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Abstract

The present work applies the Saturation heuristic and
interleaved MDD partition representation to the bisimulation
problem. For systems with deterministic transition relations
(Petri Nets) bisimulation can be expressed as a state-space
exploration problem, for which the saturation heuristic has
been found to be quite efficient. The present work
compares our novel saturation-based bisimulation
algorithm with other fully-implicit and partially-implicit
methods (using non-interleaved MDDs) in the context of the
SMART verification tool. We found that with some models
having very many equivalence classes in their bisimulation
partitions, our novel algorithm gave much better speed
performance than any of the other algorithms tested. With
other models, our novel algorithm performed only slightly
less well than the fastest tested algorithm.
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Definition of Bisimulation

B is a bisimulation of colored, labeled FSA: 〈S,C,T 〉 |
C ∈ S → color ∧ T ⊆ S × label × S, iff:
B ⊆ S × S ∧ ∀〈s1, s2〉 ∈ B : [ C(s1) = C(s2) ∧ (∀〈s, l , s′1〉 ∈ T :
s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2) ∧ B(s′1, s

′
2)) ∧ (∀〈s, l , s′2〉 ∈ T :

s = s2 =⇒ ∃s′1 ∈ S : T (s1, l , s′1) ∧ B(s′1, s
′
2)) ]
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Original Definition of Bisimulation (Milner 1989)

...
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Why Bisimulation?

Bisimulation is . . .
A special case of Lumping
(A minimization problem for Markov systems) to simplify
subsequent numeric computations
An extensional notion of equivalence of states (FSA)

Notation:
R ⊆ S × S A relation between states
B(s1, s2) or 〈s1, s2〉 ∈ B “s1 and s2 are bisimilar”
“∼” The Largest Bisimulation
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A Bisimulation is ...

Definition
(Given a colored, labeled transition system,(st,col,tran)

〈S,C,T 〉 | C ∈ S → color ∧ T ⊆ S × label × S,
A Bisimulation B is a 2-ary relation on S where:

B ⊆ S × S ∧
Each pair in B has the same color,

∀〈s1, s2〉 ∈ B : C(s1) = C(s2) ∧
And has matching transitions to pairs in B

∀〈s, l , s′1〉 ∈ T : s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2)∧B(s′1, s
′
2)

∧

∀〈s, l , s′2〉 ∈ T : s = s2 =⇒ ∃s′1 ∈ S : T (s1, l , s′1)∧B(s′1, s
′
2)
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Matching Transitions to Pairs in B.

∀〈s1, s2〉 ∈ B :
∀〈s, l , s′1〉 ∈ T : s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2) ∧ B(s′1, s

′
2)

s1 s2

s'1

l

=⇒

s1 s2

s'1 s'2

l l
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The (Largest) Bisimulation is ...

Definition
The Largest Bisimulation, “∼” is the union of all bisimulations B

And is an equivalence relation.
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Relational Coarsest Partition = Largest Bisimulation.

Generic iterative splitting algorithm:

Iterative update of some equivalence relation variable R.
Start with R = coarsest partition of state space S, S × S
(∼⊆ R)
Initially split R based on state color
Iteratively remove implausible members from R when
required by definition of Bisimulation, by splitting R into
smaller blocks B∗.
∀〈s, l , s′1〉 ∈ T : s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2)∧R(s′1, s

′
2)

Iteration continues until all blocks have been used as
splitters (inherited stability, block unions).
May iterate over transition labels. Algorithm cores are often
described without reference to labeling.
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Splitting.

∀〈s1, s2〉 ∈ R :
∀〈s, l , s′1〉 ∈ T : s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2) ∧ R(s′1, s

′
2)

Example

s1 s2

s'1 s'2

l l

=⇒

s1 s2

s'1

l
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Matching Transitions to Pairs in R.
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Splitting produces hierarchy of partition blocks
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“Process The Smaller Half.” O(m log n)

Start with R = coarsest partition of state space S, S × S
First split uses S as splitter. Separates states with no
transitions.
Remember hierarchy of split blocks for use as splitters
Use 2 splitters K and K0 \ K , where K0 was already a
splitter.
Iteratively split blocks B into smaller blocks B0, B1, and B′

Maintain reverse adjacency lists
Maintain counts of edges from states to states in splitter
blocks
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“Process The Smaller Half.” O(m log n)

K0\K           K

B'                           B1                         B0

s4

s2 s1

s0

s3
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“Process The Smaller Half.” O(m log n)

