
The Fractal Dimension Making Similarity Queries More
Efficient

Adriano S. Arantes, Marcos R. Vieira, Agma J. M. Traina, Caetano Traina Jr.
Computer Science Department - ICMC
University of Sao Paulo at Sao Carlos

Avenida do Trabalhador Sao-Carlense, 400
13560-970 - Sao Carlos, SP - Brazil

Phone: +55 16-273-9693

{arantes | mrvieira | agma | caetano}@icmc.usp.br

ABSTRACT
This paper presents a new algorithm to answer k -nearest
neighbor queries called the Fractal k -Nearest Neighbor (k -
NNF ()). This algorithm takes advantage of the fractal di-
mension of the dataset under scan to estimate a suitable
radius to shrinks a query that retrieves the k -nearest neigh-
bors of a query object. k -NN() algorithms starts searching
for elements at any distance from the query center, progres-
sively reducing the allowed distance used to consider ele-
ments as worth to analyze. If a proper radius can be set
to start the process, a significant reduction in the number
of distance calculations can be achieved. The experiments
performed with real and synthetic datasets over the access
method Slim-tree, have shown that the efficiency of our ap-
proach makes the total processing time to drop up to 50%,
while requires 25% less distance calculations.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—Query proces-
sing ;
H.2.8 [Database Management]: Database Applications—
Spatial databases and GIS, Image databases

General Terms
Algorithms, Measurement

Keywords
fractals, intrinsic dimension, nearest neighbors queries, si-
milarity queries

1. INTRODUCTION
Queries asking for equality in complex data domains, such
as, image, video, spatial information, genomic sequences,

time series, among others, are not useful, and the simila-
rity between pairs of elements is the most important pro-
perty in such domains [5]. Thus, a new class of queries, ba-
sed on algorithms that search for similarity among elements
emerged as more adequate to manipulate these data. To
be able to apply similarity queries over elements of a data
domain, a dissimilarity function, or a “distance function”,
must be defined on the domain. A distance function δ() ta-
kes pairs of elements of the domain, quantifying the dissimi-
larity among them. If δ() satisfies the following properties:
for any elements x, y and z of the data domain, δ(x, x) = 0
and δ(x, y) > 0, x 6= y (non-negativeness); δ(x, y) = δ(y, x)
(symmetry); δ(x, y) ≤ δ(x, z) + δ(z, y) (triangular inequa-
lity), it is said to be a metric. Metrics are fundamental
to create access methods that can be used with complex
data types, the so-called“Metric Access Methods - (MAM)”.
MAMs, such as Slim-tree [12], can accelerate similarity que-
ries on complex data by orders of magnitude.

There are basically two types of similarity queries: the
Range Query (RQ) and the k-Nearest Neighbor Query (k-
NNQ) [8]. The range query algorithm, Range(oq, rq), se-
arches the data set recovering every element that is at the
distance rq or closer from the query center oq. An exam-
ple of a Range Query on a dataset S of genomic sequences
is: “choose the polypeptide chains which are different from
the chain p by up to 5 codons”. This can be expressed in
relational algebra as σ(Range(p,5))S. The k -nearest neighbor
algorithm, k -NN(oq, k), searches the data set recovering the
k elements nearest to the query center oq. An example of a
k-Nearest Neighbor Query on S is: “Choose the 10 polypep-
tide chains closer to polypeptide chains p”; which can also
be expressed in relational algebra as σ(k−NN(p,10))S.

Due to the high computational cost to calculate the distance
between a pair of elements in complex domains, similarity
queries commonly uses an index structure to accelerate the
processing. Index structures prune subtrees using the li-
miting radius. An algorithm Range(oq, rq) executes range
queries using rq as the limiting radius, thus the pruning abi-
lity of the Range algorithms using index structures is usu-
ally high. However, there is no limiting radius to perform a
k-Nearest Neighbor Query.

