
MAMView: A Framework for Visualization of Metric Trees
Marcos R. Vieira1, Fabio J. T. Chino2, Caetano Traina Jr.2, Agma J. M. Traina2

1University of California, Riverside, CA – USA

2University of São Paulo, São Carlos, SP – Brazil

mvieira@cs.ucr.edu, {chino, caetano, agma}@icmc.usp.br

Abstract. In this demonstration, we present the MAMView framework for explor-
ing and understanding metric trees. Users and developers of metric trees can use
the MAMView framework to visually explore operations and data indexed in metric
trees. Understanding how these structures operate and organize the indexed data
is an important task for both users and developers. MAMView was developed as a
practical tool that has been successfully applied to study new and existing metric
trees.

1. Introduction
Nowadays, many applications use Database Management Systems (DBMS) to store, man-
age and query complex data types (e.g. multimedia data, time series, spatial data, docu-
ments). In general, these complex data types are searched by similarity, such as k-nearest
neighbor (kNN), e.g. “find the 5 most similar images to the query image”, and range queries
(Rq), e.g. “select all proteins that are similar to the query protein by up to 5 purine bases”.
Metric trees, or Metric Access Methods (MAM), e.g. Slim-tree [Jr et al. 2002] and DBM-
tree [Vieira et al. 2004], are indexes that can be employed to make similarity queries more
efficient. Indexing and querying operations in MAM are performed using only the complex
data (objects) in the domain and the similarity (distance) values between pair of objects.
For MAM, the similarity value is computed using a (metric) distance function that have to
satisfy the symmetry, positivity, and triangular inequality properties. A dataset that is
defined by a metric distance function is also called metric dataset.

A few tools have been proposed targeting the understanding and developing of ac-
cess methods. The Amdb [Kornacker et al. 2003], Sail [Hadjieleftheriou et al. 2005], and
Vasco [Brabec et al. 2003] are examples of tools that construct visual representations of the
dataset using spatial properties of objects indexed in access methods. These tools, how-
ever, are limited to datasets in 2D or 3D spaces. To the best of our knowledge, MAMView
is the first framework to generate visualizations of high dimensional or metric datasets in-
dexed in MAM, regardless of the dataset, distance function or dimensionality of the dataset.
Furthermore, the MAMView framework is not only limited to generate visualizations of the
dataset indexed in MAM, but also the execution steps of the algorithms of a MAM (e.g. an
animation containing the steps of executing a kNN algorithm implemented in a MAM).

While the MAMView framework was first detailed in [Chino et al. 2005], our goal
here is to demonstrate its main features to assist users in understanding MAM, as well as
to help developers in designing and tuning new or existing algorithms. The MAMView
framework is implemented in C++ and it is part of the Arboretum library1, a portable, easy-
to-use, and open-source platform for developing, testing and using MAM.

1Both frameworks are available for download at http://gbdi.icmc.usp.br/arboretum



2. The MAMView Framework

In this section, we first describe the model and its graphical representation employed in the
MAMView framework. We then briefly detail the MAMView architecture, following with
an example on how to install the MAMView API in order to generate visualizations for the
MAMViewer tool.

In the MAMView framework, we use a generic model to visually represent multi-way
trees, since most of the previously proposed MAM can be materialized into this category
[Chávez et al. 2001]. Since multi-way trees partition the metric space into several balls,
each one representing a subtree, in our model we symbolize each subtree as a sphere de-
fined by a set of representatives (selected objects from the dataset) and radii. For simplicity,
here we only describe the case where each partition is defined by a single pair of represen-
tative/radius. Each object in the data domain is associated to only one partition and it has
to be “covered” by the sphere (partition radius). An object is “covered” by a partition if the
distance between the object and the partition representative is less or equal than the radius
of the partition. Thus, all objects in a partition have to be “covered” by the associated radius
of the partition. In this way, every object in the dataset is associated with a single partition
in a recursive way, generating a multi-way tree. Node overlapping may exist in MAM, and
in our model it is symbolized by overlapping of spheres.

Using the above description, our model has the following properties: (1) each object
is identified by a set of features, which is used by the distance function; (2) a sphere (node)
has only one parent node, except for the root node that has none, but can have many children
(subtrees); (3) an object is associated with a single partition, but may be covered by many
due to node overlapping; (4) objects or spheres (subtrees) must have a unique identifier;
(5) each sphere symbolizes a region in the space defined by the representative/radius; (6)
representatives can be stored in multiple levels in the tree (e.g. an object or representative
that is selected as representative of a sphere is copied in the immediate upper level); (7) the
tree is organized in levels, which indicate the height of the tree; (8) a query is defined by a
query center and a radius; and (9) a query answer returns a set of objects.

