simulator are described.
1 AIDA originally stood for Automatic Insulin Dosage Advisor but is now used solely as an acronym.
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6.2.1 Artificial Pancreas Project

The objective of the Artificial Pancreas Project is to close the loop, removing the

need for a patient to control the insulin pump. As mentioned in section 2.1.1, closing the

loop has been a goal of diabetes researchers for quite some time (Juvenile Diabetes

Research Foundation, 2010). The Juvenile Diabetes Research Foundation (JDRF) has

been advancing research for a closed-loop system since 2005; this project is known as the

JDRF Artificial Pancreas Project. The JDRF, founded in 1970, is the world leader in

charitable donations for T1DM research (JDRF, 2011a). In 2005, the Artificial Pancreas

Project was approved, and funding for an artificial pancreas started the following year.

JDRF defines an artificial pancreas as “an automated system to disperse insulin based on

real time changes in blood sugar levels” (JDRF, 2011a). With the present open loop

system, patients are required to manually manage their blood glucose levels. Human

errors contribute to poor blood glucose control, increasing the risk of long term

complications. Therefore, a closed-loop system would be ideal.

In 2009, Aaron Kowalski presented a road map to the artificial pancreas and

published some results using a partially automated insulin pump for patients with T1DM

(Kowalski, 2009). In his publication, Kowalski raises the question, “Why hasn’t an

artificial pancreas been realized?” The author posits that patient safety is why such a

system has not been realized. This is because inaccurate CGM sensors may report

artificially high blood glucose levels, leading to overdosing of insulin, causing

hypoglycemia. Until the CGM sensor technology becomes more reliable, a fully

automated closed-loop system cannot be realized. However, Kowalski believes that a

partial closed-loop system is possible using today’s technology.

The road map to an artificial pancreas is described in stages. The first stage deals

with hypoglycemic episodes. An alarm would sound when hypoglycemia is detected. If

the patient is not responsive to the hypoglycemia alarm, the insulin pump should



107

automatically shut off. While this does not avoid hypoglycemia completely, prolonged

episodes of hypoglycemia can be avoided. The second stage is to predict hypoglycemia to

reduce the patient’s exposure to hypoglycemic episodes. An alarm would sound when

hypoglycemia is predicted. If the patient is unresponsive to the alarms, insulin delivery

would be reduced. The third stage is to reduce the patient’s exposure to both

hypoglycemia and hyperglycemia by predicting these episodes. The fourth step is to keep

the patient within the target range overnight. The system in this stage would also contain a

meal announcement so the system could handle bed time snacks. This announcement

would contain information that the system would use to reduce hyperglycemia exposure.

The last stage is to move to a fully closed-loop system, such that user interactions are

nearly eliminated and the patient’s blood glucose levels mimic those of a person without

diabetes.

The author concludes that there are a number of challenges that need to be addressed

before a closed-loop system will be available to patients. The biggest challenge is

inaccuracy of available CGM devices. These devices base readings on interstitial fluid,

which lags behind actual blood glucose levels. The CGM devices also become unreliable

due to miscalibration. Therefore a closed-loop system must be able to calibrate itself. The

dynamics of the efficacy of insulin from patient to patient are also a concern for

closed-loop systems. Stress, exercise, and hormone changes may impact the efficacy of

insulin. This requires an algorithm that models the physiological aspects of insulin and

blood glucose. In summary, Kowalski states that closed-loop systems in stage 3 are

possible with today’s technology, and notes that such a system is available in Europe. He

predicts that a fully closed-loop system is still more than five years away (Kowalski,

2009).

Currently, the JDRF Artificial Pancreas Project has developed a partially automated

insulin pump. This pump requires the user to administer meal boluses and to adjust basal
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rates depending on the patient’s activity. However, the system aims to keep the patient

between a set range, such as 80mg/dl and 180mg/dl. This is done by adjusting the insulin

delivery based on the current blood glucose reading (JDRF, 2011b). This mimics the

actions of the human pancreas to a certain degree. JDRF defines this system as a

hypoglycemia-hyperglycemia minimizer, the third stage of Kowalski’s road map. This

type of insulin pump is currently awaiting approval from the Food and Drug

Administration (FDA) (JDRF, 2011b).

The approach to blood glucose prediction developed in this work could be applied

towards the control of an artificial pancreas. Once reliable CGM sensors become

available, the prediction model could be used to complete the final stage of the artificial

pancreas road map (Kowalski, 2009). Potential problems in blood glucose control could

be preemptively identified and corrected over time by learning a model of the patient’s

reaction to insulin and life events. This model would be tailored for an individual by

learning from that individual’s data. As of May, 2011, JDRF is only using the current

blood glucose level for adjusting the delivery of insulin (JDRF, 2011b).

6.2.2 Intelligent Diabetes Assistant

In his PhD thesis, David Duke presents an outline for an Intelligent Diabetes

Assistant (IDA) (Duke, 2009). IDA is a system that aims to collect information about a

patient via telemedicine, share this information with a health care team, and analyze this

information for three purposes. These purposes are: (1) predicting two hour postprandial

blood glucose levels; (2) generating therapy advice; and (3) continuous glucose modeling.

The data collected consists of meal, insulin, other medications, and exercise information.

Information was collected through a cell phone interface, with meal information collected

via a cell phone picture of the meal.
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When a patient with diabetes eats a meal, the number of carbohydrates consumed

must be estimated so that the correct amount of insulin can be delivered. Errors in this

estimation may result in postprandial hypoglycemia or hyperglycemia. Duke posited that

essentially, patients are trying to predict their own postprandial blood glucose levels,

which is a difficult task. He proposed Gaussian process regression to predict two hour

postprandial glucose values. A Gaussian process with a Gaussian kernel is advantageous

because nonlinearities in the input data can be learned (Duke, 2009). Another interesting

point Duke makes about Gaussian process regression, is that the physiology of each

patient is unique, and Gaussian process regression allows for a unique model to be trained

for each patient.

