
DBM-Tree: A Dynamic Metric Access Method Sensitive to
Local Density Data∗

Marcos R. Vieira, Caetano Traina Jr., Fabio J. T. Chino, Agma J. M. Traina

ICMC – Institute of Mathematics and Computer Sciences
USP – University of São Paulo at São Carlos
Avenida do Trabalhador São-Carlense, 400
CEP 13560-970 – São Carlos – SP – Brazil

{mrvieira, caetano, chino, agma}@icmc.usp.br

Abstract

Metric Access Methods (MAM) are employed to accelerate the processing of similarity queries, such as the range

and thek-nearest neighbor queries. Current methods improve the query performance minimizing the number of

disk accesses, keeping a constant height of the structures stored on disks (height-balanced trees). The Slim-tree

and the M-tree are the most efficient dynamic MAM so far. However, the overlapping between their nodes has a

very high influence on their performance. This paper presents a new dynamic MAM called the DBM-tree (Density-

Based Metric tree), which can minimize the overlap between high-density nodes by relaxing the height-balancing

of the structure. Thus, the height of the tree is larger in denser regions, in order to keep a tradeoff between

breadth-searching and depth-searching. Moreover, an optimization algorithm called Shrink is also presented,

which improves the performance of an already built DBM-tree by reorganizing the elements among their nodes.

Experiments performed over both synthetic and real datasets showed that the DBM-tree is, in average, 50% faster

than traditional MAM and reduces the number of distance calculations by up to 72% and disk accesses by up to

54%. After performing the Shrink algorithm, the performance improves up to 30% regarding the number of disk

accesses for range andk-nearest neighbor queries. In addition, the DBM-tree scales up well, exhibiting sub-linear

performance with growing number of elements in the database.

1. Introduction

The volume of data managed by the Database Management Systems (DBMS) is increasing
continually. Moreover, new complex data types, such as multimedia data (image, audio, video
and long text), geo-referenced information, time series, fingerprints, genomic data and protein
sequences, among others, have been added to DBMS.

The main technique employed to accelerate data retrieval in DBMS is indexing the data
using Access Methods (AM). The data domains used by traditional databases, i.e. numbers and
short character strings, have the total ordering property. Every AM used in traditional DBMS
to answer both equality and relational ordering predicates, such as the B-trees, are based on this
property.

Unfortunately, the majority of complex data domains do not have the total ordering
property. The lack of this property precludes the use of traditional AM to index complex

∗This work has been supported by FAPESP (São Paulo State Research Foundation) under grants number

01/11987-3, 01/12536-5 and 02/07318-1, and CNPq (Brazilian National Council for Supporting Research) under

grants 52.1685/98-6, 52.1267/96-0 and 860.068/00-7.

data. Nevertheless these data domains allow the definition of similarity relations among pairs
of objects. Similarity queries are more natural for these data domains. For a given reference
object, also called the query center object, a similarity query returns all objects that meet a given
similarity criteria. Traditional AM rely on the total order relationship only, and are not able to
handle these complex data properly, neither to answer similarity queries over such data. These
restrictions led to the development of a new class of AM, the Metric Access Methods (MAM),
which are well-suited to answer similarity queries over complex data types.

The MAM such as the Slim-tree [12, 13] and the M-tree [7] were developed to answer
similarity queries based on the similarity relationships among pairs of objects. The similarity
relationships are usually represented by distance functions computed over the pairs of objects
of the data domain. The data domain and distance function defines a metric space or metric
domain.

Formally, a metric space is a pair <S, d() >, whereS is the data domain andd() is a distance
function that complies with the following three properties:symmetry: d(s1, s2) = d(s2, s1);
non-negativity: 0 < d(s1, s2) < ∞ if s1 6= s2 andd(s1, s1) = 0; andtriangular inequality :
d(s1, s2) ≤ d(s1, s3) + d(s3, s2), ∀s1, s2, s3 ∈ S. Vector datasets with anyLp distance function,
such as Euclidean distance (L2), are special cases of metric spaces. The two main types of
similarity queries are:

• Range query -Rq: given a query center objectsq ∈ S and a maximum query distance
rq, the queryRq(sq, rq) retrieves every objectsi such asd(si, sq) ≤ rq. An example
is: “Select the proteins that are similar to the proteinP by up to 5 purine bases”, and it
is represented asRq(P, 5);

• k-Nearest Neighbor query -kNNq: given a query center objectsq ∈ S and an integer
valuek ≥ 1, the querykNNq(sq, k) retrieves thek objects that have the smallest
distance from the query objectsq, according to the distance functiond(). An example
is: “Select the 3 protein most similar to the proteinP ”, wherek=3, and it is represented
askNNq(P, 3).

This paper presents a new dynamic MAM called DBM-tree (Density-Based Metric tree),
which can minimize the overlap of nodes storing objects of high-density regions relaxing
the structure height-balance. Therefore, the height of a DBM-tree is larger in higher-density
regions, in order to keep a compromise between the number of disk accesses required to
breadth-search various subtrees and to depth-searching one subtree. As the experiments will
show, its performance is better to answer similarity queries than the rigidly balanced trees. This
article also presents an algorithm to optimize DBM-trees, calledShrink, which improves the
performance of these structures reorganizing the elements among the tree’s nodes.

The experiments performed over synthetic and real datasets show that the DBM-tree
outperforms the traditional MAM, such as the Slim-tree and the M-tree. The DBM-tree is,
in average, 50% faster than these traditional balanced MAM, reducing up to 54% the number of
disk accesses and up to 72% the number of distance calculations required to answer similarity
queries. TheShrinkalgorithm, helps to achieve improvements of up to 30% in number of disk
accesses to answer range andk-nearest neighbor queries. Moreover, the DBM-tree is scalable,
exhibiting sub-linear behavior in the total processing time, the number of disk accesses and the
number of distance calculations regarding the number of elements indexed.

