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Abstract. Streaming environments typically dictate incomplete or ap-
proximate algorithm execution, in order to cope with sudden surges in
the data rate. Such limitations are even more accentuated in mobile en-
vironments (such as sensor networks) where computational and memory
resources are typically limited. This paper introduces the first “resource
adaptive” algorithm for periodicity estimation on a continuous stream
of data. Our formulation is based on the derivation of a closed-form
incremental computation of the spectrum, augmented by an intelligent
load-shedding scheme that can adapt to available CPU resources. Our
experiments indicate that the proposed technique can be a viable and
resource efficient solution for real-time spectrum estimation.

1 Introduction

Spectrum estimation, that is, analysis of the frequency content of a signal, is a
core operation in numerous applications, such as data compression, medical data
analysis (ECG data) [2], pitch detection of musical content [4], etc. Widely used
estimators of the frequency content are the periodogram and the autocorrelation
[5] of a sequence. For statically stored sequences, both methods have an O(nlogn)
complexity using the Fast Fourier Transform (FFT). For dynamically updated
sequences (streaming case), the same estimators can be computed incrementally,
by continuous update of the summation in the FFT computation, through the
use of Momentary Fourier Transform [12, 9, 15].

However, in a high-rate, data streaming environment with multiple processes
‘competing’ over computational resources, there is no guarantee that each run-
ning process will be allotted sufficient processing time to fully complete its op-
eration. Instead of blocking or abandoning the execution of processing threads
that cannot fully complete, a desirable compromise would be for the system to
make provisions for adaptive process computation. Under this processing model
every analytic unit (e.g., in this case the ‘periodogram estimation unit’) can
provide partial (‘coarser’) results under tight processing constraints.

Under the aforementioned processing model and given limited processing
time, we are not seeking for results that are accurate or perfect, but only ‘good-
enough’. Since a typical streaming application will require fast, ‘on-the-fly’ deci-
sions, we present an intelligent sampling procedure that can decide whether to



retain or discard an examined sample. Our technique is based on a lightweight
linear predictor, which records a sample only if its value cannot be predicted by
previously seen sequence values.

Due to the sampling process, the retained data samples (a subset of the
examined data window) are not guaranteed to be equi-spaced. Hence, we also
elaborate on a closed-form periodogram estimation given unevenly spaced sam-
ples. We should note that the proposed method for periodogram reconstruction
based on irregularly spaced samples is significantly more lightweight than the
widely used Lomb periodogram [13] (which incurs a very high computational
burden).

Other recent work on periodicity estimation on data streams has appeared
in [6], where the authors study sampling techniques for period estimation us-
ing sublinear space. [8] proposes sampling methods for retaining (with a given
approximation error) the most significant Fourier coefficients. In [11] Papadim-
itriou, et al., adapt the use of wavelet coefficients for modeling a data stream,
providing also a periodicity estimator using logarithmic space complexity. How-
ever, none of the above approaches address the issue of resource adaptation
which is one of the main contributions of our work.

In the sections that follow we will illustrate the main concepts behind the
adaptive computation of the spectrum. In section 3 we describe our intelligent
‘on-the-fly’ sampling, and in section 4 we elaborate on the closed-form incre-
mental computation of the periodogram from unevenly spaced data samples.
Finally, section 5 provides extensive experiments that depict the accuracy and
effectiveness of the proposed scheme, under given complexity constraints.

2 Overview of our approach

Considering a data streaming scenario, our goal is to provide efficient mecha-
nisms for estimating and updating the spectrum1 within the current data win-
dow. We use the periodogram as an estimate of the spectrum. A schematic of
our resource-adaptive methodology is provided in Fig. 1.