The input for the regression is a combination of past and anticipated data

measurements with respect to a meal time t. The input consists of the current blood

glucose measurement, average exercise before and after the meal, time of the day,

estimated carbohydrates, insulin, and medication information. The output of the

regression is a two hour postprandial blood glucose prediction. Gaussian process

regression with linear and Gaussian kernels and different types of training datasets were

investigated. The types of training sets investigated were individual, joint datasets among

patients, and weighted datasets between all patients where data for similar patients is

weighted more heavily. Duke showed that modeling the effects of patient behavior on

blood glucose levels at meal time and improving communication between patients and

physicians resulted in improved patient care. Duke notes that this automated method of

predicting postprandial blood glucose levels performs better than humans.

Continuous dynamic modeling of blood glucose levels was also explored with the

data that was collected. This was done so that therapy advice could be generated at times

outside of meals. Two models were investigated, an autoregressive model with exogenous

inputs and a physiological model with and without exercise. The inputs to both models
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consisted of the current CGM reading, ingested carbohydrates, ingested fat, ingested

protein, exercise rate, and insulin information. Predictions for 15 minutes, 45 minutes, and

120 minutes were compared for the two models. Interestingly, the autoregressive models

outperformed the physiological model for short term predictions up to 45 minutes. For

predictions beyond 45 minutes, the physiological model with exercise performed the best

(Duke, 2009).

Duke proposes two different approaches for generating therapy advice: real-time and

retrospective. Real-time advice would preemptively mitigate hypoglycemia and

hyperglycemia, similar to the artificial pancreas. Real-time advice would also be used to

generate bolus advice. Retroactive advice would be used to educate the patient. This could

be done by adjusting insulin and carbohydrate parameters to show different outcomes to

the patient. This would allow the patient to learn optimal blood glucose control behavior.

Meal information was generated using machine learning algorithms on images of

meals. A training set of images was labeled with the number of carbohydrates by two

dietitians. A regression model was then trained to predict the number of carbohydrates

given an image of a meal. Along with estimating the portion size of the meals, the images

were also used to automatically recognize food. An interesting point Duke makes is that

people eat consistent meals. The problem is not recognizing food from all the possible

meals in the world, but rather to recognize food that is similar to meals in the patient’s

past. This makes the overall task much simpler.

The prediction described in this thesis is different from the models proposed in the

IDA system (Duke, 2009). Prediction of blood glucose values can subsume both the

physiological model and the autoregressive model proposed in IDA. SVR is more

dynamic than autoregressive models, and should be able to achieve better generalization

performance on nonlinear, non-stationary, and noisy data. SVR is also less prone to

over-fitting than autoregressive models. The most important aspect of SVR is learning a
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weight vector. Exploiting features correctly allows the SVR model to individualize the

physiological dynamics of each patient by using this weight vector. To facilitate this

learning, aspects of the physiological model can be exploited as features for the SVR.

6.2.3 AIDA

The AIDA diabetes simulator is a research project that has been ongoing for over 20

years now. According to the website, “AIDA is a freeware educational simulator program

of glucose-insulin interaction and insulin dosage & dietary adjustment in diabetes

mellitus” (AIDA Diabetes Simulator, 2011). The authors stress that this software is for

educational purposes only, as it lacks the ability to accurately predict glucose levels for

individual patients. However, the model does attempt to accurately reflect blood glucose

profiles of patients with T1DM. The model’s performance is validated against real patient

data. Along with the software that is available on the website, there are also tutorials and

guides for both the technical aspects of the AIDA simulator, and general information on

glucose-insulin interaction.

The first publications presenting the AIDA simulator debuted in 1991 (Lehmann and

Deutsch, 1991a; Lehmann and Deutsch, 1991b). These publications present an overview

of the model that is used to do 24 hour simulations of blood glucose profiles. The models

that are described are then illustrated using case studies with patients who are treated with

insulin. The model built by the authors consisted of a series of differential equations

which attempt to describe the glucose-insulin interaction for a specific patient. These

equations depend on parameters, and these parameters must be optimized for each

individual patient. The authors concluded that their model does work in a strictly defined

domain for some patients, but acknowledge that it is not possible to model a patient’s

blood glucose profile with a series of differential equations. This is due to specific clinical

scenarios which change the dynamics of glucose-insulin interaction. The authors note that
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this limitation is common to all physiological models. Despite these limitations, the model

still has valuable use as an educational tool.

Since these first publications, the AIDA simulator has become available free of

charge on the Internet. There is a demonstration of the simulator available for download as

well. The most recent version of the AIDA simulator (version 4.3b) has been described in

(Lehmann et al., 2011). This publication presents the growing interest in the AIDA

simulator by showing the number of visits to the AIDA website and the number of

downloads of the AIDA simulator by month. This newer version of the AIDA simulator

has been extended to work seamlessly on all Windows and Macintosh platforms. An

explanation of how to install the software is also given. The simulator has been modified

further to individualize parameters for each patient. The simulator has also been modified

for plasma insulin simulations for different types of insulin: rapid-acting, short-acting,

intermediate-acting, and very long-acting insulin for insulin doses up to 60 units. These

type of simulations use insulin absorption models, which the authors conclude are in need

of validation with future work. The authors plan to extend the AIDA simulator such that it

is possible to model patients with T2DM (non-insulin-dependent).