In order to cover all nine of these properties of our model, we employ the following
graphical primitives in the MAMView: (1) an object is symbolized by a point in the mapped
space, which position is defined by the mapping algorithm; (2) an object that belongs to a
partition is symbolized by a connection line linking the object to the sphere representative;
(3) an object is connected to only one representative (the sphere representative that the
object belongs to); (4) the identifier of an object or a subtree is specified by a label next to
it; (5) a sphere is symbolized by a circle (in the 2D projected space) centered at the sphere
representative; (6) a representative is symbolized by a 7 point-star using different colors,
which indicate the level that it belongs to; (7) colors are employed to symbolize different
levels in the hierarchy; (8) a query is symbolized by a 5-point black star (query center) and
a sphere centered in the query center (query radius); and (9) an object that belongs to the
answer set of a query is symbolized by a black triangle.

The MAMView architecture, illustrated in Figure 1, is divided into two modules:
the MAMView Extractor and the MAMViewer. The original dataset is first mapped to the
3D Euclidean space and then to 2D Euclidean space using the MAMView Extractor and
MAMViewer tool, respectively. In this way, distance calculations are performed in the orig-
inal space using the same metric employed to index object in the MAM. Thereafter, the



Figure 1. The MAMView architecture.

MAMViewer always works on the common Euclidean distance function, regardless of the
original distance function. When the MAM algorithms are executed, the MAMView Extrac-
tor gathers all required information to MAMViewer tool. In this way, the MAMView Ex-
tractor is executed only once to generate the information needed for the MAMViewer tool,
which can be executed many times. The MAMView Extractor can generate very complex
visualizations of the organization of the indexed data (here we call it “dump” operation),
or an animation containing the several steps (frames) of the execution of a MAM algorithm
(e.g. steps of inserting a new object in the tree or evaluating a similarity search).

In the MAMView Extractor, the Distance Mapping module uses the FastMap algo-
rithm [Faloutsos and Lin 1995], since it has several advantages for our settings (detailed
next). This algorithm executes an iterative process, where the target mapping, in our case,
is the 3D Euclidean space. In each iteration, two objects that have the largest distance value
from each other are chosen to be the pivots of each target dimension. These pivots define
the axis of the mapped dimension, and all other objects are projected in the space defined by
these pivots. Thereafter, the projections of all other objects in the axis defined by the pivots
are calculated, triangulating the object and the two pivots using the Cosine Law. In each it-
eration, the error in the mapping operation is calculated using the stress formula, defined as:

stress =
√∑

ij(d̂ij − dij)2/
∑

ij d
2
ij , where dij and d̂ij are the distances between the objects

si e sj in the original and mapped spaces, respectively. Thus, the quality in the mapping
process can be measured in each iteration of the FastMap algorithm.

In our framework, we chose the FastMap algorithm because it has three important
characteristics for visualizing very large metric dataset. First, it is a linear algorithm with
respect to the number of objects. Second, the set of pivots can be stored for reuse in further
executions of the algorithm, which is done by the CoordinateFastMap(). Third, it preserves
the original distances as much as possible, which can be measured by the stress.

We implemented two versions of the FastMap algorithm, one that quickly browses
the index and selects six pivots (one pair for each dimension), called FastMap(), and another
that maps the objects in the original metric space to the 3D Euclidean space, called Coordi-
nateFastMap(). FastMap() receives a dataset with N objects and a distance function d, and
it scans the index to find three pairs of pivots. Then, for each N objects in the 3D Euclidean
space, the CoordinateFastMap() maps it using the distance function d and the six pivots.

The MAMView Extractor gets the data from the MAM following the events set by the
developer (see Figure 2). The gathered data is written in the MVA (MAMView Animation)
file format, which is an XML-based format. The MVA format specifies the set of frames
and information of the objects needed to build the visualization in the 3D Euclidean space
in the MAMViewer tool. Therefore, the only requirement to generate MVA files is to install
the MAMView Extractor in the MAM.

Figure 2(a) shows one example of extracting the organization of objects in a MAM.



Figure 2. Examples of the MAMView Extractor API (MAMView object) to extract in-
formation for a tree structure (a) and the execution steps a range query (b).

The Dump and DumpRecursive procedures traverse a tree in pre-order to extract infor-
mation to generate a MVA file. The MAMView Extractor APIs are represented in red color
and they all start with the MAMView prefix. Figure 2(b) shows how to install the MAMView
Extractor APIs in order to build an animation containing the steps of an execution of a
range similarity query, represented by RangeQuery and Range procedures. In this last
example, a sequence of frames is created to emulate each step of the range algorithm.

With the physical separation of MAMView Extractor and MAMViewer in the
MAMView architecture, users can freely interact with the visualization, going forward and
backward in the algorithms execution, without interact on the index itself. The interaction
of the user with the simulation is very important, because it allows users to understand cer-
tain properties and behaviors of the MAM algorithms that cannot be displayed all at once.
Moreover, this separation has the advantage of enabling user to share common visualizations
through MVA files, without the need of performing the mapping several times, or interfering
the performance of the index.