The remainder of this paper is structured as follows: Section 2 presents the basic concepts
and Section 3 summarizes the related works. The new metric access method DBM-tree is

presented in Section 4. Section 5 describes the experiments performed and the results obtained.
Finally, Section 6 gives the conclusions of this paper and suggests future works.

2. Basic Concepts

An Access Method(AM) is the most used resource of DBMS to improve their performance
on retrieval operations. The use of meaningful properties from the objects indexed is
fundamental to achieve improvements. Using the properties of the data domain, it is possible
to discard large subsets of data without comparing every stored object with the query object.
For example, consider the case of numeric data, where the total ordering property holds: this
property allows dividing the stored numbers in two sets: those that are greater and those that
are smaller than or equal to the query reference number. Hence, the fastest way to perform the
search is maintaining the numbers sorted, so that when a search for a given number is required,
comparing this number with a stored object enables discarding further comparisons with the
part of the data where the number cannot be in.

An important class of AM is the one that forms hierarchical structures (trees), which enables
recursive processes to index and search the data. In a tree, the objects are divided in blocks
called nodes. When a search is needed, the query object is compared with one or more object
in the root node, determining which subtrees need to be traversed, recursively repeating this
process for each subtree that is able to store answer objects.

Note that whenever the total ordering property applies, only a subtree at each tree level can
hold the answer. If the data domain has only a partial ordering property, then it is possible that
more than one subtree need to be analyzed in each level. As numeric domains possess the total
ordering property, the trees indexing numbers requires the access of only one node in each level
of the structure. On the other hand, trees storing spatial coordinates, which only have a partial
ordering property, require searches in more than one subtree in each level of the structure. This
effect is known as covering, or overlapping between subtrees, and occurs for example in R-trees
[10].

Hierarchical structures can be classified as (height-)balanced or unbalanced. In the balanced
structures, the height of every subtree is the same, or at most changes by a fixed amount.

Nodes of AM used in DBMS are stored in disk using registers of fixed size. Storing the
nodes in disk is essential to warrant data persistence and to allow handling any number of
objects. However, as disk accesses are slow, it is important to keep small the number of disk
accesses required to answer queries. Traditional DBMS build indexes only on data holding the
total ordering property, so if a tree grows deeper, more disk accesses are required to traverse
it. Therefore it is important to keep every tree the shallowest possible. When a tree is allowed
to grow unbalanced, it is possible that it degenerates completely, making it useless. Therefore,
only balanced trees have been widely used in traditional DBMS.

A metric tree divides a dataset into regions and chooses objects called representatives or
centers to represent each region. Each node store the representatives, objects in the covered
region, and their distances to the representatives. As the stored objects can be representatives
in other nodes, this enables the structure to be organized hierarchically, forming a tree. When a
query is performed, the query object is first compared with the representatives of the root node.
The triangular inequality is then used to prune subtrees, avoiding distance calculations between
the query object and objects or subtrees in the pruned subtrees. Distance calculations between
complex objects can have a high computational cost. Therefore, to achieve good performances

it is vital to minimize also the number of distance calculations in query operations.
Metric access methods exhibits the node overlapping effect, so the number of disk accesses

depends both on the height of the tree and on the amount of overlapping. In this case, it is
not worthwhile reducing the number of levels at the expense of increasing the overlapping.
Indeed, reducing the number of subtrees that cannot be pruned at each node access can be more
important than keep the tree balanced. As more node accesses also requires more distance
calculations, increasing the pruning ability of a MAM becomes even more important. However,
no published access method took this fact into account so far.

The DBM-tree presented in this paper is a dynamic MAM that relax the usual rule that
imposes a rigid height-balancing policy, therefore trading a controlled amount of unbalancing at
denser regions of the dataset for a reduced overlap between subtrees. As our experiments show,
this tradeoff allows an overall increase in performance when answering similarity queries.

3. Related Works

Plenty of Spatial Access Methods (SAM) were proposed for multidimensional data. An
excellent survey showing the evolution of SAM and their main concepts can be found in [9].
However, the majority of them are not able to index data in metric domains, and suffer from the
dimensionality curse, that is they are efficient only on low-dimensional datasets.

The techniques of recursive partitioning of data in metric domains proposed by Burkhard and
Keller [5] were the start point for the development of MAM. Their first technique divides the
dataset choosing one representative for each subset, grouping the remaining elements according
to their distances to the representatives. The second technique divides the original set in a
fixed number of subsets, selecting one representative for each subset. Each representative and
the biggest distance from the representative to all the elements in the subset are stored in the
structure to make feasible nearest-neighbor queries.

The MAM proposed by Uhlmann [15] and the VP-tree (Vantage-Point tree) [16] are
examples based on the first technique, where the vantage points are the representatives proposed
by [5]. Aiming to reduce the number of distance calculations to answer similarity queries in
the VP-tree, Baeza-Yates et al. [1] proposed to use the same representative for every node in
the same level. The MVP-tree (Multi-Vantage-Point tree) [2, 3] is an extension of the VP-tree,
allowing selectingM representatives for each node in the tree. Using many representatives the
MVP-tree requires lesser distance calculations to answer similarity queries than the VP-tree.
The GH-tree (Generalized Hyper-plane tree) [15] is another method that recursively partitions
the dataset in two groups, selecting two representatives and associating the remaining objects
to the nearest representative.

The GNAT (Geometric Near-Neighbor Access tree) [4] can be viewed as a refinement of the
second technique presented in [5]. It stores the distances between pairs of representatives, and
the biggest distance between each stored object to each representative. The tree uses these data
to prune distance calculations using the triangular inequality.

