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Abstract. In many classification and data-mining applications the user
does not know a priori which distance measure is the most appropriate
for the task at hand without examining the produced results. Also, in
several cases, different distance functions can provide diverse but equally
intuitive results (according to the specific focus of each measure). In order
to address the above issues, we elaborate on the construction of a hybrid
index structure that supports query-by-example on shape and structural
distance measures, therefore lending enhanced exploratory power to the
system user. The shape distance measure that the index supports is
the ubiquitous Euclidean distance, while the structural distance mea-
sure that we utilize is based on important periodic features extracted
from a sequence. This new measure is phase-invariant and can provide
flexible sequence characterizations, loosely resembling the Dynamic Time
Warping, requiring only a fraction of the computational cost of the latter.
Exploiting the relationship between the Euclidean and periodic measure,
the new hybrid index allows for powerful query processing, enabling the
efficient answering of kNN queries on both measures in a single index
scan. We envision that our system can provide a basis for fast tracking
of correlated time-delayed events, with applications in data visualization,
financial market analysis, machine monitoring/diagnostics and gene ex-
pression data analysis.

1 Introduction

Even though many time-series distance functions have been proposed in the data-
mining community, none of them has received the almost catholic acceptance
that the Euclidean distance enjoys. The Euclidean norm can be considered as
the most rudimentary shape-matching distance measure, but it has been shown
to outperform many complex measures in a variery of clustering/classification
tasks [3], while having only a fraction of the computational and logical complexity
of the competing measures.

Lately however, time-series researchers are also starting to acknowledge cer-
tain limitations of shape matching distance measures, and therefore we are grad-
ually experiencing a shift to more structural measures of similarity. These new
structural measures can greatly enhance our ability to assess the inherent similar-
ity between time sequences and tend to be more coherent with theories governing



the human perception and cognition. Recent work quantifying structurally the
similarity between sequences, may take into consideration a variety of features,
such as change-point-detection [2], sequence burstiness [7], ARIMA or ARMA
generative models [9], and sequence compressibility [4].

In many cases though, there is no clear indication whether a shape or a
structural measure is best suited for a particular application. In the presence of
a heterogeneous dataset, specific queries might be tackled better using different
measures. The distance selection task becomes even more challenging, if we con-
sider that different distance measures can sometimes also provide diverse but
equally intuitive search results.

In an effort to mitigate the distance selection dilemma, we present an index
structure that can answer multi-metric queries based on both shape and struc-
ture, allowing the end user to contrast answer sets, explore and organize more
effectively the resulting query matches. The proposed indexing scheme seam-
lessly blends the Euclidean norm with a structural periodic measure. Periodic
distance functions were recently presented in [8] and have been shown to perform
very effectively for many classes of datasets (i.e., ECG data, machine diagnos-
tics, etc). However, in the original paper no indexing scheme had been proposed.
Recognizing that the periodic measure can easily (and cost-effectively) identify
time-shifted versions of the query sequence (therefore loosely resembling Time-
Warping), we exploit the relationship between the euclidean and the periodic
measure in the frequency domain, in order to design an index that supports
query-by-example on both metrics. By intelligently organizing the extracted se-
quence features and multiplexing the euclidean and periodic search we can return
the k-NN matches of both measures in a single index scan. Both result sets are
presented to the user, expanding the possibilities of interactive data exploration,
providing more clues as to the appropriate distance function.
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Fig. 1. 5-NN euclidean and periodic matches on an ECG dataset.

A sample output of the proposed index for a database of ECG data is shown
in Fig. 1. For the specific query, all instances returned by the periodic measure
belong to the same class of sequences and correspond to time-shifted variations of
the query sequence. The 1,2,5-Nearest-Neighbor (NN) matches of the Euclidean
metric can also be considered similar to the query, however the 3-NN and 4-NN
would be characterized as spurious matches by a human. The purpose of this
(rather simplistic) example, is to emphasize that in many cases multiple measures
are necessary, since each metric can harvest a different subset of answers.