The authors are aware that not all patient scenarios are accounted for using the type of

model employed by AIDA (Lehmann et al., 2011). The blood glucose prediction approach

presented in this thesis attempts to model multiple scenarios. The model described in this

work is more general, allowing it to complement the AIDA simulator. Similar to the

AIDA simulator, the model in this work could also be used for educational purposes.
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7 FutureWork

This chapter identifies future work to extend the contributions presented in this

thesis. Future work could further improve the results of both glycemic variability

classification and blood glucose prediction. Another area of future work is to make the

contributions of this thesis available to both patients and health care professionals.

7.1 Data Preprocessing

Future work in data preprocessing involves both life event data and smoothing CGM

data, as described in Chapter 3. Collection of future meal and exercise information could

be enhanced to make it more accurate, which would make it more useful to the blood

glucose prediction models. Current plans are to collect life event data with a mobile

interface, which will allow for more accurate timestamps with life events. It would be

even better if, as done with the IDA project, meal information could be captured using a

camera phone. Then, pattern recognition could be used to automatically determine the

number of carbohydrates associated with the meal. Furthermore, the picture could be

saved with a time stamp such that the time of carbohydrate ingestion is more precise. Also

done with the IDA project, exercise information could be collected using a sensor. In the

IDA project the sensor measured skin temperature, movement via accelerometers, and

estimates on the number of calories burned per minute. This information would be

valuable to any blood glucose prediction model.

While smoothing CGM data produced results closer to the actual blood glucose

values, this accuracy could be further improved. Even though fingerstick data is more

accurate than CGM data, there are cases of noisy fingerstick readings. The meters that

record fingerstick values are only accurate to ±7% of the actual values. Identifying noisy

fingerstick readings as anomalies and ignoring them while smoothing would increase the

physiological accuracy of the smoothed curve. Furthermore, using a simple function to
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estimate the weight of a local optimum, while useful, may be suboptimal. Improvements

might be made by identifying specific cases and modifying the local optima weight based

on these cases. Each local optima’s case would be determined with a classification

scheme. This scheme could be a set of rules or a machine learning classifier.

7.2 Classification of Glycemic Variability

The model for detecting excessive glycemic variability described in Chapter 4 could

be further improved. A constraint that we faced during development of the models was the

relatively small size of the glycemic variability dataset. The current dataset contains 262

unique examples; 187 positive and 75 negative examples. In order to obtain statistically

significant results from the 10-fold cross validation, we had to limit the size of the

development set, which may have led to suboptimal parameters and imperfect feature

selection. Collecting more annotated CGM plots from diabetes experts is therefore a high

priority for future work.

We also plan to change the binary annotation scheme to a “5-star” ordinal scheme

wherein physicians would annotate CGM plots using 5 ordered labels, from least variable

(1 star) to excessively variable (5 stars). This new annotation scheme would alleviate the

problem of disagreement between annotators, with minimal additional effort for the

annotators. The new annotations have the potential to further improve accuracy when used

with ordinal regression (Chu and Keerthi, 2005). Furthermore, we plan to bootstrap the

new annotation process by using the currently developed systems via active learning

(Tong and Koller, 2000), thus maximizing the utility of the newly annotated examples.

The ultimate aim of this classification is to develop a practical clinical tool to

automatically screen for excessive glycemic variability in patients with diabetes. A

routine clinical screen for excessive glycemic variability would allow early identification

of patients at risk for preventable diabetic complications. Preventing diabetic
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complications improves quality of life for patients while reducing the financial burden of

health care costs. Therefore, future plans include development of a commercial software

package for clinical use.

7.3 Blood Glucose Prediction

The model used to predict blood glucose values described in Chapter 5 can be

improved in various ways. The current SVR model exploits insulin and carbohydrate

information separately. However, the dynamics of insulin and carbohydrates are not

independent. Similar to the forecast of the ARIMA model exploited as a feature for the

SVR model, the SVR model could be further improved by using features that represent the

pharmacokinetics of insulin and carbohydrates. These features would account for the

dependence between insulin and carbohydrates, allowing the SVR model to exploit this

information directly. The features generated by the pharmacokinetic model may be used

with the ARIMA model, resulting in more accurate ARIMA forecasts which would result

in a more accurate SVR model. It is an empirical question whether the pharmacokinetic

features are more beneficial with the SVR or ARIMA model. The pharmacokinetic

features could be generated using an existing algorithm, such as the one described in the

IDA project or the AIDA simulator. With features that accurately model the

pharmacokinetics of insulin and carbohydrates, the insulin and carbohydrate parameters

become more useful to the overall prediction model.

It is possible that the accuracy of the prediction models may vary given the situation.

For example, there are fewer factors that influence blood glucose values while the patient

is asleep, and these predictions may be more accurate than predictions made while the

patient is awake. Evaluation of the accuracy of predictions during meals and exercise

should also be captured. There are many factors which influence blood glucose during

these situations, and the intuition is that a model with insulin and life events will obtain
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better accuracy. The accuracy of the prediction models given the range of the blood

glucose values is also of interest. Hyperglycemia and hypoglycemia are more important

clinically than the normal range, and the accuracy of the prediction models should be

captured at these abnormal ranges. Insulin and life events may influence transitions in and

out of the normal range. Evaluating predictions during these transitions may show that the

model which includes insulin and life events results in better accuracy.