At any given time, there might not be enough processing capacity to provide
a periodogram update using all the samples within the data window. The first
step toward tackling this problem is the reduction of points using an ‘on-the-fly’
load-shedding scheme. Sub-sampling can lead to data aliasing and deteriorate
the quality of the estimated periodogram. Therefore our sampling should not
only be fast but also intelligent, mitigating the impact of the sub-sampling on
the squared error of the estimated periodogram. Sampling is based on a linear
predictor, which retains a sample only if its value cannot be predicted by its
neighbors. An estimator unit is also employed, which changes over time the
‘elasticity’ of the linear predictor, for proper adaptation to the current CPU
load.

1 Note that during the course of the paper, we may use the terms periodicity estima-
tion, spectrum estimation and periodogram estimation interchangeably
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Fig. 1. Visual depiction of our methodology

If there is enough CPU time to process the final number of retained samples,
the spectrum is computed. Otherwise, more samples are dropped randomly and
the new estimate is computed on the remaining samples.

The computation of the approximate periodogram is based on a formulation
of the DFT and the periodogram using unevenly spaced samples, a necessary
step due to the sampling process. Under a sliding window model, some of the pre-
viously used samples are discarded, while new samples are added in the window.
The proposed periodicity estimation algorithm possesses a very simple update
structure, requiring only subtraction of contributions from discarded samples
and addition of contributions due to the newly included samples.

The contributions of this paper are summarized below:

– We provide an abstraction of the resource adaptation problem for periodicity
estimation.

– We propose an intelligent load-shedding scheme along with a parameter es-

timator unit that tunes the adaptation to the current CPU load.
– We present a closed-form Fourier approximation using unevenly spaced sam-

ples and we show how to update it incrementally.

We analyze the performance of our proposed approach under CPU constraints,
and we measure the complexity abstractly, in terms of the number of multiplica-
tions, additions and divisions involved (making the analysis independent of the
underlying processor architecture). Even though our model is very spartan in its
memory utilization, we do not explicitly impose any memory constraints, since
this work focuses primarily on CPU adaptation. However, inclusion of potential
memory constraints is a straightforward addition to our model.

2.1 Notation

The Discrete Fourier Transform is used to analyse the frequency content in a
discrete and evenly sampled signal. In particular for a discrete time signal x[n]
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the DFT X [m] is defined for all samples 0 ≤ m, n ≤ N − 1 as:

X [m] =
1√
N

N−1∑

n=0

x[n]e−j 2πnm
N (1)

The periodogram P of a signal corresponds to the energy of its DFT:

P [m] = ||X [m]||2 (2)

Consider now, a continuous signal x(t) sampled unevenly at discrete time
instants {t0, t1, . . . , tN−1}. We show an example of this in Fig. 2.
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Fig. 2. Unevenly sampled signal.

We write this unevenly sampled signal using the discrete notation as x[kn]
where ti = kiT (kiεZ

+) and T corresponds to the sampling interval with all
sampling instants as multiples. This is also shown in Fig. 2. In the remainder
of this paper we will describe an adaptive load-shedding algorithm that retains
unevenly spaced samples and we will also provide an incremental DFT estimation
for such discrete signals.

We measure the complexity of all our algorithms in terms of the number of
additions (subtractions), multiplications and divisions involved in the compu-
tations. Thus, we label the complexity of a single multiplication as ξMul, of a
division as ξDiv and of a sum/subtraction as ξSub.

3 Load-Shedding Scheme

We consider the typical problem of running spectral analysis where we slide a
window across the temporal signal and incrementally update the signal’s DFT
(and the respective periodogram). We start with an evenly sampled signal, with
sampling interval T . Consider that the window slides by a fixed amount Width×
T . As a result of this sliding we discard n1 points from the beginning of the signal
and add n2 points to the end. However, if the available CPU cycles do not allow
us to update the DFT using all the points, we can adaptively prune the set
of added points using uneven sub-sampling to meet the CPU constraint while
minimizing the impact on the accuracy of the updated DFT.
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3.1 Intelligent sampling via a linear predictor