Uses edge counts to distinguish between members of B0
and B1.
Avoids processing members of B′ and K0 \ K (by reusing
structures).
Update edge counts.
Each state s occurs in at most log n splitters.
Each edge participates in at most O(log n) splitting
operations
T = O(m log n)
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“Symbolic Methods” 6= Mathematica ®(WolframResearch)
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Multi-Way Decision Diagrams Represent Relations

Each path in MDD (graph) corresponds to tuple in relation.
Canonical: sharing↔ compression, comparison, unique
table, non-mutable.
Efficient memoized recursive algorithms for set operations:
( ∈ (not memoized), |()|, ∪, ∩, \, ⊆ ).
Efficient memoized recursive algorithms for functional
operations: ( ◦, ∃, ∀ ).
Set operations implemented in SMART MDD library.
SMART Saturation algorithm for transitive closure (state
space exploration).
“Quasi-reduced”, with “NULL” edges
Variable ordering matters.
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Set = Boolean Table (Ŝ = [1, 3]4)  
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Empty Subsets
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Replace with “NULL” Edges
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Quasi-Reduce at Leaf Level
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Quasi-Reduced MDD
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Memoized Recursive Algorithm for Set Difference (“\”)

Algorithm R ← X \ Y
1 Handle a few special cases before checking cache:

1 If X = ∅ then return with R ← ∅
2 If Y = ∅ then return with R ← X
3 If X = Y then return with R ← ∅

2 If the cache has X \ Y then return with R ← cached value
3 Construct new MDD node R as follows:
4 Recursively call: Ri ← Xi \ Yi , for each variable value i
5 If ∀i : Ri = ∅ then R ← ∅
6 Make R canonical: R ← unique(R)

7 Put R = X \ Y into the cache
8 Return R
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Variable Ordering Matters (1)
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Variable Ordering Matters (2)
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Represent FSAs as Relations (and MDDs)
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Represent FSAs as Relations (and MDDs)

Each state variable corresponds to a (set of) variables in
tuple.
Each transition in FSA corresponds to tuple in transition
relation.
Interleaved ordering of variables of source and destination
states of transition relation usually yields relatively compact
MDDs.
SMART2 produces MDDs of transition relations in
interleaved form.
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Alternate Ways to Represent Partitions as Relations

1 Equivalence Relation:
〈s1, s2〉 | s1, s2 ∈ S

2 List of Partition Blocks
B1, B2, B3, B4, . . . |
B∗ ⊆ S

3 Block Numbering
〈s,n〉 | s ∈ S, n ∈ N

1

3            

                     2

                       1

S
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S
4 S

6

S
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Ways to Represent Partitions as MDDs

1 Equivalence Relation (Non-Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, x2, x3, . . ., y1, y2, y3, . . .

2 Equivalence Relation (Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, y1, x2, y2, x3, y3, . . .

3 Lists of Partition Blocks (link)

B1, B2, B3, B4, . . . | B∗ ⊆ S
Variable ordering: x1, x2, x3, . . .

4 Block Numbering/function of state (link)

〈s,n〉 | s ∈ S, n ∈ N
Variable ordering: x1, x2, x3, . . . k1, k2, k3, . . .
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Generic Signature-Based Splitting Algorithm

Split each partition block using all blocks as splitters.
State Space: S, Partition: P ∈ S → Block , Transition:
Q ⊆ S × S, Signature: T
Signature of a state s includes set of partition blocks to
which s has transitions.
Signature includes current partition block where s resides.
Signature often described without edge labeling.
Define new partition of S, with a block for each signature.

Algorithm: Signature-Based Splitting

1 Signature: T (s) = 〈 P(s), {P(s′)|〈s, s′〉 ∈ Q} 〉.
2 New Partition: P ′(s) = f (T (s)) (for some bijection f)

3 Repeat 1;2;P ← P ′ until P = P ′

Malcolm Mumme Fully-Implicit Bisimulation



Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Splitting.

Example

s1 s2

s'1 s'2

l l

=⇒

s1 s2

s'1

l

Malcolm Mumme Fully-Implicit Bisimulation



Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Generic Signature-Based Splitting Algorithm
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Generic Signature-Based Splitting Algorithm

T = Q ◦ P
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Generic Signature-Based Splitting Algorithm

Split each partition block using all blocks as splitters.
State Space: S, Partition: P ∈ S → Block , Transition:
Q ⊆ S × S, Signature: T
Signature of a state s includes set of partition blocks to
which s has transitions.
Signature includes current partition block where s resides.
Signature often described without edge labeling.
Define new partition of S, with a block for each signature.