The patient specific part of the SVR model can be further improved. This work used

a separate set of data to tune the features only once before measuring the performance of

the prediction models. This could be improved upon by optimizing the features using the

validation data as a guide. There are two different approaches to this optimization:

optimizing the parameters of each feature template, and optimizing combinations of

features. Optimizing the parameters for each feature template could be formulated as an

optimization problem. For example, we would want to minimize the validation error for

the moving average feature with parameters {n, λ}, where n is the number of points to

include, and λ is the exponential decay applied to the average. On the other hand,

combinations of features could be optimized using feature selection methods. This could

be done with a filter or a greedy wrapper, as was done for classification of glycemic

variability (Chapter 4). Optimization of features should be done on a patient by patient

basis, with the intuition that the features that optimize a patient model are different from

patient to patient.

Another way to improve the accuracy of prediction would be to build models based

on specific scenarios. For instance, training two models, one while the patient is sleeping

and one while the patient is awake, may increase the overall accuracy of the predictions.

Another example would be to use one model for weekdays and one model for weekends.

This could also be done to handle insulin efficacy cycles, using the time of the last insulin

reservoir change to partition the models.
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Fully integrating the blood glucose prediction model with the 4DSS™ is also left for

future work. One approach would be to use the predictions to add real-time situation

assessment to the 4DSS™. The predictions would enable the situation assessment module

to preemptively detect problems. When a problem is detected preemptively, the patient

would be alerted and a solution for the problem would be generated. The system could

then monitor the patient to check if the generated advice was followed, and if it was,

record the outcome of the real-time solution. 4DSS™ would become a real-time

case-based reasoning system, with automated extensions to the case-base. This extends

the current 4DSS™ functionality, in that information about patient outcomes must now be

manually entered.

Another way to integrate the predictions with the 4DSS™ is to create a module to

critique advice generated by the adaptation module. The adaptation module makes several

different suggestions for correcting detected problems. Some of these suggestions include

administering a bolus or consuming carbohydrates. These suggestions can be sent as

parameters to the blood glucose prediction module. Then, predictions can be made to

determine the effect of the following the suggestions before they are recommended to a

patient or health care provider.

There are three potential real-world applications for blood glucose prediction, beyond

its role in 4DSS™. First, it could be incorporated in an educational tool, which could be

used to educate health care professionals and patients. Such a tool would be able to show

patients the effects of insulin, carbohydrates, and exercise on their blood glucose values.

Second, the prediction model could be incorporated in the insulin pump, so that insulin

pump alarms could be generated when hypoglycemia or hyperglycemia is predicted. This

would contribute to patient safety. It would be especially useful for waking sleeping

patients before impending nocturnal hypoglycemia. Third, the prediction model could be

integrated into an artificial pancreas, helping to create a closed-loop system. This could
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benefit the JDRF’s Artificial Pancreas Project. The model proposed in this work may

prove to outperform the models currently envisioned by the JDRF. It offers the advantages

of: (1) incorporating life event data known to impact blood glucose values; and (2)

enabling patient specific models to be developed for each individual patient.
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8 Summary and Conclusion

This thesis has presented research in machine learning for diabetes decision support.

The contributions of this thesis are:

1. preprocessing noisy data, preparatory to applying machine learning algorithms;

2. enhancing the automated detection of excessive glycemic variability, a serious

problem for patients with diabetes; and

3. predicting patient blood glucose levels, in order to preemptively detect and avoid

potential health problems.

These contributions expand the scope of the 4 Diabetes Support System™ (4DSS) and

potentially enable new clinical applications for diabetes management. At the time of this

writing, the machine learning approaches for classifying glycemic variability and

predicting blood glucose values offer new solutions to these problems.

As described in Chapter 3, preprocessing data included inferring life event data and

smoothing CGM data. Sleep and work data was inferred from the patient’s daily schedule,

and carbohydrate data was inferred from information stored in the bolus wizard. Several

techniques were investigated for smoothing CGM data, including moving averages,

exponential moving averages, low pass DFT filter, ridge regression, and cubic spline

smoothing. Cubic spline smoothing most closely matched the smoothing of an

endocrinologist, due to its ability to give extra weight to fingersticks and local optima.

Smoothing CGM data improved the performance of both classification of glycemic

variability and prediction of blood glucose values.

As described in Chapter 4, the automated detection of excessive glycemic variability

was improved via three different enhancements. These enhancements were smoothing

CGM data, adding a rich set of pattern recognition features, and evaluating different
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classification algorithms. Feature selection was carried out using a t-test filter and a

backward greedy elimination wrapper. The selected features were then used with k-fold

cross validation to compare the results of the previous work with the new results. The

enhancements resulted in better performance over the previous work, which had an

accuracy of 87.1%. The backward greedy elimination obtained a best accuracy of 93.8%

with a multilayer perceptron on smoothed data. The t-test filter obtained a best accuracy

of 92.8% with a Support Vector Machine on smoothed data.

As described in Chapter 5, a new module was created for the 4DSS™ that predicts

blood glucose values. Blood glucose prediction was formulated as a time series prediction

problem, and the synthesis of two regression models was used to solve it. The two models

were an AutoRegressive Integrated Moving Average (ARIMA) and Support Vector

Regression (SVR). The ARIMA model was used as a baseline for the SVR model, and it

was also used to supply features for the SVR model. A naı̈ve baseline, which used the

current blood glucose value as its prediction was used for comparison.