We now present an algorithm (with linear complexity) for the adaptive pruning
of the newly added samples. In order to decide whether we can retain a particular
sample, we determine whether it can be linearly2 predicted from its neighbors.
In particular, to make a decision for sample ki we compare the interpolated value
xint[ki] with the actual value x[ki], where the interpolated value is computed as:

xint[ki] =
x[ki−1](ki+1 − ki) + x[ki+1](ki − ki−1)

ki+1 − ki−1
(3)

where sample ki−1 is the last retained sample before sample ki and sample

ki+1 is the immediately following sample. If |xint[ki] − x[ki]| ≤ Thresh×|x[ki]|
100

we can discard the sample ki, otherwise we retain it. The parameter Thresh is
an adaptive threshold that determines the quality of the approximation. If the
threshold is large, more samples are discarded, and similarly if the threshold is
small fewer samples are discarded3. We show an example of this interpolation
scheme in Fig. 3.
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Fig. 3. Linear interpolation scheme for adaptive pruning of samples.

In Fig. 3, we show two steps of the algorithm. In the first step, we decide
that we can discard sample k1 as it can be interpolated by samples k0 and k2.
In the next step, we decide that we cannot discard sample k2, as it cannot be
interpolated using samples k0 and k3, its neighbors. If we start out with n2

samples that we need to prune, the complexity of this algorithm is:

ξinterp = (2ξMul + 4ξSub + ξDiv)(n2 − 2) (4)

In Section 3.2 we discuss how to tune the threshold Thresh in order to obtain
the desired number of n̂2 samples, out of the n2 samples added by the sliding
window.
2 Higher order predictors are also possible, but result in higher complexity
3 Note that the squared approximation error due to this sub-sampling scheme cannot

be bounded in general for all signals, however we select it for its computational sim-
plicity. In particular, for the wide variety of signals we consider in our experiments,
we do not observe squared error significantly larger than the absolute squared thresh-
old value. Modification of this scheme to guarantee bounds on the approximation
error is a direction for future research.
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Fig. 4. Comparison of spectrum estimation errors for intelligent sampling and equi-
sampling techniques.

In Fig. 4 we illustrate on a stream that measures web usage, a comparison
of our intelligent sampling method against the equi-sampling technique, which
samples data at a specified time interval. We execute our algorithm for a specific
threshold and reduce the data points within a window from M down to N
(unevenly spaced). We estimate the resulting periodogram (see section 4) as well
the periodogram derived by equi-sampling every N/M points. It is apparent from
the figure that intelligent sampling provides a much higher quality reconstruction
of the periodogram, because it can retain important features of the data stream.
Additional examples on more datasets are provided in Fig. 5.

3.2 Threshold Estimator

The load-shedding algorithm assumes the input of a threshold value, which di-
rectly affects the resulting number of retained points within the examined win-
dow. The desirable number of final points after the thresholding is dictated by
the available CPU load. An optimal threshold value would lead to sampling ex-
actly as many points as could be processed by the currently available CPU time.
However, there is no way of predicting accurately the correct threshold without
having seen the complete data, or without resorting to an expensive processing
phase. In Figures 6 and 7 we provide various examples of the spectrum approx-
imation for different parameters of the load-shedding threshold value.

We will provide a simple estimator of the threshold value with constant
complexity, which is derived by training on previously seen portions of the data
stream. The expectation is that the training will be performed on a data subset
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Fig. 5. Estimation comparisons for additional datasets

that captures a sufficient variation of the stream characteristics. The estimator
will accept as input the desired number of final samples that should remain
within the examined window, along with a small subset of the current data
characteristics, which -in a way- describe its ‘shape’ or ‘state’ (e.g. a subset of
the data moments, its fractal dimensionality, etc.). The output of the estimator is
a threshold value that will lead (with high expectation) to the desirable number
of window samples.