Algorithm: Signature-Based Splitting

1 Signature: T (s) = 〈 P(s), {P(s′)|〈s, s′〉 ∈ Q} 〉.
2 New Partition: P ′(s) = f (T (s)) (for some bijection f)

3 Repeat 1;2;P ← P ′ until P = P ′

Malcolm Mumme Fully-Implicit Bisimulation



Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Algorithm: Rank-Based Initial Partition

Agostino Dovier, Carla Piazza, and Alberto Policriti (2004).
Linear symbolic steps.
Produces rank-based partition
Partition representation: lists of partition blocks
Needs other block splitting algorithm to finish.
Apply other algorithm to blocks in rank order.
Strongly connected components cause problems.
Extract rank-1 elements: R1 ← S \ preimage(S)
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Algorithm: Rank-Based Initial Partition

Example
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Algorithm: Forwarding, Splitting, Ordering

Ralf Wimmer, Marc Herbstritt, and Bernd Becker (2007).
Partition representation: lists of blocks AND numbering
function
Algorithm maintains signature and partition.
Forwarding: Immediately update partition numbering
function.
Split-drive refinement: Only attempt splitting on blocks that
might be split.
Block ordering: Split blocks that might propagate splitting
most.
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History

1 Our previous work (summary)
Review lumping algorithms.
Ideas: Interleaved partition representation, depth-based
Limit scope to bisimulation instead of lumping.
Algorithm 1: Relational interleaved partition refinement
Implement interleaved partition refinement for bisimulation.
Review bisimulation: Bouali and De Simone (1992).
Implement hybrid algorithm to compare representations
Hybrid algorithm was usually faster, for models we used

2 Attempted improvements
Increased integration of set operations (minor variations)
Calculate bisimulation over Ŝ (often much worse)
Symbolic block numbering in Hybrid algorithm (couldn’t)
Idea: Saturation construction of ∼
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Symbolic Bisimulation Minimization

Amar Bouali and Robert De Simone (1992).
Partition representation: Equivalence relation (interleaved
or non-interleaved)
Transition representation: Relation (interleaved or
non-interleaved (respectively))
Similar to generic signature-based splitting algorithm.
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Our Implementation of Bouali and De Simone’s
Algorithm

Partition representation: Equivalence relation (interleaved)
Transition representation: Relation (interleaved)
Similar to generic signature-based splitting algorithm,
except:
Equivalence relation allows signature without current
partition number.
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Algorithm 1 Signature Formula

S State space
E ⊆ S × S Equivalence relation
Q(t) ⊆ Ŝ × Ŝ Transition relation (for transition t)
T ⊆ S × S = Q ◦ E Signatures
T (s1, s3) iff ∃s2 ∈ S : Q(s1, s2) ∧ E(s2, s3) ∧ S(s1)
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Algorithm 1 Signature Calculation

State space MDD: S
Interleaved equivalence relation MDD: E ⊆ S × S
Interleaved transition relation MDD: Q ⊆ Ŝ × Ŝ
Signatures MDD: T ← proj∨3((DC2(Q,S)) ∩ (DC1(E ,S)))

T (s1, s3) iff ∃s2 ∈ S : Q(s1, s2) ∧ E(s2, s3) ∧ S(s1)
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Definitions for Extra Operators

DC1(E ,S) , E , where E(x , y , z) = E(y , z) ∧ S(x)

DC2(Q,S) , Q, where Q(x , y , z) = Q(x , z) ∧ S(y)

proj∨3(F) , F ′, where F ′(x , y) =
∨

c : F(x , y , c)

Signatures MDD: T ← proj∨3((DC2(Q,S)) ∩ (DC1(E ,S)))

T (x , y) ←
∨

z : (Q(x , (y), z) ∧ E((x), y , z))

T (x , y) ←
∨

z : (Q(x , z) ∧ S(y) ∧ E(y , z) ∧ S(x))

T (s1, s3) ←
∨

s2 : (Q(s1, s2) ∧ S(s3) ∧ E(s3, s2) ∧ S(s1))

T (s1, s3) ←
∨

s2 : (Q(s1, s2) ∧ E(s3, s2) ∧ S(s1))

T (s1, s3) iff ∃s2 ∈ S : Q(s1, s2) ∧ E(s2, s3) ∧ S(s1)
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Algorithm 1 Equivalence Relation Formula

S State space
T ⊆ S × S = Q ◦ E Signatures
∆E ⊆ S × S Equivalence relation update
∆E(s1, s3) iff ∀s2 ∈ S : T (s1, s2) = T (s3, s2)

E ′ ← E ∧∆E
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Algorithm 1 Equivalence Relation Calculation