A k -NN(oq, k) algorithm starts collecting a list of k ele-

ments in the dataset, ordered by the distance of the element
to the query center oq. A “dynamic radius” keeps track of
the largest distance from elements in this list to the query
center oq. The algorithm is executed computing the dis-
tance from oq to all elements in the data set. Whenever a
nearer element is found, it is included in the list, removing
the object with the largest radius, and reducing the dyna-
mic radius accordingly. The k -NN(oq, k) algorithm starts
with a dynamic radius larger than the maximum distance
between any pair of elements in the dataset, that is, the
diameter of the dataset (or simply start with ∞ infinity).
Therefore, until at least k elements are found, no pruning
can be executed, and afterward the radius is progressively
reduced, allowing that many unsuitable elements had been
initially treated as candidates. This procedure increases the
number of distance calculations required to find the correct
answer. If a proper radius can be set to start the k -NN()
algorithm, a significant reduction in the number of distance
calculations can be achieved. Therefore, the problem posed
is the following: “How an estimated radius r can be found to
execute a RQ that returns the same elements of a k-NNQ?”

In this work we present a new algorithm to perform k -nearest
neighbor queries, called k -NNF (oq, k), which takes advan-
tage of the Fractal Dimensionality of a dataset to estimate
such a radius. It can decrease the number of distance cal-
culations up to 25%, and speedup in 50% the total time
demanded by the query processing.

The remainder of this paper is structured as follows. Sec-
tion 2 comments on related work to this paper. Section 3
provides a short description of the concept of Correlation
Fractal Dimension. Section 4 introduces the equations used
to define the estimated radius r and the k -NNF () algo-
rithm. Section 5 presents the experiments on the metric
tree Slim-Tree performed in order to evaluate the proposed
method, showing that it significantly improves the perfor-
mance of k-NNQ. Finally, section 6 gives the conclusions of
this paper.

2. RELATED WORK
In the last years, algorithms to answer similarity queries has
motivated many researches, the majority of them using in-
dex structures. A common approach that have been used
is called the “branch-and-bound”. In this approach, specific
properties (heuristics) of the data domain must be conside-
red to prune the branches of the tree. One of the most influ-
ential algorithms in this category was proposed by Rousso-
poulos et al. [10] to find the k -NN queries using R-trees [7]
to index points in muldimensional spaces, and until now, the
one with the best performance ratio for general k -NN que-
ries. Other algorithms based on this approach are presented
in [3], [1] and [4]. Regarding metric spaces, the algorithms to
answer similarity queries also follow the branch-and-bound
approach, as for example those proposed to work with the
M-tree [4] and the Slim-tree [12].

Other approaches were also proposed. One of them uses in-
cremental algorithms to answer similarity queries, like the
one proposed by Park and Kim [9], which can partially
prune worthless tuples that does not fulfill the remaining
non-spatial predicates in a query. An alternative approach
proposed, in the literature, by Berchtold et al. [2] indexes

an approximation of the Voronoi diagram associated with
the dataset.

3. BACKGROUND
Experimental evidences have shown that the distribution of
distances between pairs of elements in the majority of real
datasets does not follow any of the traditional statistical
distributions, such as Gaussian or Poisson. Instead, it has
been shown that they present a “fractal behavior”. That
is, for a usable range of scales, the distribution of distances
between elements of a dataset follows power laws [11, 6].

For datasets resembling fractals, it has been shown that,
given a set of N objects in a dataset with a distance function
δ(x, y), the average number k of neighbors within a given
distance r is proportional to r raised to D. Thus, the pair-
count PC(r) of pairs of elements within distance r follows
the power law:

PC(r) = Kp · rD (1)

where Kp is a proportionality constant, and D is the corre-
lation fractal dimension of the dataset.

Whenever a dataset presents a metric between pairs of its
elements, a graph depicting it can certainly be drawn, even
if the dataset are not in a dimensional domain. Plotting
this graph in log-log scales, for the majority of real datasets
results in an almost straight line for a significant range of
distances. This plot in log-log scale of the number of pairs
within a radius r for each r is called the“Distance Plot” [11].
The slope of the line in the distance plot is the exponent in
equation 1, so it is called the “Distance Exponent”. It is in-
teresting to note that D closely approximates the correlation
fractal dimension of a dataset, and therefore its intrinsic di-
mensionality [13]. Hence, it can be seen as a measurement
of how the elements in the dataset are distributed, even if
the dataset has no spatial property.