The MAMViewer tool has two components, the Simulator and Visualizer modules.
The first one reads a MVA file and prepares the set of frames for the second module. The
Visualizer is the module where the user can select the desired portion of the information,
as well as navigate through the algorithm’s execution by “playing” the corresponding set of
frames (i.e., showing each frame in the proper sequence). The MAMViewer tool uses the



Figure 3. Snapshots of the MAMViewer using iris: (left) objects, representatives
and labels only; and (right) with the addition of spheres and connections.

OpenGL2 library to manipulate the visualization following the user’s commands.

3. Demonstration
In this demonstration, we explore several MAMView visualizations generated for the Slim-
tree with the faces3 and iris4 datasets. The faces dataset has 11,900 objects, each with
16 features extracted from images of human faces using the Eigenfaces method. The iris
dataset has 150 features describing 4 attributes (sepal length, sepal width, petal length, and
petal width) of 3 types of Iris flowers (Setosa, Versicolour and Virginica).

Figure 3 presents two snapshots of the MAMViewer tool for the iris dataset. Both
visualizations have a single frame since they represent the organization of the data (“dump”)
indexed by a Slim-tree. The first snapshot (left) shows only objects, representatives and
labels, while in the second snapshot (right), radius and connections were also enabled in
the previous visualization. In these two snapshots, the navigational controls are displayed
on the top left area of the tool, just below the menus for the graphical interactions. On the
bottom of the tool, messages are displayed with the settings of the visualization and/or the
structure, following the context of the visualization for each step of the MAM algorithm.
The color pattern, shown on the top right position of the tool, can be redefined, and each
color symbolizes a different level in the hierarchy of the index.

Figure 4 shows the first two frames, out of 230, for an animation containing the
execution steps of a range query for the faces dataset. Figure 4(left) presents the query center
(black star) and the three spheres with their representatives, symbolizing three subtrees of
the root node of the index. Figure 4(right) shows the second frame in the animation where
the range query algorithm explores the second level (red color) of sphere 585.

The MAMViewer tool allows users, in an animated visualization, to “navigate” the
algorithm’s execution frame by frame, forward or backward, in a similar fashion of “play-
ing” a movie. Additionally, the tool allows users to interactively change any properties
presented in a visualization, e.g., display only the indexed objects, spheres, radii, spheres
representatives, identifiers, or any combination of these properties. In the MAMViewer tool,
users can change the appearance of the graphical elements, increasing/diminishing the size

2http://www.opengl.org
3http://www.informedia.cs.cmu.edu
4http://kdd.ics.uci.edu



Figure 4. Two frames of an animation for a range query for faces (black star sym-
bolizes the query center): (left) 1st frame with the 3 subtrees (30, 441 and 585) in
the root sphere; and (right) 2nd frame exploring the second level of subtree 585

of the dots symbolizing the objects, or selecting the number of frames that are superimposed
in the visualization (tail length) of an animation.

The visualization can be rotated, translated or scaled, allowing users to closely in-
spect certain regions of the visualization. These features are very useful, since one of the
main problems in visualizing large datasets is the potential “cluttering” and “occlusion” in
the visualization. The visualization depicted in a frame is only the starting point for the
user to work on the visual presentation of the data, so the user can graphically manipulate
the visualization with the special resources presented in the tool (“fading”, “tail”, center of
observation, etc.). During the analysis, the user can highlight objects, spheres, representa-
tives, radii, etc., or certain levels of the tree (e.g. the first three levels of the tree). All the
manipulations over the visualization are facilitated by mouse interaction, as well as by menu
shortcuts.

Acknowledgements: This research was supported by FAPESP, CNPq and CAPES grants.

References
Brabec, F., Samet, H., and Yilmaz, C. (2003). Vasco: visualizing and animating spatial constructs and opera-

tions. In Annual Symp. on Computational Geometry, pages 374–375.

Chino, F., Vieira, M., Traina, A., and Jr, C. T. (2005). MAMView: A visual tool for exploring and understand-
ing metric access methods. In ACM Symp. on Applied Computing (SAC), pages 1218–1223.

Chávez, E., Navarro, G., Baeza-Yates, R., and Marroquı́n, J. L. (2001). Searching in metric spaces. ACM
Computing Surveys, 33(3):273–321.

Faloutsos, C. and Lin, K.-I. (1995). FastMap: A fast algorithm for indexing, data-mining and visualization of
traditional and multimedia datasets. In ACM SIGMOD, pages 163–174.

Hadjieleftheriou, M., Hoel, E., and Tsotras, V. (2005). Sail: A spatial index library for efficient application
integration. Geoinformatica, 9(4):367–389.

Jr, C. T., Traina, A., Faloutsos, C., and Seeger, B. (2002). Fast indexing and visualization of metric datasets
using slim-trees. IEEE Trans. Knowl. Data Eng., 14(2):244–260.

Kornacker, M., Shah, M., and Hellerstein, J. (2003). Amdb: A design tool for access methods. IEEE Data
Eng. Bull., 26(2):3–11.

Vieira, M., Jr, C. T., Traina, A., and Chino, F. (2004). DBM-Tree: A dynamic metric access method sensitive
to local density data. In Brazilian Symp. on Databases (SBBD), pages 163–177.