The estimator is not expected to have zero error, but it should lead approx-

imately to the desired compression ratio. In the majority of cases the selected
threshold will lead either to higher or lower compression ratio. Intuitively, higher
compression (or overestimated threshold) is preferable. This is the case, because
then one does not have to resort to the additional phase of dropping randomly
some of the retained samples (a sampling that is ‘blind’ and might discard cru-
cial points, such as important local minima or maxima). In the experiments, we
empirically verify that this desirable feature is true for the threshold estimator
that is presented in the following section.

3.3 Training phase

Assume that F is a set of features that capture certain desirable characteristics
of the examined data window w, and P ∈ {0, 1, . . . , |w|} describes how many
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Fig. 6. [Weblog Data]: Spectrum approximation for different threshold values
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Chaotic, Thresh = 60, compression = 63.5742%
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Fig. 7. [Chaotic Data]: Spectrum approximation for different threshold values
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points can be processed at any given time. The threshold estimator will provide
a mapping F × P 7→ T , where T is a set of threshold values.

It is not difficult to imagine, that data whose values change only slightly
(or depict small variance of values) do not require a large threshold value. The
reverse situation exists for sequences that are ‘busy’, or exhibit large variance
of values. With this observation in mind, we will use the variance within the
examined window as a descriptor of the window state. Higher order moments of
the data could also be used in conjunction with the variance for improving the
accuracy of the predictor. However, for simplicity and for keeping the computa-
tional cost as low as possible, we select to use just the variance in our current
prototype implementation.

The training phase proceeds as follows; given the training data we run a
sliding window on them. For each data window we compute the variance and
we execute the load-shedding algorithm for different threshold values (typically,
20, 40, . . . , 100, 120). After the algorithm execution the remaining number of data
points is recorded. This process is repeated for all the extracted data windows.
The result of this algorithm will be a set of triplets: [threshold, variance,

number of points]. Given this, we can construct the estimator as a mapping
f(numPoints, variance) 7→ Thresh, where the actual estimator is essentially
stored as a 2-dimensional array for constant retrieval time. An example of this
mapping is shown in Fig. 8.

It is clear that the training phase is not performed in real-time. However it
happens only once (or periodically) and it allows for a very fast prediction step.
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Fig. 8. Training phase for the threshold estimator

3.4 Additional notes

There are a couple of points that we would like to bring to the attention of the
reader:

1. Even though we assume that the training data will provide ‘sufficient’ clues
on the data stream characteristics, the estimator might come upon an input
of [variance, numPoints] that has not encountered during the training
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phase. In this case, we can simply provide the closest match, e.g. the entry
that has the closest distance (in the Euclidean sense) to the given variance
and number of points. Alternatively, we could provide an extrapolation of
the values, in other words, explicitly learn the mapping function. This can be
achieved by constructing an RBF network [1] based on the training triplets.
Since this approach is significantly more expensive and could present over-
fitting problems, in our experiments we follow the former alternative.

2. Over the period of time, the stream characteristics may gradually change,
and finally differ completely from the training data, hence leading to inconsis-
tent predictions. We can compensate for this by ‘readjusting’ the predictor,
by also recording the observed threshold error during the algorithm execu-
tion. This will result in a more extended maintenance phase of the estimator,
but this cost is bound to pay off in the long run for datasets that exhibit
frequent ‘concept drifts’ [10, 7]. We do not elaborate more on this exten-
sion, but we note it as potential addition for a more complex version of the
threshold estimator.