Figure 1 shows the distance plot of a dataset whose elements
are the geographical coordinates of streets and roads of the
Montgomery County. As can be seen, the plots are linear
for the most sought after range of sizes in the queries. We
are not interested in radius much smaller or larger than the
typical distances involved in the dataset.

Using plots like that, the distance exponent D of any dataset
can be calculated as the slope of the line that best fits the
resulting curve in the distance plot. Therefore, considering
Figure 1, equation 1 can be expressed as

log(PC(r)) = D · log(r) + Kd, Kd = log(Kp) (2)

The distance exponent has many interesting properties, deri-
ved from the Correlation Fractal Dimension ones. The main
property used in this work is that the correlation fractal di-
mension D is invariant to the size of the dataset, provided a
reasonable number of elements from a representative sample
are used [6]. Therefore, the slopes of the lines corresponding
to datasets taken from the same data domain will be the
same. This enable one to keep the distance exponent mea-
sured for a dataset even after the dataset had been updated
with insertions and deletions.

Figure 1: Distance Plot of the MGCounty dataset,
showing its Correlation Fractal Dimension D ≈ 1.81.

4. USING FRACTALS TO ESTIMATE A
SUITABLE RADIUS

In this section we show how to speedup the k -NN(oq, k)
algorithm using the distance exponent of the searched da-
taset. The idea is to estimate a final radius r for the k -NN
query, allowing the majority of elements unlikely to pertain
to the answer set be pruned even before k elements have been
found. The improved algorithm, that we call k -NNF (oq, k),
performs three steps: first, it must estimate the final radius
r for the k-NNQ, then it must perform the radius-limited
k-NN() algorithm, and finally, if the required number k of
objects were not obtained, refine the search procedure.

The second step can be done easily, creating a new algorithm
kAndR(oq, k, r), whose sole difference from the original k -
NN(oq, k) algorithm is the input parameter r, used to initi-
alize the dynamic query radius. This modification produces
an algorithm able to answer a composite query, equivalent to
Range(oq, r) and k -NN(oq, k) queries centered at the same
query center oq. That is, considering the dataset S, we have
that

σ(Range(oq,rq)∧k−NN(oq,k))(S)⇔
σRange(oq,rq)(S) ∩ σk−NN(oq,k)(S)⇔

σkAndR(oq,k,rq)(S)

For example, it could answer queries like “Select the 10
nearest restaurants not farther than a mile from here”
(kAndR(here, 10, 1 mile)). This is why we called it the ne-
arest and range kAndR() algorithm. Note that, the answer
can recover less than 10 restaurants if the given range is not
sufficiently large.

The first step of the k -NNF (oq, k) algorithm corresponds
to define a method to estimate the final radius of the k -
NN query, so the corresponding value r can be used to call
the kAndR(oq, k, r) algorithm. This value can be estimated
using the distance plot of a dataset, and an adequate line
with slope D to convert the number k of elements into the
corresponding covering radius r.

For this, we use the property of the distance exponent to
remain the same when the dataset is updated. However,
even knowing its slope, one must define a particular line for
a given dataset using a known point of the line. So, when
a query must be answered, we propose to use the distance
exponent as the slope of the line, the total number of ob-
jects N in the dataset, and the diameter R of the dataset
at that time. The number N is easily obtained, and the di-
ameter R can be estimated from the indexing structure, as
the diameter of the root node of the indexing tree.