Even though other multi-metric distances have been presented in [10, 6] (but
for different sets of distance functions), queries needed to be issued multiple times
for retrieving the results of the different measures. Therefore, the presented index
has two distinct advantages:

It supports concurrent euclidean and periodic matching, returning both sets
of Nearest-Neighbor matches in a single index scan. So it allows for both rigid
matching (euclidean distance), or more flexible periodic matching, by identifying
arbitrary time shifts of a query (periodic measure).

Performance is not compromised, but is in fact improved (compared to
the dual index approach) due to the reduced index size and the intelligent tree
traversal.

Given the above characteristics, we expect that the new index structure can
provide necessary building blocks for constructing powerful ‘all-in-one’ tools,
within the scope of applications such as decision support, analysis of causal data
relationships and data visualization.

2 Background

The periodic measure and the hybrid index that we will describe later operate in
the frequency domain, therefore we will succinctly describe important concepts
from harmonic analysis.

2.1 Frequency Analysis

A discrete-time signal x = [x0, . . . , xN−1] of length N can be thought of as a pe-
riod of a periodic signal and represented in terms of its Fourier-series coefficients
{Xk}N−1

k=0 by

xn =
1√
N

N−1
∑

k=0

Xke2πj(k/N)n, n = 0, . . . , N − 1,

where j =
√
−1 is the imaginary unit. The coefficient Xk is defined by

Xk = ρkejθk =
1√
N

N−1
∑

n=0

xne−2πj(k/N)n, k = 0, . . . , N − 1,

and corresponds to the frequency fk = k/N . Here ρk and θk are respectively the
magnitude and the phase of Xk. Parseval’s theorem states that the energy P of
the signal computed in the frequency domain is equal to the energy computed
in the Fourier domain:

P(x) = ‖x‖2 =

N−1
∑

k=0

x2
k = P(X) = ‖X‖2 =

N−1
∑

k=0

‖Xk‖2.

Many operations are substantially more efficient in the frequency domain than
in the time domain. The use of frequency-domain operations is often appeal-
ing thanks to the existence of the efficient Fast Fourier Transform, which has
computational complexity of O(N log N).



3 Distance Functions

3.1 Euclidean Distance

Let x and y be two time sequences of length N having Discrete Fourier Trans-
form X and Y, respectively. The Euclidean distance d (x,y) between x and
y (i.e., the `2 norm of x − y) is defined by d (x,y) =

√

(x − y) · (x − y) =
√

∑N
k=1 |xk − yk|2, where · denotes the inner product. Parseval’s Theorem en-

sures that d (x,y) = d (X,Y). We can decompose the Euclidean distance into
the sum of the magnitude distance and a non-negative term involving both mag-
nitudes and phases:

[d (x,y)]
2

=
N−1
∑

k=0

‖xk − yk‖2 =
N−1
∑

k=0

‖ρkejθk − τkejφk‖2

(a)
=

N−1
∑

k=0

(ρk cos (θk) − τk cos (φk))2 + (ρk sin (θk) − τk sin (φk))2

(b)
=

N−1
∑

k=0

ρ2
k + τ2

k − 2ρkτk

(

sin θk sinφk + cos θk cos φk

)

(c)
=

N−1
∑

k=0

(ρk − τk)2 + 2

N
∑

k=1

ρkτk [1 − cos (θk − φk)], (1)

where (a) is the Pythagorean theorem, (b) follows from algebraic manipulations
and elementary trigonometric identities, and (c) follows by adding and sub-
tracting 2ρkτk to (b), collecting terms, and using an elementary trigonometric
identity. Having expressed the Euclidean distance using magnitude and phase
terms, we explore its connection with a periodic measure in the following section.

3.2 Periodic measure

We present a distance measure that can quantify the structural similarity of se-
quences based on periodic features extracted from them. The periodic measure
was discussed, together with applications, in [8] and is explicated here for com-
pleteness of presentation. In this work we make the connection with euclidean
distance in the frequency domain and show how to combine both in an efficient
index.