4 Incremental Spectrum Estimation for Unevenly

Sampled Signals

Consider a signal x[ki], 0 ≤ i ≤ N − 1, as shown in Fig. 2. Since the DFT is
defined only for evenly sampled signals, we implicitly recreate an evenly sampled
signal before computing the DFT. For this, we again use a linear interpolator
(that matches our sub-sampling algorithm), thereby reconstructing a piece-wise
linear evenly sampled signal. The DFT of this evenly sampled signal may be
computed in terms of the sum of contributions of each of the individual line
segments that constitute it. Due to the nature of the linear interpolator the
contribution of each line segment to the DFT may be analytically derived in
terms of only the endpoints of the segment (i.e. samples in the original unevenly
sampled signal) and the distance between them. This means that we do not
actually need to interpolate the unevenly sampled signal but can derive a closed
form expression for the DFT under the assumption of a linear interpolation
scheme. Similar approaches to ours have also been followed in [2]. Note that
while the time domain signal consists of only N (uneven) samples, in order to
compute the Discrete Fourier Transform (DFT) of this signal, we need to sample
the DFT at least M = kN−1 − k0 times to avoid time domain aliasing. If we
denote by Xn[m] the contributions to the Fourier Transform from each of the
N −1 line segments that make up the implicitly recreated evenly sampled signal,
then the DFT of the whole signal can be written as:

X [m] =

N−1∑

n=1

Xn[m] (5)

11



where for m = 1, . . . , M − 1

Xn[m] =
1

(kn − kn−1)(
2πm
M

)2
[(x[kn−1] − x[kn])(e−j

2πmkn−1

M − e−j
2πmkn

M )

+ j
2πm

M
(x[kn]e−j

2πmkn
M − x[kn−1]e

−j
2πmkn−1

M )]

(6)

and for m = 0

Xn[0] =
1

2
(x[kn−1] + x[kn])(kn − kn−1) (7)

A significant benefit that equation (5) brings is that the DFT for such un-
evenly sampled signals can be evaluated incrementally. Hence, if we shift the
window by a fixed width such that the first n1 points are discarded, and n2

points are added at the end, then the DFT of the signal may be updated as
follows:

Xnew[m] = Xold[m] −
n1∑

n=1

Xn[m] +

N+n2−1∑

n=N

Xn[m] (8)

We now consider the complexity of computing this update. As with several
papers that analyze the complexity of the FFT, we assume that the complex

exponentials e
j2πmkn

M (and the intermediate value 2πmkn

M
) are considered pre-

computed for all m and n. Using our labels for complexity as defined in the
notation, the complexity of computing one single update coefficient Xn[m] for
m = 1, . . . , M − 1 may be represented as:

ξ̂ = 6ξMul + 5ξSub + ξDiv (9)

and for m = 0 as
ξ̂ = 2ξMul + 2ξSub (10)

Finally, the complexity of updating all the M DFT coefficients in this scenario
is:

ξupdate(M, n1, n2) = (n1 + n2)[(M − 1)(6ξMul + 5ξSub + ξDiv)

+ (2ξMul + 2ξSub) + MξSub] + 2MξSub

(11)

4.1 Benefit of Sub-sampling Algorithm

Using our sub-sampling algorithm we can reduce the number of samples that
need to be used to update the DFT. Consider that as a result of the pruning, we
can reduce n2 samples into a set of n̂2 samples (n̂2 ≤ n2). While the reduction in
the number of samples directly translates to a reduction in the complexity of the
update, we also need to factor in the additional cost of the sub-sampling algo-
rithm. Comparing equations (11) and (4) we realize that the overall complexity
of the update (including the sub-sampling) is reduced when:

ξupdate(M, n1, n2) ≥ ξupdate(M, n1, n̂2) + ξinterp (12)
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To determine when this happens, consider a simple case when n̂2 = n2 − 1, i.e.
the sub-sampling leads to a reduction of one sample. The increase in complexity
for the sub-sampling is (2ξMul + 4ξSub + ξDiv)(n2 − 2) while the corresponding
decrease in the update complexity is (M − 1)(6ξMul + 5ξSub + ξDiv) + (2ξMul +
2ξSub) + MξSub (from equation (11)). Clearly, since n̂2 < n2 ≤ M , one can
easily realize that the reduction in complexity far outweighs the increase due to
the sub-sampling algorithm. In general, equation (12) is always true when the
sub-sampling algorithm reduces the number of samples (i.e., when n̂2 < n2).

