Saturation Heuristic for Faster Bisimulation with Petri Nets

Department of Computer Science
University of California at Riverside

Project Presentation for Oral Qualifying Examination

Outline

(1) Overview

- Abstract
- Bisimulation
(2) Algorithms for Bisimulation
- Paige and Tarjan
- Symbolic Methods
- Previous Work
(3) Our Work
- Our Algorithms (fully implicit Algorithm 1)
- Our Algorithms (Hybrid Algorithm H)
- Our Algorithms (Saturation Algorithm A)

4. Results and Future Work

Abstract

The present work applies the Saturation heuristic and interleaved MDD partition representation to the bisimulation problem. For systems with deterministic transition relations (Petri Nets) bisimulation can be expressed as a state-space exploration problem, for which the saturation heuristic has been found to be quite efficient. The present work compares our novel saturation-based bisimulation algorithm with other fully-implicit and partially-implicit methods (using non-interleaved MDDs) in the context of the SMART verification tool. We found that with some models having very many equivalence classes in their bisimulation partitions, our novel algorithm gave much better speed performance than any of the other algorithms tested. With other models, our novel algorithm performed only slightly less well than the fastest tested algorithm.

Outline

(9) Overview

- Abstract
- Bisimulation
(2) Algorithms for Bisimulation
- Paige and Tarjan
- Symbolic Methods
- Previous Work
(3) Our Work
- Our Algorithms (fully implicit Algorithm 1)
- Our Algorithms (Hybrid Algorithm H)
- Our Algorithms (Saturation Algorithm A)

4. Results and Future Work

Outline

(9) Overview

- Abstract
- Bisimulation
(2) Algorithms for Bisimulation
- Paige and Tarjan
- Symbolic Methods
- Previous Work
(3) Our Work
- Our Algorithms (fully implicit Algorithm 1)
- Our Algorithms (Hybrid Algorithm H)
- Our Algorithms (Saturation Algorithm A)Results and Future Work

Definition of Bisimulation

\mathcal{B} is a bisimulation of colored, labeled FSA: $\langle S, C, T\rangle \mid$
$C \in S \rightarrow$ color $\wedge T \subseteq S \times$ label $\times S$, iff:
$\mathcal{B} \subseteq S \times S \wedge \forall\left\langle s_{1}, s_{2}\right\rangle \in \mathcal{B}:\left[C\left(s_{1}\right)=C\left(s_{2}\right) \wedge\left(\forall\left\langle s, l, s_{1}^{\prime}\right\rangle \in T:\right.\right.$
$\left.s=s_{1} \Longrightarrow \exists s_{2}^{\prime} \in S: T\left(s_{2}, l, s_{2}^{\prime}\right) \wedge \mathcal{B}\left(s_{1}^{\prime}, s_{2}^{\prime}\right)\right) \wedge\left(\forall\left\langle s, I, s_{2}^{\prime}\right\rangle \in T:\right.$
$\left.\left.s=s_{2} \Longrightarrow \exists s_{1}^{\prime} \in S: T\left(s_{1}, l, s_{1}^{\prime}\right) \wedge \mathcal{B}\left(s_{1}^{\prime}, s_{2}^{\prime}\right)\right)\right]$

Original Definition of Bisimulation (Milner 1989)

4.2 Strong bisimulation

The above discussion leads us to consider an equivalence relation with the following property:
P and Q are equivalent iff, for every action α, every α derivative of P is equivalent to some α-derivative of Q, and conversely.

Definition 1 A binary relation $\ddot{\mathcal{S}} \subseteq \mathcal{P} \times \mathcal{P}$ over agents is a strong bisimulation if $(P, Q) \in \mathcal{S}$ implies, for all $\alpha \in$ Act,
(i) Whenever $P \xrightarrow{\alpha} P^{\prime}$ then, for some $Q^{\prime}, Q \xrightarrow{\alpha} Q^{\prime}$ and $\left(P^{\prime}, Q^{\prime}\right) \in \mathcal{S}$
(ii) Whenever $Q \xrightarrow{\alpha} Q^{\prime}$ then, for some $P^{\prime}, P \xrightarrow{\alpha} P^{\prime}$ and $\left(P^{\prime}, Q^{\prime}\right) \in \mathcal{S}$

Why Bisimulation?

Bisimulation is . . .