Three models were tested across 10 patients with two weeks of test data using

walk-forward testing with a step size of one day, after tuning the feature templates for

each patient. Two different SVR models were tested, one with insulin and life event data,

and one without. This was done for 30 and 60 minute prediction horizons. Four different

error metrics were recorded for each day: (1) Root Mean Square Error (RMSE), (2)

Absolute Mean Error (MAE), (3) Coefficient of Determination (R2), and (4) Clarke Error

Grid Analysis (CEGA). The validation dataset was used to tune the parameters of the

SVR. Not only were the parameters for the SVR tuned, but they were also adapted such

that more recent training examples were given more emphasis during training. The rate at

which the parameters were adapted was also tuned on the validation dataset.

For 30 minute predictions, the best RMSE of 4.5 mg/dl was obtained across all

patients using either ARIMA or a SVR model without insulin and life event data. For 60
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minute predictions, a best RMSE of 17.4 mg/dl was obtained across all patients using a

SVR model without insulin and life event data. A SVR model with insulin and life event

data did better than ARIMA at 60 minutes, and it outperformed a SVR model without

insulin and life event data for three patients.

Future work is planned to build and improve upon the three contributions presented

in this thesis. Future plans include: collecting life event data via a cellphone interface for

better data accuracy; expanding the size of the glycemic variability dataset for improved

classification; and investigating additional feature templates and modeling advances for

better blood glucose prediction. There are also potential clinical applications of this work,

including routine screening for excessive glycemic variability and safety alarms to alert

patients to predicted hypoglycemia.
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Appendix: Prediction Results

This appendix contains detailed results for the blood glucose prediction models at all

horizons for all patients. This appendix is broken down into 10 sections, one section for

each patient. Each section is broken down into two subsections, for 30 and 60 minute

horizons. Each patient section begins with the features found by tuning the feature

templates. The baseline features, ϕt0 (x, t) and ϕARIMA (x, t, l), are omitted from the tables

containing the feature vectors as these features were not tuned. Each prediction horizon

subsection presents a plot of the RMSE of the walk-forward testing for all models and

baselines, along with a table showing the averages for all 4 error metrics from this test

data.
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A.1 Patient 301

Table A.1 shows the feature vectors found from tuning the feature templates for

patient 301 at 30 and 60 minute prediction horizons.

Table A.1: Feature vectors for patient 301.

Feature 30 Minutes 60 Minutes

ϕMVA(x, t, 3, λ) λ = 0.5 λ = 0.25

ϕMVA(x, t, 6, λ) λ = 0.5 λ = 0.25

ϕMVA(x, t, 9, λ) λ = 0.5 λ = 0.25

ϕMVA(x, t, 12, λ) λ = 0.5 λ = 0.25

ϕRoC(x, t, 3, λ) λ = 1 λ = 0.5

ϕRoC(x, t, 6, λ) λ = 1 λ = 0.5

ϕRoC(x, t, 9, λ) λ = 1 λ = 0.25

ϕRoC(x, t, 12, λ) λ = 1 λ = 0.25

ϕBolus(x, t − i k, k) k = 60, i = 0 k = 10, i = {0, . . . , 5}

ϕBasal(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕBasalArea(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕMeal(x, t − i k, k) k = 10, i = {0, . . . , 5} k = 10, i = {0, . . . , 5}

ϕS leep(x, t − i k, k) k = 60, i = 0 k = 60, i = 0
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A.1.1 30 Minutes

Table A.2: Patient 301 averages for each error metric with a 30 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 15.6 2.8 3.2 3.1

MAE 12.4 2.0 2.5 2.4

R2 0.81 0.99 0.99 0.99

CEGA (A%) 91% 100% 100% 100%

Figure A.1: RMSE plot of test data for patient 301 with 30 minute predictions.
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A.1.2 60 Minutes

Table A.3: Patient 301 averages for each error metric with a 60 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 28.8 12.5 12.0 12.2

MAE 22.8 9.5 9.4 9.4

R2 0.36 0.88 0.89 0.88

CEGA (A%) 68% 96% 96% 96%

Figure A.2: RMSE plot of test data for patient 301 with 60 minute predictions.
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A.2 Patient 302

Table A.4 shows the feature vectors found from tuning the feature templates for

patient 302 at 30 and 60 minute prediction horizons.

Table A.4: Feature vectors for patient 302.

Feature 30 Minutes 60 Minutes

ϕMVA(x, t, 3, λ) λ = 0.25 λ = 0.25

ϕMVA(x, t, 6, λ) λ = 0.25 λ = 1

ϕMVA(x, t, 9, λ) λ = 0.25 λ = 1

ϕMVA(x, t, 12, λ) λ = 0.25 λ = 1

ϕRoC(x, t, 3, λ) λ = 0.25 λ = 1

ϕRoC(x, t, 6, λ) λ = 0.25 λ = 1

ϕRoC(x, t, 9, λ) λ = 0.25 λ = 0.75

ϕRoC(x, t, 12, λ) λ = 0.25 λ = 0.75

ϕBolus(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕBasal(x, t − i k, k) k = 60, i = 0 k = 10, i = {0, . . . , 5}

ϕBasalArea(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕMeal(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕExercise(x, t − i k, k) k = 30, i = {0, . . . , 5} k = 10, i = {0, . . . , 17}

ϕS leep(x, t − i k, k) k = 60, i = 0 k = 60, i = 0
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A.2.1 30 Minutes

Table A.5: Patient 302 averages for each error metric with a 30 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 17.0 5.3 5.5 5.3

MAE 13.2 4.0 4.1 3.9

R2 0.77 0.97 0.97 0.97

CEGA (A%) 89% 99% 99% 99%

Figure A.3: RMSE plot of test data for patient 302 with 30 minute predictions.
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A.2.2 60 Minutes

Table A.6: Patient 302 averages for each error metric with a 60 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 29.7 18.2 18.4 17.5

MAE 30.6 15.2 13.8 13.3

R2 0.30 0.72 0.72 0.75

CEGA (A%) 66% 88% 87% 88%

Figure A.4: RMSE plot of test data for patient 302 with 60 minute predictions.
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A.3 Patient 304

Table A.7 shows the feature vectors found from tuning the feature templates for

patient 304 at 30 and 60 minute prediction horizons.