State space MDD: S
Signatures MDD: T
∆E ← proj∧3(DC2(T ,S) ≡ DC1(T ,S))

E ′ ← E ∧∆E
∆E(s1, s3) iff ∀s2 ∈ S : T (s1, s2) = T (s3, s2)
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Algorithm 1 Equivalence Relation Calculation

∆E ← proj∧3(DC2(T ,S) ≡ DC1(T ,S))

E ′ ← E ∧∆E
∆E ← proj∨3(DC2(T ,S) ·∪DC1(T ,S))

where x ·∪y , (x \ y) ∪ (y \ x)

E ′ ← E \∆E
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Algorithm 1

Given: Initial partition in variable E , transition relation in Q, state
space in S.
Returns final partition in E .

Algorithm: refinement of equivalence relation using signature
relation
Repeat:

Eold ← E
T ← proj∨3((DC2(Q,S)) ∩ (DC1(E ,S)))

∆E ← proj∨3(DC2(T ,S) ·∪DC1(T ,S))

E ← E \∆E
Until E = Eold
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Algorithm 1 with Transition Labeling

Given: Initial partition in variable E , transition relation in Q, state
space in S.
Returns final partition in E .

Algorithm: refinement of equivalence relation using signature
relation
Repeat:

Eold ← E
For each t ∈ label loop:

T ← proj∨3((DC2(Qt ,S)) ∩ (DC1(E ,S)))
∆E ← proj∨3(DC2(T ,S) ·∪DC1(T ,S))
E ← E \∆E

Until E = Eold
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Hybrid Algorithm (for Comparison)

Partition representation: Block numbering function
(non-interleaved)
Transition representation: Relation (interleaved)
Similar to generic signature-based splitting algorithm.
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Hybrid Algorithm Signature Formula (First Try)

S State Space
P ⊆ S × N+ Partition block number function of state
Q ⊆ Ŝ × Ŝ Transition relation
T ⊆ S × N+ × N+ Signature map state to pairs of blocks
T (s) =

⋃
s′∈S {〈P(s),P(s′)〉|〈s, s′〉 ∈ Q}. (wrong)

T (s,b,b′) iff ∃s′ ∈ S : (Q(s, s′) ∧ P(s,b) ∧ P(s′,b′)).
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Hybrid Algorithm Signature Formula

S State Space
P ⊆ S × [1, |S|] Partition block number function of state
Q ⊆ Ŝ × Ŝ Transition relation
T ⊆ S × [1, |S|]× [0, |S|] Signature map to pairs of blocks
T (s) = {〈P(s),0〉} ∪

⋃
s′∈S {〈P(s),P(s′)〉|〈s, s′〉 ∈ Q}.

T (s,b,b′) iff (P(s,b) ∧ b′ = 0) ∨ ∃s′ ∈ S :
(Q(s, s′) ∧ P(s,b) ∧ P(s′,b′)).
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Hybrid Algorithm Signature

T = Q ◦ P
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Hybrid Algorithm signature Calculation

State space MDD: S
Partition block number function MDD: P ⊆ S × [1, |S|]
interleaved transition relation MDD: Q ⊆ Ŝ × Ŝ
Signatures MDD: T ← W ∪ Tpartial , where:

W = DC3(P, {0})
I = [0, |S|]
Tpartial = proj∨2(
DC4(DC3(Q, I), I)∩DC4(DC2(P,S), I)∩DC1(DC2(P, I),S)
)

T (s,b,b′) iff (P(s,b) ∧ b′ = 0) ∨ ∃s′ ∈ S :
(Q(s, s′) ∧ P(s,b) ∧ P(s′,b′)).
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Definitions for Extra Operators

DC2(P,S) , P, where P(x , y , z) = P(x , z) ∧ S(y)

DC3(Q, I) , Q, where Q(x , y , z) = Q(x , y) ∧ I(z)

DC1(R,S) , R, where R(x , y , z,h) = R(y , z,h) ∧ S(x)

DC4(R, I) , R, where R(x , y , z,h) = R(x , y , z) ∧ I(h)

proj∨2(F) , F ′, where F ′(x , y , z) =
∨

c : F(x , c, y , z)
Signatures MDD: T ← W ∪ Tpartial , where:

W = DC3(P, {0})
I = [0, |S|]
Tpartial = proj∨2(
DC4(DC3(Q, I), I)∩DC4(DC2(P,S), I)∩DC1(DC2(P, I),S)
)