- A special case of Lumping (A minimization problem for Markov systems) to simplify subsequent numeric computations
- An extensional notion of equivalence of states (FSA)

Notation:

- $R \subseteq S \times S$
- $\mathcal{B}\left(s_{1}, s_{2}\right)$ or $\left\langle s_{1}, s_{2}\right\rangle \in \mathcal{B}$
- "~"

A relation between states
" s_{1} and s_{2} are bisimilar"
The Largest Bisimulation

A Bisimulation is

Definition

-

(Given a colored, labeled transition system,(st,col,tran) $\langle S, C, T\rangle \mid C \in S \rightarrow$ color $\wedge T \subseteq S \times$ label $\times S$, A Bisimulation \mathcal{B} is a 2-ary relation on S where: $\mathcal{B} \subseteq S \times S \wedge$

Each pair in \mathcal{B} has the same color,

$\forall\left\langle s_{1}, s_{2}\right\rangle \in \mathcal{B}: C\left(s_{1}\right)=C\left(s_{2}\right)$
And has matching transitions to pairs in \mathcal{B} $\forall\left\langle s, I, s_{1}^{\prime}\right\rangle \in T: s=s_{1} \Longrightarrow \exists s_{2}^{\prime} \in S: T\left(s_{2}, I, s_{2}^{\prime}\right) \wedge \mathcal{B}\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$ $\forall\left\langle s, I, s_{2}^{\prime}\right\rangle \in T: s=s_{2} \Longrightarrow \exists s_{1}^{\prime} \in S: T\left(s_{1}, I, s_{1}^{\prime}\right) \wedge \mathcal{B}\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$

A Bisimula Definition

- (Given a colored, labeled transition system,(st,col,tran) $\langle S, C, T\rangle \mid C \in S \rightarrow$ color $\wedge T \subseteq S \times$ label $\times S$,

0
A Bisimulation \mathcal{B} is a 2 -ary relation on S where:

$$
\mathcal{B} \subseteq S \times S \wedge
$$

$$
\forall\left\langle s_{1}, s_{2}\right\rangle \in \mathcal{B}
$$

$$
C\left(s_{1}\right)=C\left(s_{2}\right)
$$

$$
\text { And has matching transitions to pairs in } \mathcal{B}
$$

$$
\forall\left\langle s, I, s_{1}^{\prime}\right\rangle \in T
$$

$$
s=s_{1}
$$

A Bisimula Definition

- (Given a colored, labeled transition system,(st,col,tran) $\langle S, C, T\rangle \mid C \in S \rightarrow$ color $\wedge T \subseteq S \times$ label $\times S$,
-

A Bisimulation \mathcal{B} is a 2-ary relation on S where: $\mathcal{B} \subseteq S \times S \wedge$
-
Each pair in \mathcal{B} has the same color, $\forall\left\langle s_{1}, s_{2}\right\rangle \in \mathcal{B}: C\left(s_{1}\right)=C\left(s_{2}\right) \wedge$

And has matching transitions to pairs in \mathcal{B}
$\forall\left\langle s, I, s_{1}^{\prime}\right\rangle \in T: s=s_{1}$

A Bisimulation is

Definition

- (Given a colored, labeled transition system,(st,col,tran) $\langle S, C, T\rangle \mid C \in S \rightarrow$ color $\wedge T \subseteq S \times$ label $\times S$,
-

A Bisimulation \mathcal{B} is a 2-ary relation on S where: $\mathcal{B} \subseteq S \times S \wedge$
-
Each pair in \mathcal{B} has the same color, $\forall\left\langle s_{1}, s_{2}\right\rangle \in \mathcal{B}: C\left(s_{1}\right)=C\left(s_{2}\right) \wedge$

And has matching transitions to pairs in \mathcal{B} $\forall\left\langle s, I, s_{1}^{\prime}\right\rangle \in T: s=s_{1} \Longrightarrow \exists s_{2}^{\prime} \in S: T\left(s_{2}, I, s_{2}^{\prime}\right) \wedge \mathcal{B}\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$

$$
\forall\left\langle s, l, s_{2}^{\prime}\right\rangle \in T: s=s_{2} \Longrightarrow \exists s_{1}^{\prime} \in S: T\left(s_{1}, l, s_{1}^{\prime}\right) \wedge \mathcal{B}\left(s_{1}^{\prime}, s_{2}^{\prime}\right)
$$

A Bisimulation is

Definition

- (Given a colored, labeled transition system,(st,col,tran) $\langle S, C, T\rangle \mid C \in S \rightarrow$ color $\wedge T \subseteq S \times$ label $\times S$,
-

A Bisimulation \mathcal{B} is a 2-ary relation on S where: $\mathcal{B} \subseteq S \times S \wedge$
-
Each pair in \mathcal{B} has the same color, $\forall\left\langle s_{1}, s_{2}\right\rangle \in \mathcal{B}: C\left(s_{1}\right)=C\left(s_{2}\right) \wedge$
0
And has matching transitions to pairs in \mathcal{B} $\forall\left\langle s, l, s_{1}^{\prime}\right\rangle \in T: s=s_{1} \Longrightarrow \exists s_{2}^{\prime} \in S: T\left(s_{2}, I, s_{2}^{\prime}\right) \wedge \mathcal{B}\left(s_{1}^{\prime}, s_{2}^{\prime}\right)$

$$
\forall\left\langle s, l, s_{2}^{\prime}\right\rangle \in T: s=s_{2} \Longrightarrow \exists s_{1}^{\prime} \in S: T\left(s_{1}, l, s_{1}^{\prime}\right) \wedge \mathcal{B}\left(s_{1}^{\prime}, s_{2}^{\prime}\right)
$$