C: MotorCurrent: broken bars 1            

D: MotorCurrent: broken bars 2            

A: MotorCurrent: healthy 1                

B: MotorCurrent: healthy 2                

Fig. 2. Dendrogram on 4 sequences using a periodic measure

The introduction of periodic measures is motivated by the inability of shape-
based measures such as the Euclidean to capture accurately the rudimentary
human notion of similarity between two signals. For example two sequences



that are identical except for a small time shift should be considered similar in a
variety of applications (Fig. 2), in spite of the potentially large euclidean distance
between them. Therefore, the periodic measure loosely resembles time-warping
measures, requiring only linear computational complexity, thus rendering it very
suitable for large data-mining tasks.

3.3 Periodic Distance (pDist)

To assess the periodic similarity of two sequences we examine the difference of
their harmonic content. We define the periodic distance between two sequences x
and y, with Fourier transforms X and Y, respectively as the euclidean distance
between their magnitude vectors:

[pDist(X,Y)]
2

=

N
∑

k=1

(ρk − τk)2.

Notice that the omission of the phase information renders the new similarity
measure shift-invariant in the time domain, allowing for global time-shifting in
O(n) time (another alternative would be the use of using Time-Warping with
O(n2) complexity).

In order to meaningfully compare the spectral power distribution of two
sequences in the database, we normalize them to contain the same amount of
energy by studentizing them (thus producing zero-mean, unit-energy sequences):

x̂(n) =
x(n)− 1

N

N�
i=1

x(i)�
N�

i=1

(x(n)− 1

N

N�
i=1

x(i))2

, n = 1, . . . , N

For the rest of the paper we will assume that all database sequences are stu-
dentized (whether we are considering euclidean or periodic distance). We also
remark a property of the periodic distance that will be useful to provide more
effective traversal of our indexing structure.

Lemma 1 The periodic distance is a lower bound to the Euclidean distance:
pDist(X,Y) ≤ d(X,Y).

This lemma is proved by noting that the first sum on the RHS Equation 1 is the
periodic distance, and that the second sum is non-negative.

4 Lower Bounding & Coefficient Selection

In order to efficiently incorporate a distance measure with an indexing structure,
one needs to: (i) compress a sequence (dimensionality reduction) (ii) provide a
lower bounding function of the original distance using the compressed object.
We will show how both of these can be achieved in an effective way.

After a sequence is transformed in the frequency domain, it can be com-
pressed by recording only a small subset of its coefficients. Therefore, {Xk}k=N−1

k=0

; {Xk}k∈S , S ⊂ {0, . . . , N − 1}, |S| << N . It is straightforward to show
that the euclidean or periodic distance on the compressed vectors will lower
bound the original distances, because they are a sum of positive numbers:



d(Xk,Yk)k∈S ≤ d(X,Y)

pDist(Xk,Yk)k∈S =
∑

k∈S

(ρk − τk)2 ≤ pDist(X,Y)

The majority of data-mining work has adapted the selection of the first k
coefficients for sequence compression [5], which can provide effective approxima-
tion of signals with low frequency content (e.g., stock price movement). Recent
work also suggested picking the k coefficients for each sequence that preserve
most of its energy [7]. High energy coefficients can provide effective sequence
reconstruction, but are not necessarily suitable for data retrieval purposes (i.e.
incur the least number of accesses to the original data). Consider a dataset where
the k coefficients with the highest energy are the same for all sequences, and the
sequences only differ in the low energy coefficients (i.e. there are some small but
distinct nuances between each sequence). In this case, one needs to select the
coefficients that will discriminate better the sequences. Generally speaking, we
can capture more effectively the data differences by recording those coefficients
that account for most of the data variation. With this observation in mind, we
will record the k coefficients that depict that largest variance:

arg max
k

var(X
(j)
k )j=1...m

where Xj
k denotes the kth coefficient of sequence j. We compare the perfor-

mance of various coefficient selection schemes with a comprehensive experiment
on 40 datasets (each containing 1000 sequences of length 1024), obtained from
the UCR time-series archive 3. We perform a 1-NN leave-one-out search and
estimate the pruning power of each method as given by the ratio: (examined
objects)/(total objects). The methods for coefficient selection that we consider
are: (i) first k coefficients, (ii) coefficients with maximum energy (iii) coefficients
with maximum variance.