Equation 2 uses the number of pairs PC(r) within a distance
r, but we are interested in the number of elements k involved,
so we must be able to convert numbers of elements into
numbers of pairs within a distance. Having a subset of k
elements from the dataset, the number of pairs that these
elements generate is

Pairs(k) =
k(k − 1)

2
(3)

because each pair should be counted only once. Thus, given
a dataset with cardinality N , the number of pairs separa-
ted by distances less than the diameter of the dataset is
PC(R) = Pairs(N) = N(N − 1)/2. Thus, a line specific
for the dataset when a query is issued can be found consi-
dering the point < log(R), log(Pairs(N)) > in the distance
plot of the dataset. Using this line, the number of elements k
that form pairs at a distance less or equal r can be estimated
using PC(r) = Pairs(k).

Figure 2 illustrates this idea. In this Figure, ‘Line 0’ is the
line used to calculate the intrinsic dimension D of the data
domain of a dataset. This line approximates the average
number of points (in log scale) over the full range of dis-
tances that occur in the dataset. Notice that real datasets
usually have fewer distances with values near the diameter
of the dataset, so the counting of the larger distances incre-
ases at a slower pace than the counting of medium or small
distances. This is the reason of the flattening of typical pair-
counting plots at large radius of real datasets, as shown by
the Montgomery County dataset in Figures 1 and 2.

Figure 2: How to use the distance plot of a dataset
to estimate the radius r for a k-NNQ.

Now consider the line with slope D passing at the point
defined as < log(R), log(Pairs(N)) >, identified as ‘Point

0’ in Figure 2. This line, identified as ‘Line 1’ in the Figure,
represents the relationship between the radii and the number
of pairs within each radius. Therefore, it is adequate to be
used to estimate the final radius r of a k -NN query. The
constant Kd of equation 2 of ’Line 1’ can be calculated as:

Kd = log(Pairs(N))−D · log(R)

= log

(
N(N − 1)

2

)
−D · log(R) (4)

Combining equation 4 with equation 2 we obtain

log(r) =
log(PC(r))−Kd

D

=
log

(
k(k−1)

2

)
− log

(
N(N−1)

2

)
+D · log(R)

D ⇒

r = R · exp

(
log (k(k − 1))− log (N(N − 1))

D

)
(5)

Equation 5 can be used to estimate the final radius r1 of a
k -NN query. Obviously r1 is an approximation, as the exact
radius of a query depends on the local density of elements
around the query center. Therefore, if the k-NNQ is centered
where the density of elements is similar to or higher than the
average density of the whole dataset, the estimated radius r1

can be used to call the kAndR(oq, k, r) algorithm at the same
center, answering the k-NNQ with a better performance. If
more than the required number k of elements are returned,
the dynamic radius of the algorithm shrinks, retrieving just
those k elements nearest to the query center.

However, if r1 is under-estimated, the kAndR(oq, k, r) algo-
rithm will return fewer elements than required (quantity k1

of elements), and another call to the kAndR() algorithm is
required. As calling this algorithm a second time reduces the
overall performance gain of this technique, it is worth to aug-
ment slightly the estimated r1 radius to minimize the odds
of having to call the kAndR() algorithm more than once.
In fact this augment is already considered in the method
described above, when we proposed to estimate the size of
the dataset looking at the indexing structure: as the cove-
ring radius of the nodes of metric trees needs to guarantee
that every element stored at each subtree is covered by that
radius, they are always equal to or even larger than the mi-
nimum required radius.

The third step of the proposed k -NNF (oq, k) occurs when r1

reveals to be under-estimated despite the inflated diameter
obtained from the root node of the metric tree, then another
search is required with a larger value r2 > r1. At this time,
an incremental search can be performed by another algo-
rithm called kRingRange(oq, r1, r2, k − k1), which returns
the k−k1 elements in the ring between the inner r1 and outer
r2 radius closest to the query center oq. The kRingRange()
algorithm is basically a Range() algorithm modified to prune
also nodes and elements that are inside the ball defined by
the inner radius, and with an external dynamic radius that
can be reduced whenever the required number of objects
were already found nearer to the original outer radius.