Table A.7: Feature vectors for patient 304.

Feature 30 Minutes 60 Minutes

ϕMVA(x, t, 3, λ) λ = 0.25 λ = 1

ϕMVA(x, t, 6, λ) λ = 0.25 λ = 1

ϕMVA(x, t, 9, λ) λ = 0.25 λ = 0.9

ϕMVA(x, t, 12, λ) λ = 0.25 λ = 0.75

ϕRoC(x, t, 3, λ) λ = 0.25 λ = 0.75

ϕRoC(x, t, 6, λ) λ = 0.25 λ = 0.5

ϕRoC(x, t, 9, λ) λ = 0.25 λ = 0.5

ϕRoC(x, t, 12, λ) λ = 0.25 λ = 0.5

ϕBolus(x, t − i k, k) k = 60, i = 0 k = 10, i = 0

ϕBasal(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕBasalArea(x, t − i k, k) k = 60, i = 0 k = 30, i = {0, 1}

ϕMeal(x, t − i k, k) k = 10, i = {0, . . . , 5} k = 10, i = {0, . . . , 5}

ϕExercise(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕWork(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕS leep(x, t − i k, k) k = 60, i = 0 k = 60, i = 0
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A.3.1 30 Minutes

Table A.8: Patient 304 averages for each error metric with a 30 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 20.7 4.0 4.4 4.2

MAE 16.3 3.0 3.3 3.2

R2 0.76 0.99 0.99 0.98

CEGA (A%) 82% 99% 99% 99%

Figure A.5: RMSE plot of test data for patient 304 with 30 minute predictions.
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A.3.2 60 Minutes

Table A.9: Patient 304 averages for each error metric with a 60 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 37.7 17.2 17.3 17.2

MAE 29.7 13.3 13.5 13.3

R2 0.24 0.82 0.82 0.82

CEGA (A%) 58% 87% 85% 86%

Figure A.6: RMSE plot of test data for patient 304 with 60 minute predictions.
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A.4 Patient 306

Table A.10 shows the feature vectors found from tuning the feature templates for

patient 306 at 30 and 60 minute prediction horizons.

Table A.10: Feature vectors for patient 306.

Feature 30 Minutes 60 Minutes

ϕMVA(x, t, 3, λ) λ = 0.25 λ = 0.25

ϕMVA(x, t, 6, λ) λ = 0.25 λ = 0.25

ϕMVA(x, t, 9, λ) λ = 0.25 λ = 0.25

ϕMVA(x, t, 12, λ) λ = 0.25 λ = 0.25

ϕRoC(x, t, 3, λ) λ = 0.25 λ = 0.5

ϕRoC(x, t, 6, λ) λ = 0.25 λ = 0.5

ϕRoC(x, t, 9, λ) λ = 0.25 λ = 0.25

ϕRoC(x, t, 12, λ) λ = 0.25 λ = 0.25

ϕBolus(x, t − i k, k) k = 60, i = 0 k = 20, i = {0, 1, 2}

ϕBasal(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕBasalArea(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕMeal(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕExercise(x, t − i k, k) k = 60, i = {0, 1} k = 30, i = {0, 1}

ϕWork(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕS leep(x, t − i k, k) k = 60, i = 0 k = 60, i = {0, 1}
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A.4.1 30 Minutes

Table A.11: Patient 306 averages for each error metric with a 30 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 26.5 6.1 6.1 6.0

MAE 20.4 4.5 4.5 4.4

R2 0.81 0.98 0.98 0.98

CEGA (A%) 76% 99% 99% 99%

Figure A.7: RMSE plot of test data for patient 306 with 30 minute predictions.
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A.4.2 60 Minutes

Table A.12: Patient 306 averages for each error metric with a 60 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 47.7 23.9 24.7 23.7

MAE 37.3 18.4 18.8 17.8

R2 0.37 0.83 0.82 0.83

CEGA (A%) 51% 83% 82% 83%

Figure A.8: RMSE plot of test data for patient 306 with 60 minute predictions.
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A.5 Patient 307

Table A.13 shows the feature vectors found from tuning the feature templates for

patient 307 at 30 and 60 minute prediction horizons.

Table A.13: Feature vectors for patient 307.

Feature 30 Minutes 60 Minutes

ϕMVA(x, t, 3, λ) λ = 1 λ = 0.5

ϕMVA(x, t, 6, λ) λ = 1 λ = 1

ϕMVA(x, t, 9, λ) λ = 1 λ = 0.9

ϕMVA(x, t, 12, λ) λ = 1 λ = 0.25

ϕRoC(x, t, 3, λ) λ = 0.75 λ = 1

ϕRoC(x, t, 6, λ) λ = 1 λ = 1

ϕRoC(x, t, 9, λ) λ = 1 λ = 0.75

ϕRoC(x, t, 12, λ) λ = 1 λ = 0.5

ϕBolus(x, t − i k, k) k = 60, i = 0 k = 10, i = {0, . . . , 11}

ϕBasal(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕBasalArea(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕMeal(x, t − i k, k) k = 60, i = 0 k = 60, i = {0, 1, 2}

ϕWork(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕS leep(x, t − i k, k) k = 60, i = 0 k = 60, i = 0
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A.5.1 30 Minutes