All MAM for metric datasets presented so far are static, in the sense that the data structure
is built once using the full dataset, and new insertions are not allowed. The M-tree [7] was
the first MAM to overcome this deficiency. The M-tree is a height-balanced tree based on
the second technique of [5], where the data elements are stored in leaf nodes. The Slim-Tree
[12, 13] is an evolution of the M-Tree, embodying the first published technique to reduce the
amount of overlap between tree nodes, called theSlim-Down. This structure is also a dynamic

MAM, and the Slim-Downprocess leads to a smaller number of disk accesses to answer
similarity queries. Although dynamic, neither the Slim-tree nor the M-tree have object deletion
operations described. In [8] it was proposed to use multiple representatives, called the “omni-
foci”, to generate a coordinate system of the objects in the dataset. These coordinates can then
be indexed using any SAM, ISAM (Indexed Sequential Access Method), or even sequential
scanning, generating a family of MAM called the “Omni-family”. Two excellent surveys of
MAM can be found in [6] and [11].

All these MAM build balanced trees, aiming to minimize the height of the tree but at
the expense of a reduced flexibility to allow minimizing the overlap between nodes storing
objects in a high-density region. In this paper we propose a new MAM that minimize the
overlapping between nodes storing objects from a high-density region, relaxing the need to
keep the tree rigidly balanced, whereas controlling it as a tradeoff between balancing and
overlapping. According to the best of the authors’ knowledge, no other published work has
proposed such tradeoff before.

4. The MAM DBM-tree

The DBM-tree is a dynamic MAM that grows bottom-up. The objects of the dataset are
grouped into fixed size disk pages, each page corresponding to a tree node. An object can be
stored at any level of the tree. Its main intent is to organize the objects in a hierarchical structure
using a representative as the center of each minimum bounding region that covers the objects
in a subtree. An object can be assigned to a node if the covering radius of the representative
covers it.

Unlike the Slim-tree and M-tree, there is only one type of node in the DBM-tree. There are
no distinctions between leaf and index nodes. Each node has a capacity to hold up toC entries.
It stores a fieldCeff counting how many entriessi are effectively stored in the node and the
entries, which can be either a subtree or a single object. A node can have subtree entries, single
object entries, or both. Single objects cannot be covered by any of the subtrees stored in the
same node. Each node has one of its entries elected to be a representative. The representative
of a node is copied to its immediate parent node, unless it is already the root node. Entries
storing subtrees have: one representative objectsi that is the representative of thei-th subtree,
the distance between the node representative and the representative of the subtreed(srep, si),
the linkPtri pointing to the node storing that subtree and the covering radius of the subtreeRi.
Entries storing single objects have: the single objectsj, the identifier of this objectOIdj and
the distance between the object representative and the objectd(srep, sj). This structure can be
represented as:

Node[Ceff , array [1..Ceff] of |< si, d(srep, si), Ptri, Ri > or < sj, OIdj, d(srep, sj)>|]

4.1. Building the DBM-tree

The DBM-tree is a dynamic structure, allowing to insert new objects at any time after its
creation. When the DBM-tree is asked to insert a new object, it searches the structure for one
node qualified to store it. TheInsert algorithm is shown as Algorithm 1. It starts searching
in the root node and proceeds searching recursively for a node that qualifies (that is, the one
most appropriated) to store the new object. The insertion of the new object can occur at any
level of the structure. In each node, theInsertalgorithm uses theChooseSubtreealgorithm (line
1), which returns the subtree that better qualifies to have the new object stored. If there is no

Algorithm 1 Insert
Require: Ptrt: pointer to the subtree where the new objectsn will be inserted.

sn: the object to be inserted.

Ensure: Insert objectsn in thePtrt subtree.

1: ChooseSubtree(Ptrt, sn)
2: if There is a subtree that qualifiesthen
3: Insert(Ptri, sn)
4: if There is a promotionthen
5: Update the new representatives and their information.

6: Insert the object set not covered for node split in the current node.

7: for Each entrysi now covered by the updatedo
8: Demote entrysi.

9: else ifThere is space in current nodePtrt to insertsn then Insert the new objectsn in nodePtrt.

10: elseSplitNode(Ptrt, sn)

subtree that qualifies, the new object is inserted in the current node (line 9). A qualifying node
is one with at least one subtree that covers the new object. The DBM-tree provides two options
for theChooseSubtreealgorithm:

• Minimum distance that covers the new object(minDist): among the subtrees that
cover the new object, choose the one that has the smallest distance between the
representative and the new object. If there is not an entry that qualifies to insert the
new object, it is inserted in the current node;

• Minimum growing distance (minGDist): similar tominDistbut if there is no subtree
that covers the new object, it is chosen the one whose representative is the closest to
the new object, increasing the covering radius accordingly. Therefore, the radius of
one subtree is increased only when no other subtree covers the new object.

The option chosen by theChooseSubtreealgorithm has a high impact in the resultant tree.
TheminDistoption tends to build trees with small covering radii, but the trees can grow higher
than the trees built with theminGDistoption. TheminGDistoption tends to produce shallower
trees than those produced with theminDist option, but with higher overlapping between the
subtrees.

If the node chosen by theInsertalgorithm has no free space to store the new object, then all
the existing entries together with the new object taken as a single object must be redistribute
between one or two nodes, depending on the redistribution option set in theSplitNodealgorithm
(line 10). TheSplitNodealgorithm deletes the nodePtrt and remove its representative from its
parent node. Its former entries are then redistributed between one or more new nodes, and
the representatives of the new nodes together with the set of entries of the former nodePtrt

not covered by the new nodes are promoted and inserted in the parent node (line 6). Notice
that the set of entries of the former node that are not covered by any new node can be empty.
The DBM-tree has two options to choose the representatives of the new nodes in theSplitNode
algorithm:

• Minimum of the largest radii (minMax): this option distributes the entries into at
most two nodes, allowing a possibly null set of entries not covered by these two nodes.
To select the representatives of each new node, each pair of entries is considered as
candidate. For each pair, this algorithm tries to insert each remaining entry into the
node having the representative closest to it. The final representatives will be the ones

that generated a pair of radii where the largest radius of the pair is the smallest among
all possible pairs. The computational complexity of this algorithm isO(C3), whereC
is the number of entries to be distribute between the nodes;

• Minimum radii sum (minSum): this option is similar to theminMax, but the two
representatives selected is the pair with the smallest sum of the two covering radii.