W(s,b,b′) iff P(s,b) ∧ b′ ∈ {0}
T (s,b,b′) iff (P(s,b) ∧ b′ = 0) ∨ ∃s′ ∈ S :
(Q(s, s′) ∧ P(s,b) ∧ P(s′,b′)).
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Substituting Extra Operators into Tpartial

DC2(P,S) , P, where P(x , y , z) = P(x , z) ∧ S(y)

DC3(Q, I) , Q, where Q(x , y , z) = Q(x , y) ∧ I(z)

DC1(R,S) , R, where R(x , y , z,h) = R(y , z,h) ∧ S(x)

DC4(R, I) , R, where R(x , y , z,h) = R(x , y , z) ∧ I(h)

proj∨2(F) , F ′, where F ′(x , y , z) =
∨

c : F(x , c, y , z)
Tpartial = proj∨2

DC4(DC3(Q, I), I)∩DC4(DC2(P,S), I)∩DC1(DC2(P, I),S)

Tpartial(s,b,b′) iff
∨

s′

DC4(DC3(Q, I), I)(s, s′,b,b′) ∧
DC4(DC2(P,S), I)(s, s′,b,b′) ∧
DC1(DC2(P, I),S)(s, s′,b,b′)

T (s,b,b′) iff (P(s,b) ∧ b′ = 0) ∨ ∃s′ ∈ S :
(Q(s, s′) ∧ P(s,b) ∧ P(s′,b′)).
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c : F(x , c, y , z)

Tpartial = proj∨2
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T (s,b,b′) iff (P(s,b) ∧ b′ = 0) ∨ ∃s′ ∈ S :
(Q(s, s′) ∧ P(s,b) ∧ P(s′,b′)).
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I(b′)

T (s,b,b′) iff (P(s,b) ∧ b′ = 0) ∨ ∃s′ ∈ S :
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Hybrid Algorithm Block Splitting/Numbering

S State Space
T ⊆ S × [1, |S|]× [0, |S|] Signature map to pairs of blocks
P ′ ⊆ S × [1, |S|] Partition block number function of state
New partition blocks for each different signature.
Block number for each state according to its signature.
∃f ∈ [1, |S|]× [1, |S|]× [0, |S|] : ∀s ∈ S : ∀b ∈ [1, |S|] :
P ′(s,b) iff {〈b1,b2〉|f (b,b1,b2)} = {〈b1,b2〉|T (s,b1,b2)}.
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Hybrid Algorithm Block Splitting
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Hybrid Algorithm Block Renumbering Calculation

Utilize canonicity of MDD
Utilize fact that MDD is non-interleaved with state toward
root
Recursively DFS signature MDD T
Assign new partition number upon finding new signature.
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Hybrid Algorithm: Signatures MDD
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Hybrid Algorithm: Block Renumbering S → N
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Hybrid Algorithm Block Renumbering Algorithm

Assign new block number, corresponding to signature, to each
state.

Algorithm: SigRenum( MDD T )

Return SigRenum( MDD T ) from cache if possible.
If T is above signature level then

let R = new MDD with each child Ri = SigRenum(Ti )
else

let R = BDD for value of counter
increment counter

Put R = SigRenum( MDD T ) into cache.
Return R
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Hybrid Algorithm

Given: Initial partition block numbering in variable P, transition
relation in Q, state space in S.
Returns final partition block numbering in P.

Algorithm: refinement of block numbering using signature
Repeat:

Pold ← P
T ← W ∪ Tpartial , where:

let: W ← DC3(P, {0}), and: I ← [0, |S|]
Tpartial ← proj∨2
DC4(DC3(Q, I), I)∩DC4(DC2(P,S), I)∩DC1(DC2(P, I),S)

P ← SigRenum( T )
Until P = Pold
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Hybrid Algorithm with Transition Labeling

Given: Initial partition block numbering in variable P, transition
relation in Q, state space in S.
Returns final partition block numbering in P.

Algorithm: refinement of block numbering using signature
Repeat:

Pold ← P
For each t ∈ label loop:

T ← W ∪ Tpartial , where:
let: W ← DC3(P, {0}), and: I ← [0, |S|]
Tpartial ← proj∨2

DC4(DC3(Qt , I), I)∩DC4(DC2(P,S), I)∩DC1(DC2(P, I),S)

P ← SigRenum( T )

Until P = Pold
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Example from Algorithm 1 Signature MDD

Signatures MDD: T ← proj∨3((DC2(Q,S)) ∩ (DC1(E ,S)))