Table A.14: Patient 307 averages for each error metric with a 30 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 17.6 4.2 4.6 4.3

MAE 13.9 3.1 3.5 3.3

R2 0.86 0.99 0.99 0.96

CEGA (A%) 92% 100% 100% 100%

Figure A.9: RMSE plot of test data for patient 307 with 30 minute predictions.
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A.5.2 60 Minutes

Table A.15: Patient 307 averages for each error metric with a 60 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 32.6 16.8 16.7 16.5

MAE 26.0 12.7 12.7 12.8

R2 0.54 0.84 0.84 0.83

CEGA (A%) 67% 91% 90% 90%

Figure A.10: RMSE plot of test data for patient 307 with 60 minute predictions.
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A.6 Patient 308

Table A.16 shows the feature vectors found from tuning the feature templates for

patient 308 at 30 and 60 minute prediction horizons.

Table A.16: Feature vectors for patient 308.

Feature 30 Minutes 60 Minutes

ϕMVA(x, t, 3, λ) λ = 1 λ = 0.25

ϕMVA(x, t, 6, λ) λ = 0.75 λ = 1

ϕMVA(x, t, 9, λ) λ = 0.75 λ = 1

ϕMVA(x, t, 12, λ) λ = 0.75 λ = 0.9

ϕRoC(x, t, 3, λ) λ = 0.9 λ = 1

ϕRoC(x, t, 6, λ) λ = 1 λ = 0.5

ϕRoC(x, t, 9, λ) λ = 1 λ = 0.5

ϕRoC(x, t, 12, λ) λ = 0.9 λ = 0.5

ϕBolus(x, t − i k, k) k = 30, i = {0, 1} k = 20, i = {0, 1, 2}

ϕBasal(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕBasalArea(x, t − i k, k) k = 10, i = {0, . . . , 5} k = 10, i = {0, . . . , 5}

ϕMeal(x, t − i k, k) k = 60, i = 0 k = 30, i = {0, 1}

ϕExercise(x, t − i k, k) k = 60, i = 0 k = 60, i = {0, 1}

ϕWork(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕS leep(x, t − i k, k) k = 60, i = 0 k = 60, i = 0
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A.6.1 30 Minutes

Table A.17: Patient 308 averages for each error metric with a 30 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 19.2 4.8 5.2 4.9

MAE 14.0 3.3 3.8 3.5

R2 0.76 0.99 0.99 0.99

CEGA (A%) 89% 99% 99% 99%

Figure A.11: RMSE plot of test data for patient 308 with 30 minute predictions.
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A.6.2 60 Minutes

Table A.18: Patient 308 averages for each error metric with a 60 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 3.4.3 18.4 18.2 18.2

MAE 25.1 13.3 13.3 13.2

R2 0.23 0.77 0.77 0.77

CEGA (A%) 69% 90% 90% 90%

Figure A.12: RMSE plot of test data for patient 308 with 60 minute predictions.
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A.7 Patient 309

Table A.19 shows the feature vectors found from tuning the feature templates for

patient 309 at 30 and 60 minute prediction horizons.

Table A.19: Feature vectors for patient 309.

Feature 30 Minutes 60 Minutes

ϕMVA(x, t, 3, λ) λ = 0.5 λ = 1

ϕMVA(x, t, 6, λ) λ = 0.9 λ = 1

ϕMVA(x, t, 9, λ) λ = 1 λ = 0.9

ϕMVA(x, t, 12, λ) λ = 1 λ = 0.75

ϕRoC(x, t, 3, λ) λ = 0.25 λ = 0.5

ϕRoC(x, t, 6, λ) λ = 0.25 λ = 0.25

ϕRoC(x, t, 9, λ) λ = 0.25 λ = 0.25

ϕRoC(x, t, 12, λ) λ = 0.25 λ = 0.25

ϕBolus(x, t − i k, k) k = 60, i = 0 k = 60, i = {0, . . . , 3}

ϕBasal(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕBasalArea(x, t − i k, k) k = 60, i = 0 k = 10, i = {0, . . . , 5}

ϕMeal(x, t − i k, k) k = 60, i = 0 k = 20, i = {0, 1, 2}

ϕWork(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕS leep(x, t − i k, k) k = 60, i = 0 k = 15, i = {0, . . . , 3}
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A.7.1 30 Minutes

Table A.20: Patient 309 averages for each error metric with a 30 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 22.2 4.9 5.0 4.9

MAE 17.5 3.6 3.8 3.7

R2 0.83 0.99 0.99 0.99

CEGA (A%) 87% 100% 100% 100%

Figure A.13: RMSE plot of test data for patient 309 with 30 minute predictions.
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A.7.2 60 Minutes

Table A.21: Patient 309 averages for each error metric with a 60 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 40.7 20.7 19.6 19.9

MAE 32.3 15.8 13.1 15.0

R2 0.43 0.85 0.86 0.86

CEGA (A%) 65% 89% 90% 89%

Figure A.14: RMSE plot of test data for patient 309 with 60 minute predictions.
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A.8 Patient 310

Table A.22 shows the feature vectors found from tuning the feature templates for

patient 310 at 30 and 60 minute prediction horizons.

Table A.22: Feature vectors for patient 310.