The value for r2 can be calculated using the distance plot
again, as follows (see Figure 2). The first calling to the

kAndR() algorithm using radius r1 returned a quantity k1

of elements that is less than the required k elements asked by
the original k-NNQ. The number k1 indicates the local den-
sity of the dataset around the query center. Therefore, the
point defined by < log(r1), log(Pairs(k1)) > defines another
line in the distance plot, indicated as ‘Line 2’ in figure 2,
that is useful to estimate the final radius of k-NNQ centered
at regions whose local density is similar to that where the
current query were posed. Therefore, the radius r2 can be
estimated through equation 5 considering the line passing
through the point < log(r1), log(Pairs(k1)) > as:

r = r1 · exp

(
log (k(k − 1))− log (k1(k1 − 1))

D

)
(6)

In the unlikely event of a k -NN query where the first
call to the kRingRange() algorithm does not retri-
eve the required number k of elements, the point <
log(r2), log(Pairs(k2)) >, where k2 is the total number of
elements retrieved by the previous callings of the kAndR()
and kRingRange() algorithms, it can be used to estimate
another radius. This new value is used in another call to the
kRingRange() algorithm, repeating this last step until the
desired number k of elements are retrieved.

The k -NNF () algorithm, shown as algorithm 1, uses the
kAndR() and kRingRange() algorithms to perform the
same duty of a usual k -NN() algorithm, so it receives the
same parameters and produces the same results but with a
superior performance (see Section 5).

Algorithm 1 k -NNF (oq, k)

Input: oq, k
Output: The Answer List of k pairs < OId, δ(oki , oq) >.
1: Obtain N as the number of elements in dataset
2: Obtain R as the diameter of the dataset indexed
3: Clear the Answer list
4: Set r1 through Equation 5
5: Execute KAndR(oq, k, r1),

store the answer in Answer,
and set k1 to the number of elements retrieved

6: while k1 ≤ k do
7: Set r2 through Equation 6
8: Execute kRingRange(oq, r1, r2, k − k1),

store the answer in Answer,
and set k1 to the number of elements in Answer

9: set r1=r2

5. EXPERIMENTAL RESULTS
To evaluate the effectiveness of the presented concepts, we
worked on a variety of datasets, both synthetic and from the
real world. As we cannot discuss all of them here, we selec-
ted two real datasets that have representative experimental
results to present the efficiency of k -NNF () algorithm.

The MGC dataset is a dataset with the geographical posi-
tions of 27,032 road intersections in Montgomery County,
Maryland and has a D equal to 1.81. The CUR dataset re-
presents the normalized exchange rate of currencies from six
countries, using the Canadian Dollar as the reference, obtai-
ned daily over a period of 10 years. It have 2,561 values

0.8

1.0

1.2

1.4

1.6

1.8

0.6

1.0

1.2

1.8

2.0

2.2

2.4

0.4

0.8

1.4

1.6

0.6

0.9

1.2

1.3

1.4

1.5

0.6

0.8

1.0

1.1

0.7

AVG # Distance Calculations (x1000)AVG # Disk Accesses (x1000) Total Time (s)

k-NNFk-NN

kk k

1

2

3

4

5

6

7

0
0.005 0.025 0.05 0.075 0.1

0.005 0.025 0.05 0.075 0.1

0.005 0.025 0.05 0.075 0.1

0.005 0.025 0.05 0.075 0.1

(a) (b) (c)

(d) (e) (f)

kk k

M
G

C
-

D
is

k
A

cc
es

s
C

U
R

-
D

is
k

A
cc

es
s

M
G

C
D

is
t.

C
al

c.
C

U
R

D
is

t.
C

al
c.

M
G

C
-

T
im

e
C

U
R

-
T

im
e

10

20

25

35

45

15

30

40

50

0

5

0.005 0.025 0.05 0.075 0.1

0.005 0.025 0.05 0.075 0.1

1.5

2.0

2.5

3.0

3.5

0.5

1.0

Figure 3: Comparison between k-NNF () and traditional k-NN() algorithm from MGC and CUR datasets,
regarding: (a) the average number disk accesses for MGC dataset; (b) the average number distance calcula-
tions for MGC dataset; (c) the total time for MCG dataset; (d) the average number disk accesses for CUR
dataset; (e) the average number distance calculations for CUR dataset; (f) the total time for CUR dataset.

and presents a D equal to 2.60. Table 1 summary the real
datasets.