Matching Transitions to Pairs in \mathcal{B}.

$$
\begin{aligned}
& \forall\left\langle s_{1}, s_{2}\right\rangle \in \mathcal{B}: \\
& \forall\left\langle s, l, s_{1}^{\prime}\right\rangle \in T: s=s_{1} \Longrightarrow \exists s_{2}^{\prime} \in S: T\left(s_{2}, l, s_{2}^{\prime}\right) \wedge \mathcal{B}\left(s_{1}^{\prime}, s_{2}^{\prime}\right)
\end{aligned}
$$

The (Largest) Bisimulation is ...

Definition

The Largest Bisimulation, " \sim " is the union of all bisimulations \mathcal{B}

And is an equivalence relation.

Original Definition of " \sim " (Milner 1989)

Definition $2 P$ and Q are strongly equivalent or strongly bisimilar, written $P \sim Q$, if $(P, Q) \in \mathcal{S}$ for some strong bisimulation \mathcal{S}. This may be equivalently expressed as follows:

$$
\sim=\bigcup\{\mathcal{S}: \mathcal{S} \text { is a strong bisimulation }\}
$$

Proposition 2

(1) \sim is the largest strong bisimulation.
(2) \sim is an equivalence relation.

Relational Coarsest Partition = Largest Bisimulation.

Generic iterative splitting algorithm:

- Iterative update of some equivalence relation variable R.
- Start with $R=$ coarsest partition of state space $S, S \times S$ ($\sim \subseteq R$)
- Initially split R based on state color
- Iteratively remove implausible members from R when required by definition of Bisimulation, by splitting R into smaller blocks B_{*}.

$$
\forall\left\langle s, l, s_{1}^{\prime}\right\rangle \in T: s=s_{1} \Longrightarrow \exists s_{2}^{\prime} \in S: T\left(s_{2}, l, s_{2}^{\prime}\right) \wedge R\left(s_{1}^{\prime}, s_{2}^{\prime}\right)
$$

- Iteration continues until all blocks have been used as splitters (inherited stability, block unions).
- May iterate over transition labels. Algorithm cores are often described without reference to labeling.

Algorithms for Bisimulation
Our Work
Results and Future Work
Summary

Splitting.

$$
\begin{aligned}
& \forall\left\langle s_{1}, s_{2}\right\rangle \in R: \\
& \forall\left\langle s, l, s_{1}^{\prime}\right\rangle \in T: s=s_{1} \Longrightarrow \exists s_{2}^{\prime} \in S: T\left(s_{2}, l, s_{2}^{\prime}\right) \wedge R\left(s_{1}^{\prime}, s_{2}^{\prime}\right)
\end{aligned}
$$

Example

Matching Transitions to Pairs in R.

$$
\begin{aligned}
& \forall\left\langle s_{1}, s_{2}\right\rangle \in R: \\
& \forall\left\langle s, l, s_{1}^{\prime}\right\rangle \in T: s=s_{1} \Longrightarrow \exists s_{2}^{\prime} \in S: T\left(s_{2}, l, s_{2}^{\prime}\right) \wedge R\left(s_{1}^{\prime}, s_{2}^{\prime}\right)
\end{aligned}
$$

Outline

(1) Overview

- Abstract
- Bisimulation
(2) Algorithms for Bisimulation
- Paige and Tarjan
- Symbolic Methods
- Previous Work
(3) Our Work
- Our Algorithms (fully implicit Algorithm 1)
- Our Algorithms (Hybrid Algorithm H)
- Our Algorithms (Saturation Algorithm A)Results and Future Work

Splitting produces hierarchy of partition blocks

"Process The Smaller Half." $O(m \log n)$

- Start with $R=$ coarsest partition of state space $S, S \times S$
- First split uses S as splitter. Separates states with no transitions.
- Remember hierarchy of split blocks for use as splitters
- Use 2 splitters K and $K_{0} \backslash K$, where K_{0} was already a splitter.
- Iteratively split blocks B into smaller blocks B_{0}, B_{1}, and B^{\prime}
- Maintain reverse adjacency lists
- Maintain counts of edges from states to states in splitter blocks

Overview
Algorithms for Bisimulation
Our Work
Results and Future Work
Summary

"Process The Smaller Half." O($m \log n$)