The minimum node occupation is set when the structure is created, and this value must be
between one and half of the node capacityC. If the minimum occupation is set to be half of the
node capacity, all theC entries must be distributed between the two new nodes created by the
SplitNodealgorithm. After defining the representative of each new node, the remaining entries
are inserted in the node with the closest representative. After distributing every entry, if one
of the two nodes stores only its representative, then this node is destroyed and its sole entry is
inserted in its parent node. Based on the experiments and in the literature [7], splits leading to
an uneven number of entries in the nodes can be better than splits with equal number of entries
in each node, because it tends to minimize the overlapping of regions between nodes.

If the minimum occupation is set to a value lower than half of the node capacity, each node is
first filled with this minimum number of entries. After this, the remaining entries will be inserted
into the node only if its covering radius does not increase the overlapping regions between the
two. The rest of entries, that were not inserted into these two nodes, are inserted in the parent
node.

Splittings promote the representative to the parent node, which in turn can cause other
splittings. After the split propagation (promotion - line 4) or the update of the representative
radii (line 5), it can occur that former uncovered single object entries are now covered by
the updated subtree. In this case each of these entries is removed from the current node and
reinserted into the subtree that covers it (demotion in lines 7 and 8).

4.2. Performing Similarity Queries in the DBM-tree

The DBM-tree can answer the two main types of similarity queries: Range query (Rq) and
k-Nearest Neighbor query (kNNq). Their algorithms are similar to those of the Slim-tree and
the M-tree.

The Rq() algorithm for the DBM-tree is described in Algorithm 2. It receives as input
parameters a tree nodePtrt, the query centersq and the query radiusrq. All entries inPtrt are
checked against the search condition (line 2). The triangular inequality allows pruning subtrees
and single objects that do not intersect the region defined by the query. Those entries that can
not be pruned in this way have their distance to the query object (line 3) calculated. Each entry
covered by the query (line 4) is now processed. If it is a subtree, it will be recursively analyzed
by theRq algorithm (line 5). If the entry is an object, then it is added to the answer set (line
6). The end of the process returns the answer set including every object that satisfies the query
criteria.

ThekNNq() algorithm is similar to theRq(), but it requires a dynamic radiusrk to perform
the pruning. In the beginning of the process, this radius is set to a value that covers all the
indexed objects. It is adjusted when the answer set is first filled withk objects, or when the
answer set is changed thereafter. Another difference is that there is a priority queue to hold not
checked entries from the nodes. Entries are checked processing the single objects first and then
the subtrees. Among the subtrees, those closer to the query object are checked first. When an
object closer than thek already found is located, it substitutes the previous farthest one and the
dynamic radius is adjusted (diminished) to ensure tighter pruning.

Algorithm 2 Rq()
Require: Ptrt tree to be perform the search, the query objectsq and the query radiusrq.

Ensure: Answer set with all objects satisfying the query conditions.

1: for Eachsi ∈ Ptrt do
2: if |d(srep, sq)− d(srep, si)| ≤ rq + Ri then
3: Calculatedist = d(si, sq)
4: if dist ≤ rq + Ri then
5: if si is a subtreethen Rq(Ptri, sq, rq)
6: elseInsertsi in the answer set.

7: end if
8: end if
9: end for

4.3. TheShrink Optimization Algorithm

A special algorithm to optimize loaded DBM-trees was created and calledShrink. This
algorithm aims at shrinking the nodes by exchanging entries between nodes to reduce the
amount of overlapping between subtrees. Reducing overlaps improves the structure, which
results in decreasing of the number of distance calculations, total processing time and, mainly,
the number of disk accesses required to answer bothRq and kNNq queries. During the
exchanging of entries between nodes, some nodes can retain just one entry, so they are promoted
and the empty node is deleted from the structure, further improving the performance of the
search operations over the tree.

TheShrinkalgorithm can be called at any time during the evolution of a tree, as for example,
after the insertion of many new objects. This algorithm is described in Algorithm 3.

The algorithm is applied in every node of a DBM-tree. The input parameter is thePtrt to the
subtree to be optimized, and the result is the optimized subtree. The stop condition (line 1) for
this algorithm occurs in two cases: when there is no entry exchange in the previous iteration or
when the number of exchanges already done is larger than 3 times the number of entries in the
node. This latter condition assures that no cyclic exchanges can lead to a dead loop. Anyway,
it was experimentally verified that a larger number of exchanges does not improve the results.
For each entryA in nodePtrt (line 2), the farthest entry from the node representative is set as
i (line 3). Then search another entry inPtrt node that can store the entryi (line 5). If such a
node exists, removei from A and reinsert it in this node (line 6). If the exchange makes nodeA
empty, it is deleted, as well as its entry in nodePtrt (line 9). If this does not generate an empty
node, it is only needed to update the reduced covering radius of entry A in nodePtrt (line 10).
After every entry inPtrr has been verified, if a node now holds only one entry, this single entry
replaces the entry A in nodePtrt and nodeA is deleted (line 14).

5. Experimental Evaluation of the DBM-tree

The performance evaluation of the DBM-tree was done with a large assortment of real and
synthetic datasets with varying properties that affects the behavior of a MAM. Among these
properties are the intrinsic dimensionality of the dataset, the dataset size and the distribution
of the data in the metric space. Table 1 presents some illustrative datasets used to evaluate the
DBM-tree performance. The dataset name is indicated together with its total number of objects

Algorithm 3 Shrink
Require: Ptrt tree to optimize.