Table 1: Summary of the real datasets for experi-
ments

Name D #Attrib. # Objs Description
MGC 1.81 2 27,032 Road intersections

in Montgomery
County

CUR 2.60 6 2,561 Normalized exchange
rate of currencies

For both datasets we have used the Euclidean metric and a
computer with an Intel Pentium-4 1.6GHz processor, with
256 MB of RAM memory. To perform the tests, we compu-
ted the average number of distance calculations, the average
number of disk accesses and total time (in seconds). Each
measured point in a plot corresponds to 500 queries with
the same number of neighbors using different query centers.
The set of 500 query objects are samples extracted from the
respective datasets.

5.1 Performance improvement
In this Section we compare the k -NNF () algorithm and the
k -NN() algorithm with a priority queue, as described in
[10], the one considered to have the better performance for
general k -NN queries. Both algorithms were implemented
using the Slim-tree as the indexing method. In this experi-
ment, the number of neighbors in the k -NN queries varies
between 0.5% to 10% of the dataset.

Figure 3 shows plots of the two datasets. Figure 3(a), (b)
and (c) corresponds respectively to the average number of

disk accesses, the average number of distance calculations
and the total time, for the MGC dataset. As it can be
seen, the k -NNF () algorithm reduces up to 25% the requi-
red number of distance calculations, up to 50% the total
time, and up to 15% the number of disk accesses as com-
pared with the k -NN() algorithm. Figure 3 (d), (e) and
(f) show the same set of experiments for the CUR dataset.
With this dataset, the k -NNF () algorithm required 12%
less distance calculations, 11% less disk accesses, and was
up to 17% faster than the k -NN() algorithm.

It is interesting to note the behavior of the k -NNF () algo-
rithm searching the MGC dataset. For queries asking for a
quantity of elements k fewer than 0.5% of the dataset, the
k -NNF () algorithm is losing in both number of distance
calculations and number of disk accesses, as can be seen in
Figure 3 (a) and (b). Comparing these curves with the dis-
tance plot of the MGC dataset presented in Figure 2, we can
see that the distance plot does not follows the line with the
measured D for this dataset at the distance ranges required
to answer k -NN queries with these low number of elements.
Therefore, this behavior of the k -NNF () algorithm, at those
small distance ranges, indicates that the proposed way to es-
timate the final range radius of the k -NN queries is useful,
whenever the dataset behavior at the required range follows
D at the required radius.

Regarding total time, the k -NNF () algorithm presents ma-
jor improvements when compared with k -NN() algorithm,
as seen in Figure 3(c) and (f). This happens because the
k -NN() algorithm uses a priority queue whose management
is complex and consumes time, mainly, when the number of
neighbors grows. On the other side, the complexity of the
proposed k -NNF () algorithm is much lower, reducing the

processing time accordingly.

5.2 Number of kRingRange() calls
An interesting point to check is determining when the
kRingRange() algorithm needs to be called. To verify this
point, we measured the number of times it is called at each
set of 500 queries using the same number k of required ele-
ments, generating an histogram of number of distance calls
for 0 calls of kRingRange(), 1 call, 2 calls and so on. It tur-
ned out that the kRingRange() algorithm was never called
more than twice, and even the second call was only perfor-
med once in both datasets. Figure 4 shows the plot of those
histograms for no calls and for one call for the CUR dataset.

Figure 4: k vs. Number of Calls for the CUR data-
set.

6. CONCLUSIONS
In this paper we presented how to explore the distance ex-
ponent of a dataset, measured as its correlation fractal di-
mension, to estimate the final radius of k -nearest neighbor
query, as a way to improve its performance. Therefore we
proposed a new algorithm, called the k -NNF (), which can
be used to execute k -NN queries more efficiently. Our ap-
proach can be applied to both spatial and metric datasets.
The experiments conducted to evaluate the algorithms show
that the k -NNF () algorithm can reduce the time needed to
answer a query in up to 50%, requiring up to 25% less dis-
tance calculations, and up to 15% less disk accesses.