The results attest to the superiority of the ‘max-variance’ method for Nearest-
Neighbor retrieval, depicting an improvement in 21 out of the 40 datasets. The
average improvement over the next best method is 17.17% (with a maximum of
> 80% in the darwin dataset). Eight datasets do not exhibit any change at all,
which is observed because the set of coefficients selected by the 3 methods were
the same. Finally, 11 datasets depict a deterioration in the k-NN performance
which however is almost negligible (never exceeding -0.5%), with the average
negative improvement being -0.13%. For the remainder of the paper, we will
assume that the coefficients selected from each time-series are the ones exhibiting
the largest variance.

5 Index for Euclidean and Periodic distance

Instead of constructing a different index structure for each measure, we can
exploit the common representation of the euclidean and periodic measure in
the magnitude/phase space, as well as their lower bounding relationship, for
designing a metric index structure that can simultaneously answer queries on

3 http://www.cs.ucr.edu/∼eamonn/TSDMA/
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Fig. 3. Comparison of coefficient selection (smaller numbers are better). Improvement
of max-variance method vs second best is reported next to each performance bar.

both measures. Our index structure borrows ideas from the family of metric in-
dex structures [1], recursively partitioning the search space into disjoint regions,
based on the relative distance between objects. Our indexing approach has three
important differences from generic metric trees: (i) only compressed sequences
are stored within the index nodes, reducing the index space requirements, (ii)
the index uses a different distance measure for data partitioning on each alter-
nating level of the tree, (iii) a novel tree traversal is presented, that can answer
euclidean and periodic queries in a single index scan.

5.1 MM-Tree Structure

We introduce a hybrid metric structure, the MM-Tree (Multi-Metric Tree). Sim-
ilar to VP-trees, each node of the index contains a reference point (or vantage
point), which is used to partition the points associated with this node into two
distinct and equal sized clusters. Vantage points are chosen to be the sequences
with the highest variance of distances to the remaining objects. The distances
of the node objects to the reference point (sequence) are calculated, distances
are sorted and the median distance µ is identified. Subsequently, any sequence
associated with the examined node, is assigned to a left or a right subtree, de-
pending on whether its distance from the vantage point is smaller or larger than
the median distance. The index tree is constructed by recursively performing
this operation for all subtrees.

The unique structure of the MM-Tree derives from the fact that it uses
a different distance function to partition objects at each alternating tree level.
Even depth levels (root is zero) are partitioned using the periodic distance, while
odd levels utilize the euclidean (Fig. 4). We follow this construction for providing
a good partitioning on both distance measures, since usage of a single distance
function during the tree construction would have impacted the search on the
other domain (potentially leading to search on both left and right subtrees).

Unlike other metric indexing structures, intermediate tree nodes contain the
compressed representation of a vantage point (in addition to the median distance
µ). For example, in the tree of Figure 4 the vantage points of nodes at even
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Fig. 4. MM-tree structure and space partitioning. Dotted circles/arcs indicate median
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depth are represented by the magnitudes of the preserved coefficients (and are
called “P-nodes”), while those of nodes at odd depth are represented by both
magnitude and phase (and are called “E-nodes”). Finally, leaf nodes contain
both magnitude and phase information of the compressed data sequences.

5.2 Multiplexing Search for Periodic and Euclidean Distances

We now describe how the MM-Tree can efficiently multiplex searches in the
euclidean and periodic spaces and simultaneously return the nearest-neighbors
in both domains. The key idea of the search algorithm is to identify, in a single
index traversal, the union of the necessary index nodes for both queries. In figure
5 we provide a pseudocode of the multiplexed search.