Ensure: Ptrt tree optimized.

1: while The number of exchanges does not exceed 3 times the number of entries inPtrt node or no exchanges

occurred the previous iterationdo
2: for Each subtree entryA in nodePtrt do
3: Set entryi from A as the farthest from theA representative.

4: for Each entryB distinct fromA in Ptrt do
5: if The entryi of A is covered by nodeB and this node has enough space to storei then
6: Remove the entryi from A and reinsert it inB.

7: end if
8: end for
9: if nodeA is emptythen delete nodeA and delete the entryA from Ptrt.

10: elseUpdate the radius of entryA in Ptrt.

11: end for
12: end while
13: for EachA subtree in nodePtrt do
14: if nodeA has only one entrythen Delete nodeA and update the entryA in Ptrt.

15: end for

(# Objs.), the embedding dimensionality of the dataset (D), the page size in KBytes (Pg), the
metric used (d()), and the composition and source description of each dataset.

Table 1: Description of the synthetic and real-world datasets used in the experiments.
Name # Objs. D Pg d() Description

(KBytes)

ColorHisto 68,040 32 8 L2 Color image histograms from the KDD repository of the

University of California at Irvine (http://kdd.ics.uci.edu). The metric

L2 returns the distance between two objects in a 32-d Euclidean space.

MedHisto 4,247 - 4 LM Metric histograms of medical gray-level images. This dataset is

adimensional and was generated at GBDI-ICMC-USP.

For more details on this dataset and the metric used see [14].

Synt16D 10,000 16 8 L2 Synthetic vector data with Gaussian distribution with

10 clusters in a 16-d unit hypercube. The process

to generate this dataset is described in [7].

Synt256D 20,000 256 32 L2 Similar toSynt16D, but this is a 256-d unit hypercube.

Cities 5,507 2 1 L2 Geographical coordinates of the Brazilian cities (www.ibge.gov.br).

The computer used for the tests is an Intel Pentium 4 1.6GHz processor with 512 MB of
RAM and 40 GB of disk space, running Microsoft Windows 2000. The DBM-tree, the Slim-tree
and the M-tree algorithms were implemented using the C++ language into the Arboretum MAM
library (www.gbdi.icmc.usp.br/arboretum), all with the same code optimization, to obtain a
fairly comparison. The DBM-tree was compared with Slim-tree and M-tree, that are the most
known and used dynamics MAM.

The Slim-tree and the M-tree were configured using their best recommended setup. They
are:minDist for theChooseSubtreealgorithm,minMaxfor the split algorithm and the minimal

occupation set to 25% of node capacity. The results for the Slim-tree were measured after the
execution of theSlim-Downoptimization algorithm.

We tested the DBM-tree considering three distinct configurations, to evaluate its available
options. The tested configurations are the following:

• DBM-MM: minDist for the ChooseSubtreealgorithm, minMax for the SplitNode
algorithm and minimal occupation set to 30% of node capacity,

• DBM-MS: equal toDBM-MM, except to the optionminSumfor theSplitNodealgorithm
and

• DBM-GMM: minGDist for ChooseSubtree, minMax for SplitNode and minimal
occupation set to 50% of node capacity.

All measurements were performed after the execution of theShrinkalgorithm.
From each dataset it was extracted 500 objects to be used as query centers. They were

chosen randomly from the dataset, and half of them (250) were removed from the dataset before
creating the trees, and the other half were copied to the query set, but maintained in the set of
objects inserted in the trees. Hence, half of the query set belongs to the dataset indexed by the
MAM and the other half does not, allowing to evaluate queries with centers indexed or not. Each
dataset were used to build one tree of each type, and every tree was built inserting one object at a
time, calculating the average number of distance calculations, average number of disk accesses
and total processing time (in seconds). In the query measurements, each point corresponds to
performing 500 queries with the same parameters but varying query centers. The numberk for
thekNNq queries varied from 2 to 20 for each measurement, and the radius varied from 0.01%
to 10% of the largest distance between pairs of objects in the dataset, because they are the most
meaningful range of parameters asked when performing similarity queries. TheRq graphics
are inlog scale for the radius abscissa, to enphasize the relevant part of the graph.

The building time, maximum height and the distribution of objects in the structure were
measured for every tree. The building time of the 5 trees were similar for each dataset. It is
interesting to compare the maximum height of the DBM-tree options and the balanced trees, so
they are summarized in Table 2.

Table 2: Maximum height of the tree for each dataset tested.
Name Slim-tree M-tree DBM-MM DBM-MS DBM-GMM

ColorHisto 4 4 10 10 4

MedHisto 4 4 9 11 5

Synt16D 3 3 7 7 3

Synt256D 4 4 17 17 5

Cities 4 4 7 7 4

The maximum height for theDBM-MM and theDBM-MS trees were bigger than the
balanced trees in every dataset. The biggest difference was in theSynt256D, with height of
17 as compared to 4 for the Slim-tree and the M-tree. However, as the other experiments show,
this does not increase the number of disk accesses. In fact, those DBM-trees did, in average,
less disk accesses than the Slim-tree and M-tree, as is shown in the next subsection.

For theDBM-GMM trees, although it does not force the balance, the maximum height in the
majority of trees was equal to those of the Slim-tree and M-tree. This is an interesting result and
indicates that the balancing is not so important for MAM as it is for the conventional structures.

Figure 1: Visualization of theDBM-MM structure for theCitiesdataset. (a) with the covering
radius of the nodes; and (b) only the objects. It is possible to verify that the structure is deeper
(darker objects) in high-density regions, and shallower (lighter objects) in low-density regions.