If, at a certain time, the CPU is busy, thereby imposing a computation con-
straint of ξlimit, we need to perform our DFT update within this constraint. If
ξupdate(M, n1, n2) > ξlimit we cannot use all the samples n2 for the update, and
hence we need to determine the optimal number of samples to retain n̂2, such
that ξupdate(M, n1, n̂2) + ξinterp ≤ ξlimit. Specifically, we may compute this as:

n̂2 ≤ ξlimit − ξinterp − 2MξSub

(M − 1)(6ξMul + 5ξSub + ξDiv) + (2ξMul + 2ξSub) + MξSub

− n1 (13)

Finally, we can achieve this by tuning the sub-sampling threshold Thresh based
on the algorithm described in Section 3.2.

5 Experiments

The usefulness of the proposed resource-adaptive periodicity estimation depends
on two factors:

– The accuracy of the approach, which is indicated by the quality of the DFT
approximation and its respective periodogram. If the periodogram after the
load-shedding closely resembles the original one, then the provided estimate
is meaningful.

– The adaptiveness of the proposed methodology, which is highly dependent
on the quality of the threshold estimator. An accurate estimator will lead to
sampling rates that closely adapt to the current CPU loads.

We examine separately those two factors in order to provide a more thorough
and clear evaluation.

5.1 Quality of DFT estimation

The quality of the approximated Fourier coefficients is measured on a variety
of periodic datasets obtained from the time-series archive at UC Riverside [14].
These datasets only have a length of 1024, therefore it is difficult to provide a
meaningful evaluation on the streaming version of the algorithm. However, by
providing the whole sequence as input to the periodicity estimation unit we can
evaluate the effectiveness of the load-shedding scheme in conjunction with the
closed-form DFT computation on the unevenly spaced samples. We compute
the accuracy by comparing the estimated periodogram against the actual one
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(had we not discarded any point from the examined data window). We run
the above experiment on different threshold values Thresh = 20 . . . 120. For
example, a value of Thresh = 20 signifies that the predicted value (using the
linear predictor) does not differ more than 20% from the actual sequence value.

Note that the original periodogram is evaluated on a window of M points
(M = 1024), while the one based on uneven sampling uses only the N remaining
samples (N ≤ M). In order to provide a meaningful comparison between them
we evaluate the latter periodogram on all M/2 frequencies -see equation 6-, even
though this is not necessary on an actual deployment of the algorithm.

We compare the accuracy of our methodology against a naive approach that
uses equi-sampling every N/M points (i.e., leading again to N remaining points
within the examined window). This approach is bound to introduce aliasing
and distort more the original periodogram, because (unlike the intelligent load-
shedding) it does not adapt according to the signal characteristics.

Figures 9, 10 indicate the periodogram error introduced by the intelligent and
the equi-sampling techniques. On top of each bar we also portray the compression
achieved using the specific threshold Thresh, computed as 100 ∗ (1 − N/1024).

The results suggest that the load-shedding scheme employed by our technique
can lead to spectrum estimates of much higher quality than competing methods.
In two cases (Fig. 9, Reality Check) the equi-sampling performs better than
the linear interpolator, but this occurs only for minute compression ratios (i.e.,
when the threshold discards less than 10 samples per 1024 points). In general
the observed reduction in the estimation error compared to equi-sampling, can
range from 10% to more than 90% on the 14 datasets examined in this paper.

5.2 Threshold Estimator Accuracy

For testing the accuracy of the threshold estimator we need longer datasets,
which could be used for simulating a sliding window model execution and ad-
ditionally provide a training subset. We utilize real datasets provided by the
automotive industry. These are diagnostic measurements that monitor the evo-
lution of variables of interest during the operation of a vehicle. Examples of
such measurements could be the engine pressure, the torque, vibration patterns,
instantaneous fuel economy, engine load at current speed, etc.