The combined search employs two sorted lists, BESTp and BESTe, that
maintain the current k closest points using periodic and euclidean distances,
respectively. The algorithm also records a state, depicting whether a visited
node is marked for search in the euclidean, or in the periodic domain, or both.
The root node is marked for search in both domains.
Searching a P-node node. If the node is marked for search only in the euclid-
ean domain, both subtrees are searched in the euclidean domain only. Otherwise,
the algorithm computes the lower bound LBp(q, v) of the periodic distance be-
tween the vantage point of the node and the query sequence. Let rp be the
periodic distance to the farthest entry in BESTp to the query. Noting that:

median < LBp(q, v) − rp ⇒ median < pDist(q, v) − rp,
where pDist(q, v) is the periodic distance of the corresponding uncompressed
sequences, we conclude that the algorithm should search the left subtree only in
the euclidean domain (but not in the periodic) if median < LBp(q, v) − rp.
Searching an E-node node. If the node is marked for search in both domains,
all subtrees are searched using both measures. Otherwise, the algorithm com-
putes the lower bound LBe(q, v) of the euclidean distance between the vantage



/* perform 1-NN search for query sequence Q */
1NNSearch(Q) {

// farthest results are in Best_P[0] and Best_E[0]
Best_P = new Sorted_List(); // Modified by searchLeaf_Periodic
Best_E = new Sorted_List(); // Modified by searchLeaf_Euclidean
search_Node(Q, ROOT, TRUE);

}

search_Node(Q, NODE, searchPeriodic) {
if (NODE.isLeaf) {

search_Leaf(Q, NODE, searchPeriodic);
} else {

search_Inner_Node(Q, NODE, searchPeriodic);
}

}

search_Inner_Node(Q, NODE, searchPeriodic) {
add_Point_To_Queue(PQ, vantagePoint, searchPeriodic);
if (NODE.E_NODE) { /* E-Node */

if (searchPeriodic) {
search_Inner_Node(Q, NODE.LEFT, searchPeriodic);

} else { /* only search in euclidean space */
if (LowerBoundEuclidean(Q, vantagePoint) - Best_E[0] < median)

search_Inner_Node(Q, NODE.LEFT, searchPeriodic);
}

} else { /* P-Node */
if (searchPeriodic) {

if (LowerBoundPeriodic(Q, vantagePoint) - Best_P[0] < median)
search_Inner_Node(Q, NODE.LEFT, searchPeriodic);

else
search_Inner_Node(Q, NODE.LEFT, FALSE);

} else { /* only search in euclidean space */
search_Inner_Node(Q, NODE.LEFT, searchPeriodic);

}
}
search_Inner_Node(Q, NODE.RIGHT, searchPeriodic);

}

search_Leaf(Q, NODE, searchPeriodic) {
if (searchPeriodic) search_Leaf_Periodic(Q, NODE); // update Best_P
search_Leaf_Euclidean(Q, NODE); // update Best_E

}

Fig. 5. Multiplexing euclidean and periodic search on the MM-Tree

point of the node and the query sequence. Let re be the euclidean distance of
the farthest entry in BESTe to the query. Then, if LBe(q, v)− re > median the
left subspace is discarded. It is also important to note that, for both types of
nodes, since the vantage point is in compressed form and we use lower bounds
to distances, we do not have sufficient information to discard the right subtree,
unless we load the uncompressed representation of the vantage point.

A global priority queue PQ, whose priority is defined by the lower bounds of
the periodic distances, is employed, in order to efficiently identify the query re-
sults. In particular, whenever the compressed representation of a data sequence
v is accessed, the lower bound of the periodic distance LBp(q, v) between v
and the query sequence is computed and the pair (LBp(q, s), s) is pushed into
PQ. When a sequence s is popped from the PQ, the associated lower bound of
the periodic distance LBp(q, v) is compared against the current BESTp[0] and
BESTe[0] values. If LBp(q, v) is larger than both of those values, the sequence is
discarded. However, if it is smaller than BESTe[0], the lower bound of the euclid-
ean distance LBe(q, v) is computed and if it is larger than the BESTe[0] value,



the sequence can still be safely discarded. In all other cases, the uncompressed
sequence is loaded from disk and the actual periodic and euclidean distances are
computed to determine whether it belongs to any of the BESTp or BESTe lists.

6 Experiments

We demonstrate the performance and meaningfulness of results of the MM-tree
for answering simultaneously queries on both euclidean and periodic distance
measures. The experiments reveal that the new index offers better response
time and reduced storage requirements compared to the alternative approach of
using two dedicated indices, one for each distance measure.