The data distribution in the levels of a DBM-tree are shown using theCities dataset. This
is possible because this dataset is in a bi-dimensional Euclidean space. Figure 1 shows the
objects indexed in theDBM-MM with each different color representing objects at different
levels. Figure 1(a) shows the objects and the covering radius of each node, and Figure 1(b)
shows only the objects. The objects with darker colors are in a deeper level than those with
lighter colors. The figure shows that the depth of the tree is larger in higher density regions and
that objects are stored in every level of the structure, as is expected. This figure shows visually
that the depth of the tree is smaller in low density regions, and that the number of objects at the
deepest levels is small, even in the high-density regions.

5.1. Performance Comparison between the DBM-tree and the Slim-tree and M-tree

We have used many synthetic and real datasets to evaluate the DBM-tree. We now present the
results obtained when comparing the DBM-tree with the best setup of the Slim-tree and M-tree.
Due to space limitations we only present the results from four meaningful datasets (ColorHisto,
MedHisto, Synt16DandSynt256D), which are high-dimensional and non-dimensional (metric)
datasets, and gives a fairly sample of what happened. The main motivation in these experiments
is evaluating the DBM-tree performance with its best competitors with respect to the 2 main
similarity queries:Rq andkNNq.

Figure 2 shows the measurements to answerRq andkNNq on these 4 datasets. The graphs
on the first row (Figures 2(a), (b), (c) and (d)) show the average number of distance calculations.
It is possible to note in these graphs that every DBM-tree executed in average a smaller number
of distance calculations than Slim-tree and M-tree. Among all, theDBM-MSpresented the best
result for almost every dataset, losing only at theSynt256Ddataset toDBM-GMM. No DBM-
tree executed more distance calculations than the Slim-tree or the M-tree, for every dataset. The
graphs also show that the DBM-tree reduces the average number of distance calculations up to
67% forRq (graph (c)) and up to 35% forkNNq (graph (d)), when compared to the Slim-tree,

which is the best balanced tree in every dataset with respect to distance calculations. When
compared to M-tree, the DBM-tree reduced up to 72% forRq (graph (c)) and up to 41% for
kNNq (graph (d)).

The graphs of the second row (Figures 2(e), (f), (g) and (h)) show the average number of
disk accesses for bothRq andkNNq queries. In every measurement the DBM-trees clearly
outperformed the Slim-tree and the M-tree, with respect to number of disk accesses. The graphs
show that the DBM-tree reduces the average number of disk accesses up to 43% forRq (graph
(g)) and up to 35% forkNNq (graph (h)), when compared to the Slim-tree. It is important to
note that the Slim-tree is the MAM that in general requires the lowest number of disk accesses
between every previous published MAM. These measurements were taken after the execution
of theSlim-Downalgorithm in the Slim-tree. When compared to the M-tree, the gain is even
greater, increasing to up to 54% forRq (graph (g)) and up to 42% forkNNq (graph (h)).

An important observation is that the immediate result of decreasing overlap between nodes
of a tree is the reduced number of distance calculations. However, the number of disk accesses
in a MAM is also related to the overlapping between subtrees. An immediate consequence of
this fact is that decreasing the overlap reduces both the number of distance calculations and
of disk accesses, to answer both types of similarity queries. These two benefits contribute to
reduce the total processing time of queries.

The graphs of the third row (Figures 2(i), (j), (k) and (l)) show the total processing time
(in seconds). As the three DBM-trees performed lesser distance calculations and disk accesses
than both Slim-tree and M-tree, they are naturally faster to answer bothRq andkNNq. The
importance of comparing query time is that it reflects the total complexity of the algorithms
besides the number of distance calculations and the number of disk accesses. The graphs shows
that the DBM-tree is up to 44% faster to answerRq andkNNq (graphs (k) and (l)) than Slim-
tree. When compared to the M-tree, the reducion in total query time is greater, going to be up
to 50% forRq andkNNq queries (graphs (k) and (l)).

5.2. Experiments regarding theShrink Algorithm

The tests performed to measure the improvement achieved by theShrinkalgorithm in the
three DBM-trees with all datasets shown in Table 1. As the results of all the datasets were
similar, we show in Figure 3 only the results for the number of disk accesses with theColorHisto
(Figures 3(a) forRq and (b) forkNNq) andSynt16Ddataset (Figures 3(c) forRq and (d) for
kNNq).

Figure 3 compares the query performance before and after the execution of theShrink
algorithm for DBM-MM, DBM-MS and DBM-GMM for both Rq and kNNq. Every graph
shows that theShrink algorithm improves the final trees. The most expressive result is the
DBM-GMM indexing theSynt16D, which achieved up to 30% lesser disk accesses forkNNq
andRq as compared with the same structure not optimized.

5.3. Scalability of the DBM-tree

This experiment evaluated the behavior of the DBM-tree with respect to the number of
elements in the dataset. To do so, we generated 10 datasets similar to theSynt16D, each one with
10,000 elements. We inserted all 10 datasets in the same tree, totaling 100,000 elements. After
inserting each dataset we run sets of queries, executing 500 similarity queries for each point in
the graph, as before. The behavior was equivalent for different values ofk and radius, thus we

250

300

350

400

450

500

550

600

650

0.0001 0.001 0.01 0.1 1
radius

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

0.0001 0.001 0.01 0.1 1
radius

350

400

450

500

550

600

650

700

750

800

850

2 4 6 8 10 12 14 16 18 20
k

80

90

100

110

120

130

140

150

160

2 4 6 8 10 12 14 16 18 20
k

7

8

9

10

11

12

13

14

15

16

17

2 4 6 8 10 12 14 16 18 20
k

4

6

8

10

12

14

16

18

0.0001 0.001 0.01 0.1 1
radius

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0001 0.001 0.01 0.1 1
radius