Calculate: ((DC2(Q,S)) ∩ (DC1(E ,S))) using single
recursive function.
Avoid construction of intermediates: DC2(Q,S) and
DC1(E ,S).
Recursive function will have 3 MDD parameters: Q, E ,S.
Given E = E−1 and E ⊆ S × S.
Each recursive call level corresponds to level of output
MDD.
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Algorithm 6: Unprojected Relational Composition

Calculate: R = ((DC2(Q,S)) ∩ (DC1(E ,S))),
so that R(a,b, c) iff Q(a, c) ∧ E(b, c) ∧ S(a)

Algorithm: UcompL( MDD Q, E ,S ) (memoized)

Leaf level: Return Q ∩ E
“a” level

Return new MDD R where child Ri = UcompL( Qi , E ,Si )
“b” level

Return new MDD R where child Ri = UcompL( Q, Ei ,S )
“c” level

Return new MDD R where child Ri = UcompL( Qi , Ei ,S )
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Improvements Applied to Both Algorithms

Improvement implemented as a single highly
parameterized recursive function: GenericComposeQQ.
Applied to: T ← proj∨3((DC2(Q,S)) ∩ (DC1(E ,S))),

(signature for Algorithm 1).
Applied to: Tpartial = proj∨2(
DC4(DC3(Q, I), I) ∩ DC4(DC2(P,S), I) ∩
DC1(DC2(P, I),S) ), (signature for Hybrid Algorithm).
Not applied to: ∆E ← proj∨3(DC2(T ,S) ·∪DC1(T ,S)),

(E update for Algorithm 1).
where x ·∪y , (x \ y) ∪ (y \ x)

Could have been (avoid calculating (x \ y) and (y \ x)).
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1 Overview
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2 Algorithms for Bisimulation
Paige and Tarjan
Symbolic Methods
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4 Results and Future Work
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Transitive Closure (Finite Ŝ)

Given: t[E] ⊆ Ŝ × Ŝ indexed set of transition relations
Given: Sin ⊆ Ŝ set of initial states
Returns: S ⊆ Ŝ states reachable from Sin by transitions t[E]

Algorithm: IterativeTransitiveClosure(t[E],Sin)

S ← Sin

Repeat:
Sold ← S
For each α ∈ E loop:

S ← S ∪ t[α](S)

Until S = Sold

Return: S
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Saturation Transitive Closure (Finite Ŝ)

Same givens and result as for previous Transitive Closure.

Algorithm: SaturationClosure(t[E],Sin)

S ← Sin

S ← SaturateChildren(t[E],S) ?

Repeat:
Sold ← S
For each α ∈ E loop:

S ← S ∪ t[α](S)
S ← SaturateChildren(t[E], S) ?

Until S = Sold

Return: S
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Saturation Transitive Closure (Finite Ŝ)

Same givens and result as for previous Transitive Closure.

Algorithm: SaturationClosure(t[E],Sin)

S ← Sin

S ← SaturateChildren(t[E],S) ?

Repeat:
Sold ← S
For each α ∈ E loop: If Top(t[α]) is top of S then: ?

S ← S ∪ t[α](S)
S ← SaturateChildren(t[E], S) ?

Until S = Sold

Return: S
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S ← S ∪ t[α](S)
S ← SaturateChildren(t[E], S) ?

Until S = Sold

Return: S

Malcolm Mumme Fully-Implicit Bisimulation



Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (fully implicit Algorithm 1)
Our Algorithms (Hybrid Algorithm H)
Our Algorithms (Saturation Algorithm A)

Helper Function for Saturation

Given: t[E] ⊆ Ŝ × Ŝ indexed set of transition relations
Given: Sin ⊆ Ŝ set of initial states
Returns: S ⊆ Ŝ states reachable from Sin by transitions t[E]
where Top(t[α]) is below top of S

Algorithm: SaturateChildren(t[E],Sin)

S ← new MDD Where:
child S[i] ← SaturationClosure(t[E],Sin[i]) ∀i
Return: S
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Saturation Transitive Closure (Finite Ŝ)

Given: t[E] ⊆ Ŝ × Ŝ And: Sin ⊆ Ŝ Returns: S ⊆ Ŝ

Algorithm: SaturationClosure(t[E],Sin)

S ← Sin

S[i] ← SaturationClosure(t[E],S[i]) ∀i
Repeat:

Sold ← S
For each α ∈ E loop:
For each α ∈ E loop: If Top(t[α]) is top of S then:

S ← S ∪ t[α](S)
S[i] ← SaturationClosure(t[E], S[i]) ∀i

Until S = Sold

Return: S
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Saturation Discussion.

Child MDDs always Saturated
Sharing Preserved
Similar to local block iteration
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Splitting.