EEG−heartrate ERP−data Realitycheck attas

cstr darwin earthquake evaporator

Fig. 6. Sample from the Mixed-Bag dataset

For our experiments we used the same mixture of 40 datasets that was uti-
lized in the coefficient selection section, a sample of which is depicted in figure
6 (MIXEDBAG dataset). We used this dataset to create larger datasets with
increasing data cardinalities of 4000, 8000, 16000 and 32000 sequences, in order
to quantify the index storage requirements and its scalability. All used datasets
can be obtained by emailing the first author.

6.1 Matching Results

We depict the meaningfulness of results returned by the MM-tree index, when
searching in both euclidean and periodic spaces. Using the MIXEDBAG dataset
we retrieve the 5-NN of various queries and the results are plotted in Figure 7. It
is immediately apparent that the periodic measure always returns sequences with
great structural affinity (i.e., belong to the same dataset). The euclidean measure
returns meaningful results only when the database contains sequences that are
very similar to the query (queries 1 & 3). In such cases, the periodic measure
can meaningfully augment the result set of the purely euclidean matches, by
retrieving time-shifted variations of the query. In the cases where there are no
direct matches to the query (queries 2 & 4), the euclidean measure simply returns
spurious matches, while the periodic measure can easily discover instances of the
query that belong in the same class of sequence shapes.

6.2 Index Size

The MM-tree presents also the additional advantage of having reduced space
requirements, compared to the alternative of maintaining 2 separate indices.
Construction of two index structures (one on magnitude and the other on mag-
nitude and phase) results in higher space occupancy, because the magnitude
component of each preserved coefficient is stored twice. This is better illustrated
in Figure 8, where we plot the total size occupied by the proposed MM-tree, as
well as the total disk size occupied by two dedicated metric trees. As expected
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Fig. 7. 5-NN euclidean & periodic matches using the MM-tree (MIXEDBAG dataset)

MM-tree only requires 2/3 of the space of the dual index approach. Moreover, as
shown in the next section, the information compaction that takes place during
the MM-tree construction, can lead to a significant performance boost of this
new hybrid index structure.
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Fig. 8. Index size of MM-tree vs two index structures (euclidean & periodic)

6.3 Index Performance

Finally, we evaluate the performance of the multi-query index traversal on the
MM-tree, which returns euclidean and periodic matches in a single scan. In Fig-
ure 9 we illustrate the performance gain that is realized by this novel tree tra-
versal, for various coefficient cardinalities and kNN index searches, as captured
by metrics such as the pruning power (examined sequences/total sequences) and
the running time. The results compare the MM-tree with the dual index ap-
proach (i.e. total cost of executing one euclidean and one periodic query, each
on a dedicated metric VP-tree index). Performance comparisons are conducted
with VP-trees, since they have been shown to have superior performance than
other metric structures, as well as R-trees [1]. The index performance charts are
reported as a fraction of the cost incurred by the sequential scan of the data for
the same operation. For sequential scan, the data are traversed just once while
maintaining 2 priority queues, each one holding the kNN neighbors of the spe-
cific distance function. From the graph it is apparent that the performance of the
MM-tree supersedes the dual index execution. The greatest performance margin
is observed when retaining the largest number of coefficients per sequence, where
the speedup of the MM-tree can be 20 faster than the sequential scan, while the
individual metric trees are 16.5 times faster.



This final experiment displays the full potential of the proposed hybrid struc-
ture. The MM-tree due to its unique structure outperforms the dedicated metric
tree structures when answering both distance queries at the same time, because
it can collect the results of both distance measures in a single tree traversal.
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Fig. 9. Performance charts: MM-tree vs 2 VP-trees. Improvement over sequential scan
is reported on top of each bar. (Left) Pruning power, (Right) Running time.

7 Conclusion

We have presented a hybrid index structure that can efficiently multiplex queries
on euclidean and periodic spaces. The new index allocates disk space more ju-
diciously compared to two dedicated index structures, and its unique structure
allows for more effective tree traversal, returning k-NN matches on two distance
measures in the single index scan. We hope that our system can provide the
necessary building blocks for constructing powerful ‘all-in-one’ tools, within the
scope of applications such as decision support, analysis of causal data relation-
ships and data visualization.
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