0

100

200

300

400

500

600

700

800

0.0001 0.001 0.01 0.1 1
radius

10

15

20

25

30

35

40

0.0001 0.001 0.01 0.1 1
radius

80

100

120

140

160

180

200

220

2 4 6 8 10 12 14 16 18 20
k

5

6

7

8

9

10

11

12

13

2 4 6 8 10 12 14 16 18 20
k

350

400

450

500

550

600

650

700

750

800

2 4 6 8 10 12 14 16 18 20
k

(e) Rq: ColorHisto

(a) Rq: ColorHisto (b) kNNq: MedHisto

(f) kNNq: MedHisto

(j) kNNq: MedHisto(i) Rq: ColorHisto (k) Rq: Synt16D

(c) Rq: Synt16D

(g) Rq: Synt16D (h) kNNq: Synt256D

(l) kNNq: Synt256D

(d) kNNq: Synt256D

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

A
vg

 N
um

be
r o

f D
is

ta
nc

e
C

al
cu

la
tio

n
A

vg
of

 D
is

k
A

cc
es

s
N

um
be

r
To

ta
l T

im
e

(s
)

To
ta

l T
im

e
(s

)

To
ta

l T
im

e
(s

)

To
ta

lT
im

e
(s

)

A
vg

 N
um

be
r o

f D
is

k
A

cc
es

s

A
vg

 N
um

be
r o

f D
is

k
A

cc
es

s

A
vg

 N
um

be
r o

f D
is

k
A

cc
es

s

A
vg

 N
um

be
r o

f D
is

t a
nc

e
C

al
cu

la
tio

n

A
vg

 N
um

be
r o

f D
is

ta
nc

e
C

al
cu

la
tio

n

A
vg

 N
um

be
r o

f D
is

ta
nc

e
C

al
cu

la
tio

n

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM
DBM-MS

DBM-GMM

M-Tree
Slim-Tree
DBM-MM

DBM-MS
DBM-GMM

M-Tree
Slim-Tree
DBM-MM

DBM-MS
DBM-GMM

M-Tree
Slim-Tree
DBM-MM

DBM-MS
DBM-GMM

Figure 2: Comparison of the average number of distance calculations (first row), average
number of disk accesses (second row) and total processing time (ins) (third row) of DBM-
tree, Slim-tree and M-tree, forRq andkNNq queries for theColorHisto((a), (e) and (i) -Rq),
MedHisto((b), (f) and (j) -kNNq), Synt16D((c), (g) and (k) -Rq) andSynt256D((d), (h) and
(l) - kNNq) datasets.

present only the results fork=10 and radius=0.1%. As the total processing time embodies the
results of the other measurements, we show only the total processing time for range queries in
Figure 4.

This figure presents the behavior of the three DBM-tree considering: the average number of
distance calculations (a), the average number of disk accesses (b), the total processing time for
kNNq (c) and forRq (d). As it can be seen, the three DBM-trees exhibits sub-linear behavior
when the number of elements indexed grows, what makes the method adequate to index very
large datasets, in any of its configurations.

550

600

650

700

750

800

850

900

950

1000

1050

1100

2 4 6 8 10 12 14 16 18 20
k

(b) kNNq: ColorHisto

A
vg

 N
um

be
r o

f D
is

k
A

cc
es

s

250

300

350

400

450

500

550

600

0.0001 0.001 0.01 0.1 1

DBM-MM
DBM-MS

DBM-GMM
DBM-MM - Shrink
DBM-MS - Shrink

DBM-GMM - Shrink

DBM-MM
DBM-MS

DBM-GMM
DBM-MM - Shrink
DBM-MS - Shrink

DBM-GMM - Shrink

DBM-MM
DBM-MS

DBM-GMM
DBM-MM - Shrink
DBM-MS - Shrink

DBM-GMM - Shrink

DBM-MM
DBM-MS

DBM-GMM

DBM-MM - Shrink
DBM-MS - Shrink

DBM-GMM - Shrink

radius

(a) Rq: ColorHisto

A
vg

 N
um

be
r o

f D
is

k
A

cc
es

s

radius

(c) Rq: Synt16D

A
vg

 N
um

be
r o

f D
is

k
A

cc
es

s

10

15

20

25

30

35

40

0.0001 0.001 0.01 0.1 1
k

(d) kNNq: Synt16D

A
vg

 N
um

be
r o

f D
is

k
A

cc
es

s

32

34

36

38

40

42

44

46

48

50

52

2 4 6 8 10 12 14 16 18 20

Figure 3: Average number of disk accesses to performRq andkNNq queries in the DBM-tree
before and after the execution of theShrinkalgorithm: (a)Rq on ColorHisto, (b) kNNq on
ColorHisto, (c) Rq onSynt16D, (d) kNNq onSynt16D.

200

400

600

800

1000

1200

1400

1600

1800

2000

1 2 3 4 5 6 7 8 9 10

of d (x10K)ataset elements # of dataset elements (x10K) # of dataset elements (x10K) # of dataset elements (x10K)

(a) kNNq: Synt16D - k=10

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

(c) kNNq: Synt16D - k=10

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

(b) kNNq: Synt16D - k=10

To
ta

l T
im

e
(s

)

To
ta

lT
im

e
(s

)

A
vg

 N
um

be
r o

f D
is

k
A

cc
es

s

A
vg

 N
um

be
r o

f D
is

ta
nc

e
C

al
cu

la
tio

n

DBM-MM
DBM-MS

DBM-GMM

DBM-MM
DBM-MS

DBM-GMM

DBM-MM
DBM-MS

DBM-GMM

DBM-MM
DBM-MS

DBM-GMM

(d) Rq: Synt16D - radius=0.1%

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

1 2 3 4 5 6 7 8 9 10

Figure 4: Scalability of DBM-tree regarding the dataset size indexed duringkNNq, measuring
the average number of distance calculations (a), the average number of disk accesses (b) and the
total processing time (c). The total processing time forRq is shown in (d). The dataset indexed
was theSynt16Dwith 100,000 objects.