Example

s1 s2

s'1 s'2

l l

=⇒

s1 s2

s'1

l
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Splitting with Deterministic Transitions.

Example

s1 s2

s'1 s'2

l l

=⇒

s1 s2

s'1 s'2

l l

=⇒

s1 s2

s'1

l
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Splitting with Deterministic Transitions is a Transition.

Example

s1 s2

s'1 s'2

l l

=⇒

s1 s2

s'1 s'2

l l
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Splitting with Deterministic Transitions is a Transition.

Example

s1 s2

s'1 s'2

L

=⇒

s1 s2

s'1 s'2

L
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Splitting with Deterministic Transitions is a Transition.

Given bisimulation problem:
Transitions: T[E] ⊆ S × S

Construct new domain: B̂ = S × S
Create new transitions: T[E] ⊆ B̂ × B̂.
T[α](〈s1, s2〉) = pairs 〈s3, s4〉
where s1 = T[α](s3) ∧ s2 = T[α](s4) (∀α ∈ E)

T[α] = (T[α] × T[α])
−1 (∀α ∈ E)
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Main Idea.

Given bisimulation problem:
Transitions: T[E] ⊆ S × S

T[α] = (T[α] × T[α])
−1 (∀α ∈ E)

∼ is closed under T[E]

Main Idea: Use Saturation to take closure of T[E]

Then: ∼ = B̂ \∼
Initialization? closure applied to ?
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“Splitting” with Deterministic Transitions is Incomplete.

Example

s1 s2

s'1 s'2

l l

=⇒

s1 s2

s'1 s'2

l l

=⇒

s1 s2

s'1

l

Malcolm Mumme Fully-Implicit Bisimulation



Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (fully implicit Algorithm 1)
Our Algorithms (Hybrid Algorithm H)
Our Algorithms (Saturation Algorithm A)

Initial Set.

Given bisimulation problem:
Transitions: T[E] ⊆ S × S

New domain: B̂ = S × S
Initial Set: Binit ⊆ B̂, where only 1 member of each pair
enables T[α], for some α ∈ E .

Initial Set: Binit =
⋃

α∈E (S[α] × (S \ S[α])) ∪ ((S \ S[α])× S[α])
where S[α] = {s ∈ S|∃s′ : 〈s, s′〉 ∈ T[α]}.
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Algorithm A

Given bisimulation problem:
Transitions: T[E] ⊆ S × S

Algorithm: SaturationBisimulation(S, T[E])

Define: B̂ = S × S

For (α ∈ E) loop: T[α] ← (T[α] × T[α])
−1

Construct: Binit ←
⋃

α∈E (S[α] × (S \ S[α])) ∪ ((S \ S[α])× S[α])
where S[α] = {s ∈ S|∃s′ : 〈s, s′〉 ∈ T[α]}.

∼ ← SaturationClosure(T[E],Binit )

Return: B̂ \∼ =∼
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SMART Integration

All code implemented in a single unit: “ms_lumping”.
Invoked from SMART by a single C++ function call:
“bigint ComputeNumEQClass(state_model *mdl);”
Calculates largest bisimulation and returns number of
equivalence classes.
Invocation caused by “num_eqclass” function in model.
Uses multiple caches supplied by SMART MDD library
(Thanks, Min!).
Uses operations: ∪, ∩, \, new MDD, ||, etc. from SMART
MDD library.
Implements operations for interleaved MDDs:
proj∨, ◦, DC∗, |classes|
Implements SigRenum
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Summary of Our Bisimulation Algorithms

Three Algorithms:
Fully Implicit
Transition
relation:
Interleaved MDD
Partition:
Equivalence,
Interleaved MDD
Method: Iterative
Splitting

Hybrid
Transition
relation:
Interleaved MDD
Partition: Block
number function
MDD
Method: Iterative
Splitting

Saturation
Transition
relation:
Interleaved MDD
Partition:
Equivalence,
Interleaved MDD
Method: Closure
of Splitting
Function
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Dining Philosophers

Existing Petri net model, parameterized in number of
philosophers N. Has 6N places and 4N transitions. Variable
ordering/assignment to levels changed to avoid
non-deterministic transitions. Ideal case for Interleaved
Ordering
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3× N “Comb” and N × N “Comb”

Contrived Simple Petri net, parameterized in rows N and
columns M. Has MN places and M(N − 1) transitions.
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Our Algorithms (Saturation Algorithm A)

Summary of Our Models

Three Models:
Model:
Trans graph:
# places:
# transitions:
Token density:
Depth
Fanout S:
Event span:

N phil’s
Cyclic
O(N)
O(N)
O(1)
O(N)
O(1)
O(1)

3× N “Comb”
acyclic
O(3N)
O(3N)
O(1)
O(N)
O(1)
O(3)

N × N “Comb”
acyclic
O(N2)
O(N2)
O(1)
O(N2)
O(1)
O(N)
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Our Algorithms (fully implicit Algorithm 1)
Our Algorithms (Hybrid Algorithm H)
Our Algorithms (Saturation Algorithm A)

Model Statistics

N philosophers
N states classes
2 18 17
3 76 76
4 322 321
5 1364 1363
6 5778 5777
7 2.4× 104 2.4× 104

8 1.0× 105 1.0× 105

9 4.3× 105 4.3× 105

10 1.9× 106 1.9× 106

11 7.9× 106 7.9× 106

12 3.3× 107 3.3× 107

13 1.4× 108 1.4× 108

14 6.0× 108 6.0× 108

3×N comb
N states classes
2 4 2
3 13 3
4 40 4
5 121 5
6 364 6
7 1093 7
8 3280 8
9 9841 9

10 3.0× 104 10
11 8.9× 104 11
12 2.7× 105 12
13 8.0× 105 13
14 2.4× 106 14
15 7.2× 106 15
16 2.2× 107 16
17 6.5× 107 17
18 1.9× 108 18
19 5.8× 108 19
20 1.7× 109 20

N×N comb
N states classes
2 4 4
3 13 3
4 85 4
5 781 5
6 9331 6
7 1.4× 105 7
8 2.4× 106 8
9 4.8× 107 9

10 1.1× 109 10
11 2.9× 1010 11
12 8.1× 1011 12
13 2.5× 1013 13
14 8.5× 1014 14
15 3.1× 1016 15
16 1.2× 1018 16
17 5.2× 1019 17
18 2.3× 1021 18
19 1.1× 1023 19
20 5.5× 1024 20
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Run-Time for Dining Philosophers

Compute time for bisimulation: N dining philosophers
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Space for Dining Philosophers

Maximum nodes in bisimulation: N Dining philosophers
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Output Size for Dining Philosophers

output size for saturation: N Dining philosophers
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Combined Dining Philosophers Results

Compute time for bisimulation: N dining philosophers
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Combined 3× N “Comb” Results

Bisimulation run times for 3XN Comb
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Bisimulation memory usage for 3XN comb
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Combined N × N “Comb” Results
Bisimulation run times for NXN comb
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Discussion of Results

Qualitative evaluation of Quantitative results:
Saturation performed well in all cases (especially D. P.).
Classic algorithm had surprisingly better memory use.
Saturation was not always fastest.

Additional Thoughts:
This is approximately what we sought.
Additional optimizations are possible.
Hybrid algorithm is not exactly the same as fastest known.
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Future Work

Improvements to current work:
Extend to non-deterministic transitions.
Additional models.
Increase operator integration.
Quantification/projection improvements.
“Weak” bisimulation (invisible transitions).

Other related work:
Implement fastest (previously) known algorithm.
SMART library improvements.
If possible, apply to lumping problem.
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Summary

Implementation of three bisimulation algorithms in SMART
Comparison using three Petri net models.
Obtained algorithm with good performance and (relatively)
small output

Future:
Improve and extend to non-deterministic transitions.
Compare with fastest (previously) known algorithm.
Publish.
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The End

fin

Malcolm Mumme Fully-Implicit Bisimulation



Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

After The End

(Click here for a reference.)
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Appendix For Further Reading

Ways to Represent Partitions

1 Equivalence Relation (Non-Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, x2, x3, . . ., y1, y2, y3, . . .

2 Equivalence Relation (Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, y1, x2, y2, x3, y3, . . .

3 Lists of Partition Blocks (link)

B1, B2, B3, B4, . . . | B∗ ⊆ S
Variable ordering: x1, x2, x3, . . .

4 Block Numbering/function of state (link)

〈s,n〉 | s ∈ S, n ∈ N
Variable ordering: x1, x2, x3, . . . k1, k2, k3, . . .
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Appendix For Further Reading

Partition Representation: Equivalence Relation
(Interleaved) {〈x , y〉|E(x , y)}
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Appendix For Further Reading

Partition Representation: Lists of Partition Blocks (or
Array etc) N→ S
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Partition Representation: Equivalence Relation
(Non-Interleaved) {〈x , y〉|E(x , y)}
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Appendix For Further Reading

Partition Representation: Block Numbering/function of
state S → N
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