Feature 30 Minutes 60 Minutes

ϕMVA(x, t, 3, λ) λ = 0.75 λ = 0.25

ϕMVA(x, t, 6, λ) λ = 0.75 λ = 0.25

ϕMVA(x, t, 9, λ) λ = 0.75 λ = 0.25

ϕMVA(x, t, 12, λ) λ = 0.5 λ = 0.25

ϕRoC(x, t, 3, λ) λ = 1 λ = 0.9

ϕRoC(x, t, 6, λ) λ = 1 λ = 1

ϕRoC(x, t, 9, λ) λ = 0.75 λ = 0.75

ϕRoC(x, t, 12, λ) λ = 0.5 λ = 0.5

ϕBolus(x, t − i k, k) k = 60, i = 0 k = 15, i = {0, . . . , 3}

ϕBasal(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕBasalArea(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕMeal(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕExercise(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕS leep(x, t − i k, k) k = 60, i = 0 k = 60, i = {0, 1}
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A.8.1 30 Minutes

Table A.23: Patient 310 averages for each error metric with a 30 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 22.0 5.8 6.1 5.8

MAE 17.1 4.0 4.4 4.2

R2 0.78 0.98 0.98 0.98

CEGA (A%) 85% 99% 99% 99%

Figure A.15: RMSE plot of test data for patient 310 with 30 minute predictions.
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A.8.2 60 Minutes

Table A.24: Patient 310 averages for each error metric with a 60 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 40.0 23.7 23.2 22.4

MAE 31.5 17.3 17.1 16.7

R2 0.27 0.74 0.75 0.76

CEGA (A%) 58% 84% 85% 86%

Figure A.16: RMSE plot of test data for patient 310 with 60 minute predictions.
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A.9 Patient 312

Table A.25 shows the feature vectors found from tuning the feature templates for

patient 312 at 30 and 60 minute prediction horizons.

Table A.25: Feature vectors for patient 312.

Feature 30 Minutes 60 Minutes

ϕMVA(x, t, 3, λ) λ = 0.25 λ = 0.25

ϕMVA(x, t, 6, λ) λ = 0.25 λ = 0.25

ϕMVA(x, t, 9, λ) λ = 0.25 λ = 0.25

ϕMVA(x, t, 12, λ) λ = 0.25 λ = 0.25

ϕRoC(x, t, 3, λ) λ = 0.75 λ = 1

ϕRoC(x, t, 6, λ) λ = 0.9 λ = 0.5

ϕRoC(x, t, 9, λ) λ = 0.5 λ = 0.5

ϕRoC(x, t, 12, λ) λ = 0.5 λ = 0.5

ϕBolus(x, t − i k, k) k = 60, i = 0 k = 30, i = {0, 1}

ϕBasal(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕBasalArea(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕMeal(x, t − i k, k) k = 60, i = 0 k = 20, i = {0, 1, 2}

ϕWork(x, t − i k, k) k = 60, i = 0 k = 10, i = {0, . . . , 5}

ϕS leep(x, t − i k, k) k = 60, i = 0 k = 60, i = 0
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A.9.1 30 Minutes

Table A.26: Patient 312 averages for each error metric with a 30 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 15.6 3.3 3.6 3.6

MAE 12.7 2.4 2.7 2.8

R2 0.84 0.99 0.99 0.99

CEGA (A%) 92% 100% 100% 100%

Figure A.17: RMSE plot of test data for patient 312 with 30 minute predictions.
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Table A.27: Patient 312 averages for each error metric with a 60 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 29.2 13.7 12.6 12.9

MAE 23.9 10.5 9.6 9.9

R2 0.44 0.87 0.89 0.88

CEGA (A%) 69% 93% 94% 94%

A.9.2 60 Minutes

Figure A.18: RMSE plot of test data for patient 312 with 60 minute predictions.
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A.10 Patient 313

Table A.28 shows the feature vectors found from tuning the feature templates for

patient 313 at 30 and 60 minute prediction horizons.

Table A.28: Feature vectors for patient 313.

Feature 30 Minutes 60 Minutes

ϕMVA(x, t, 3, λ) λ = 0.5 λ = 1

ϕMVA(x, t, 6, λ) λ = 0.5 λ = 0.5

ϕMVA(x, t, 9, λ) λ = 0.5 λ = 0.5

ϕMVA(x, t, 12, λ) λ = 0.5 λ = 0.5

ϕRoC(x, t, 3, λ) λ = 0.9 λ = 0.5

ϕRoC(x, t, 6, λ) λ = 0.5 λ = 0.25

ϕRoC(x, t, 9, λ) λ = 1 λ = 0.25

ϕRoC(x, t, 12, λ) λ = 1 λ = 0.25

ϕBolus(x, t − i k, k) k = 10, i = {0, . . . , 5} k = 60, i = 0

ϕBasal(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕBasalArea(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕMeal(x, t − i k, k) k = 10, i = {0, . . . , 5} k = 10, i = {0, . . . , 5}

ϕExercise(x, t − i k, k) k = 60, i = 0 k = 60, i = 0

ϕS leep(x, t − i k, k) k = 60, i = 0 k = 60, i = 0
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A.10.1 30 Minutes

Table A.29: Patient 313 averages for each error metric with a 30 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 18.2 3.1 3.4 3.3

MAE 14.2 2.3 2.6 2.5

R2 0.82 0.99 0.99 0.99

CEGA (A%) 88% 99% 99% 99%

Figure A.19: RMSE plot of test data for patient 313 with 30 minute predictions.
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Table A.30: Patient 313 averages for each error metric with a 60 minute prediction horizon.

Error Metric t0 ARIMA S VR1 S VR2

RMSE 33.8 14.3 14.0 13.7

MAE 26.5 10.7 10.6 10.4

R2 0.38 0.87 0.88 0.88

CEGA (A%) 64% 94% 94% 94%

A.10.2 60 Minutes

Figure A.20: RMSE plot of test data for patient 313 with 60 minute predictions.
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