6. Conclusions and Future Works

This paper presents a new dynamic MAM calledDBM-tree (Density-Based Metric tree),
which in a controlled way relax the height-balancing requirement of access methods, trading a
controlled amount of unbalancing at denser regions of the dataset for a reduced overlap between
subtrees. This is the first dynamic MAM that makes possible to reduce the overlap between
nodes relaxing the rigid balancing of the structure. The height of the tree is higher in denser
regions, in order to keep a tradeoff between breadth-searching and depth-searching. The options
to define how to construct a tree and the optimizations possibilities in DBM-tree are larger than
in rigid balanced trees, because it is possible to adjust the tree according to the data distributions
at different regions of the data space. Therefore, this paper also presented a new optimization
algorithm, calledShrink, which improves the performance in trees reorganizing the elements
among their nodes.

The experiments performed over synthetic and real datasets showed that theDBM-tree
outperforms the main balanced structures existing so far: the Slim-tree and the M-tree. In
average, it is up to 50% faster than the traditional MAM and reduces the number of required
distance calculations to up to 72% when answering similarity queries. The DBM-tree spends
fewer disk accesses than the the Slim-tree, that until now was the most efficient MAM with
respect to the number of disk accesses. The DBM-tree requires up to 54% fewer disk accesses
than the balanced trees. After performed theShrink algorithm, its performance achieves
improvements up to 30% for range andk-nearest neighbor queries considering disk accesses. It
was also shown that the DBM-tree scales up very well with respect to the number of elements
indexed, presenting sub-linear behavior, which makes it well-suited to very large datasets.

Among the future works, we intend to develop a bulk-loading algorithm for the DBM-tree.
As the construction possibilities of the DBM-tree is larger than those of the balanced structures,
a bulk-loading algorithm can employ strategies that can achieve better performance than is
possible in other trees. Other future work is to develop an object-deletion algorithm that can
really remove objects from the tree. All existing rigidly balanced MAM such as the Slim-
tree and the M-tree, cannot effectively delete objects being used as representatives, so they are
just marked as removed, without releasing the space occupied, so it remains being used in the
comparisons required in the search operations. The organizational structure of the DBM-tree
enables the effective deletion of objects, making it a completely dynamic MAM.

References

[1] Ricardo A. Baeza-Yates, Walter Cunto, Udi Manber, and Sun Wu. Proximity matching
using fixed-queries trees. In5th Annual Symposium on Combinatorial Pattern Matching
(CPM), volume 807 ofLecture Notes in Computer Science (LNCS), pages 198–212,
Asilomar, USA, 1994. Springer Verlag.

[2] Tolga Bozkaya and Meral Özsoyoglu. Distance-based indexing for high-dimensional
metric spaces. InProceedings of the ACM International Conference on Management of
Data (SIGMOD), pages 357–368, 1997.

[3] Tolga Bozkaya and Meral Özsoyoglu. Indexing large metric spaces for similarity search
queries.ACM Transactions on Database Systems (TODS), 24(3):361–404, Sep 1999.

[4] Sergey Brin. Near neighbor search in large metric spaces. InProceedings of the
International Conference on Very Large Data Bases (VLDB), pages 574–584, Zurich,
Switzerland, 1995. Morgan Kaufmann.

[5] Walter A. Burkhard and Robert M. Keller. Some approaches to best-match file searching.
Communications of the ACM, 16(4):230–236, Apr 1973.

[6] Edgar Chávez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroquín.
Searching in metric spaces.ACM Computing Surveys (CSUR), 33(3):273–321, Sep 2001.

[7] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient access method for
similarity search in metric spaces. InProceedings of International Conference on Very
Large Data Bases (VLDB), pages 426–435, Athens, Greece, 1997. Morgan Kaufmann.

[8] Roberto F. Santos Filho, Agma J. M. Traina, Caetano Traina Jr., and Christos Faloutsos.
Similarity search without tears: The OMNI family of all-purpose access methods. In
IEEE International Conference on Data Engineering (ICDE), pages 623–630, Heidelberg,
Germany, 2001.

[9] Volker Gaede and Oliver Günther. Multidimensional access methods.ACM Computing
Surveys (CSUR), 30(2):170–231, Jun 1998.

[10] A. Guttman. R-tree : A dynamic index structure for spatial searching. InACM Inter-
national Conference on Data Management (SIGMOD), pages 47–57, Boston, USA, 1984.

[11] Gisli R. Hjaltason and Hanan Samet. Index-driven similarity search in metric spaces.ACM
Transactions on Database Systems (TODS), 28(4):517–580, Dec 2003.

[12] Caetano Traina Jr., Agma J. M. Traina, Christos Faloutsos, and Bernhard Seeger. Fast
indexing and visualization of metric datasets using slim-trees.IEEE Transactions on
Knowledge and Data Engineering (TKDE), 14(2):244–260, Mar/Apr 2002.

[13] Caetano Traina Jr., Agma J. M. Traina, Bernhard Seeger, and Christos Faloutsos. Slim-
trees: High performance metric trees minimizing overlap between nodes. InInternational
Conference on Extending Database Technology (EDBT), volume 1777 ofLecture Notes in
Computer Science (LNCS), pages 51–65, Konstanz, Germany, 2000. Springer.

[14] Agma J. M. Traina, Caetano Traina Jr., Josiane M. Bueno, and Paulo M. de A. Marques.
The metric histogram: A new and efficient approach for content-based image retrieval. In
IFIP Working Conference on Visual Database Systems (VDB), Brisbane, Australia, 2002.

[15] Jeffrey K. Uhlmann. Satisfying general proximity/similarity queries with metric trees.
Information Processing Letters, 40(4):175–179, 1991.

[16] Peter N. Yianilos. Data structures and algorithms for nearest neighbor search in general
metric spaces. InProceedings of the ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 311–321, Austin, USA, 1993.