Periodic analysis is an indispensable tool in automotive industry, because
predictive maintenance can be possible by monitoring the changes in the spec-
trum of the various rotating parts. Therefore, a change in the periodic structure
of the various engine measurements can be a good indicator of machine wear
and/or of an incipient failure.

The measurements that we use have length of 50000 points and represent
monitoring of a variable over an extended period of time4. On this data we use
a sliding window of 1024 points. We generate a synthetic CPU load, which is
provided as input to the periodicity estimation unit. Based on the synthetic CPU

4 We have not provided the name of the specific engine measurement, because it is
provided to us unlabeled by our automotive partner.
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Fig. 9. Spectrum estimation comparison for various compression rates. The proposed
intelligent sampling provides spectrum reconstruction of higher quality given the same
number of samples.

trace, at any given point in time the periodicity unit is given adequate time
for processing a set of points with cardinality within the range of 50 to 1024
(1024 being the length of the window). In Fig. 11 we show two instances of the
approximated spectrum under limited CPU resources. On the first instance the
indicated available CPU of 12.41% means that only 12.41% of the total window
points should remain after the load-shedding, given the available processing time.
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Fig. 10. Again the intelligent sampling outperforms equi-sampling techniques for the
same compression rates.

Executing our algorithm on the complete data stream, we monitor the accu-
racy of the threshold estimator. The estimator is fed with the current CPU load
and provides a threshold estimate Threshest that will lead with high probability
to P̂ remaining points (so that they could be sufficiently processed given the
available CPU load). Suppose that the actual remaining points after the appli-
cation of the threshold Threshest are P . An indicator of the estimator accuracy
is provided by contrasting the estimated number of points P̂ against the actual
remaining ones P (error = |P̂ − P |).

The experimental results are very encouraging and indicate an average er-
ror on the estimated number of points in the range of 5% of the data window.
For this experiment, if the predicted number of points for a certain threshold
is 250 points, the actual value of remaining points could be (for example) 200
points. This is the case of an overestimated threshold which compressed more
the flowing data stream. As mentioned before, this case is more desirable (than
an underestimated threshold), because no additional points need to be subse-
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Fig. 11. A deployment of our algorithm on streaming automotive measurements. We
constrast the estimated spectrum with the original one at two instances of the sliding
window.

quently dropped from the current data window (which is not bound to introduce
additional aliasing problems).

A histogram of the estimator approximation error is given on the left part of
Fig. 12. We observe that for the majority of data windows the estimation error
is small, while fewer instances of the algorithm execution report a large error
in the threshold estimation. On the right part of Fig. 12 we also provide how
many cases of overestimated thresholds we have and how many underestimated.
The overestimated ones (more desirable) are higher than the underestimated,
which again indicates many of the attractive properties of the proposed threshold
predictor.

6 Conclusion

We have presented the first resource-adaptive method for periodicity estimation.
The key aspects of the proposed method are: (1) An intelligent load-shedding
scheme that can adapt to the CPU load using a lightweight predictor. (2) A
DFT estimation that utilizes unevenly spaced samples, provided by the previ-
ous phase. We have shown the quality of the approximated DFT and we also
demonstrated that our scheme can adapt closely to the available CPU resources.
We compare our intelligent load-shedding scheme against equi-sampling and we
show improvements in the periodogram estimation ranging from 10% to 90%.
As part of future work, we plan to examine whether it is possible to reduce even
further the computational cost. This could be achieved by investigating the pos-
sibility of a ‘butterfly’ structure [3] in the incremental spectrum computation.
We also plan to modify the sub-sampling algorithm in order to support provable
bounds on the periodogram approximation error.
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Fig. 12. Left : Histogram of the threshold estimator error. Right : Cases of overestimated
threshold (fewer remaining samples -more desirable) are more frequent than instances
of underestimated threshold.
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