Besides presenting a real improvement in answering k -NN
queries, the proposed algorithm is simple to be implemen-
ted, requiring less computational power than the competing
algorithms in the literature. Moreover, to the best of the
authors’ knowledge, this algorithm is the first application of
the fractal theory to improve the algorithms to answer que-
ries, bringing the fractal concepts to the inner core of data
retrieval algorithms of database management systems.

Acknowledgement
This work has been supported by FAPESP (São Paulo State
Research Foundation) under grants number 01/02426-8,
01/11987-3 and 02/07318-1, and CNPq (Brazilian National
Council for Supporting Research) under grants 52.1685/98-
6, 52.1267/96-0 and 860.068/00-7. The authors are grate-
ful for the insightful contributions provided by Fabio J. T.
Chino.

7. REFERENCES
[1] R. Benetis, C. S. Jensen, G. Karciauskas, and

S. Saltenis. Nearest neighbor and reverse nearest
neighbor queries for moving objects. In Intl. Database
Engineering and Applications Symposium (IDEAS),
pages 44–53, Canada, 2002. IEEE Computer Society.

[2] S. Berchtold, B. Ertl, D. A. Keim, H.-P. Kriegel, and
T. Seidl. Fast nearest neighbor search in
high-dimensional space. In Intl. Conference on Data
Engineering (ICDE), pages 209–218, USA, 1998.

[3] K. L. Cheung and A. W.-C. Fu. Enhanced nearest
neighbour search on the R-tree. ACM SIGMOD
Records, 27(3):16–21, 1998.

[4] P. Ciaccia, M. Patella, and P. Zezula. M-tree: An
efficient access method for similarity search in metric
spaces. In Intl. Conference on Very Large Databases
(VLDB), pages 426–435, Greece, 1997. Morgan
Kaufmann Publishers.

[5] C. Faloutsos. Indexing of multimedia data. In
Multimedia Databases in Perspective, pages 219–245.
Springer Verlag, 1997.

[6] C. Faloutsos, B. Seeger, A. J. M. Traina, and
C. Traina Jr. Spatial join selectivity using power laws.
In ACM Intl. Conference on Data Management
(SIGMOD), pages 177–188, USA, 2000.

[7] A. Guttman. R-tree: A dynamic index structure for
spatial searching. In ACM Intl. Conference on Data
Management (SIGMOD), pages 47–57, USA, 1984.

[8] F. Korn, N. Sidiropoulos, C. Faloutsos, E. Siegel, and
Z. Protopapas. Fast nearest neighbor search in
medical image databases. In Intl. Conference on Very
Large Databases (VLDB), pages 215–226, India, 1996.
Morgan Kaufmann.

[9] D.-J. Park and H.-J. Kim. An enhanced technique for
k-nearest neighbor queries with non-spatial selection
predicates. Multimedia Tools and Applications,
19(1):79–103, 2003.

[10] N. Roussopoulos, S. Kelley, and F. Vincent. Nearest
neighbor queries. In ACM Intl. Conference on Data
Management (SIGMOD), pages 71–79, USA, 1995.

[11] C. Traina Jr., A. J. M. Traina, and C. Faloutsos.
Distance exponent: a new concept for selectivity
estimation in metric trees. Research Paper
CMU-CS-99-110, Carnegie Mellon University - School
of Computer Science, March 1999.

[12] C. Traina Jr., A. J. M. Traina, B. Seeger, and
C. Faloutsos. Slim-trees: High performance metric
trees minimizing overlap between nodes. In Intl.
Conference on Extending Database Technology
(EDBT), volume 1777 of Lecture Notes in Computer
Science, pages 51–65, Germany, 2000. Springer.

[13] C. Traina Jr., A. J. M. Traina, L. Wu, and
C. Faloutsos. Fast feature selection using fractal
dimension. In XV Brazilian Database Symposium,
pages 158–171, Brazil, 2000.