"Process The Smaller Half." $O(m \log n)$

- Uses edge counts to distinguish between members of B_{0} and B_{1}.
- Avoids processing members of B^{\prime} and $K_{0} \backslash K$ (by reusing structures).
- Update edge counts.
- Each state s occurs in at most $\log n$ splitters.
- Each edge participates in at most $O(\log n)$ splitting operations
- $T=O(m \log n)$

Outline

(1) Overview

- Abstract
- Bisimulation
(2) Algorithms for Bisimulation
- Paige and Tarjan
- Symbolic Methods
- Previous Work
(3) Our Work
- Our Algorithms (fully implicit Algorithm 1)
- Our Algorithms (Hybrid Algorithm H)
- Our Algorithms (Saturation Algorithm A)Results and Future Work

Algorithms for Bisimulation
Our Work
Results and Future Work
Summary

"Symbolic Methods" \neq Mathematica $\Theta_{(\text {WolframResearch })}$

Multi-Way Decision Diagrams Represent Relations

- Each path in MDD (graph) corresponds to tuple in relation.
- Canonical: sharing \leftrightarrow compression, comparison, unique table, non-mutable.
- Efficient memoized recursive algorithms for set operations: (\in (not memoized), $|()|, \cup, \cap, \backslash, \subseteq$).
- Efficient memoized recursive algorithms for functional operations: (\circ, \exists, \forall).
- Set operations implemented in SMART MDD library.
- SMART Saturation algorithm for transitive closure (state space exploration).
- "Quasi-reduced", with "NULL" edges
- Variable ordering matters.

Algorithms for Bisimulation
Our Work
Results and Future Work
Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Set $=$ Boolean Table $\left(\hat{S}=[1,3]^{4}\right)$

Algorithms for Bisimulation
Our Work
Results and Future Work Summary

Empty Subsets

Algorithms for Bisimulation
Our Work
Results and Future Work
Summary

Replace with "NULL" Edges

Algorithms for Bisimulation
Our Work
Results and Future Work Summary

Quasi-Reduce at Leaf Level

Algorithms for Bisimulation
Our Work
Results and Future Work
Summary

Quasi-Reduced MDD

Memoized Recursive Algorithm for Set Difference (" \backslash ")

Algorithm $\mathcal{R} \leftarrow \mathcal{X} \backslash \mathcal{Y}$

(1) Handle a few special cases before checking cache:

- If $\mathcal{X}=\emptyset$ then return with $\mathcal{R} \leftarrow \emptyset$
(3) If $\mathcal{Y}=\emptyset$ then return with $\mathcal{R} \leftarrow \mathcal{X}$
(0) If $\mathcal{X}=\mathcal{Y}$ then return with $\mathcal{R} \leftarrow \emptyset$
(B) If the cache has $\mathcal{X} \backslash \mathcal{Y}$ then return with $\mathcal{R} \leftarrow$ cached value
(3) Construct new MDD node \mathcal{R} as follows:
(9) Recursively call: $\mathcal{R}_{i} \leftarrow \mathcal{X}_{i} \backslash \mathcal{Y}_{i}$, for each variable value i
(3) If $\forall i: \mathcal{R}_{i}=\emptyset$ then $\mathcal{R} \leftarrow \emptyset$
(0) Make \mathcal{R} canonical: $\mathcal{R} \leftarrow$ unique (\mathcal{R})
- Put $\mathcal{R}=\mathcal{X} \backslash \mathcal{Y}$ into the cache
(8) Return \mathcal{R}

Memoized Recursive Algorithm for Set Difference (" \backslash ")

Algorithm $\mathcal{R} \leftarrow \mathcal{X} \backslash \mathcal{Y}$

(1) Handle a few special cases before checking cache:
(1) If $\mathcal{X}=\emptyset$ then return with $\mathcal{R} \leftarrow \emptyset$
(2) If $\mathcal{Y}=\emptyset$ then return with $\mathcal{R} \leftarrow \mathcal{X}$
(3) If $\mathcal{X}=\mathcal{Y}$ then return with $\mathcal{R} \leftarrow \emptyset$
(2) If the cache has $\mathcal{X} \backslash \mathcal{Y}$ then return with $\mathcal{R} \leftarrow$ cached value
(3) Construct new MDD node \mathcal{R} as follows:
(4) Recursively call: $\mathcal{R}_{i} \leftarrow \mathcal{X}_{i} \backslash \mathcal{Y}_{i}$, for each variable value i
(5) If $\forall i: \mathcal{R}_{i}=\emptyset$ then $\mathcal{R} \leftarrow \emptyset$
(6) Make \mathcal{R} canonical: $\mathcal{R} \leftarrow$ unique (\mathcal{R})
(1) Put $\mathcal{R}=\mathcal{X} \backslash \mathcal{Y}$ into the cache
(3) Return \mathcal{R}

Memoized Recursive Algorithm for Set Difference (" \backslash ")

Algorithm $\mathcal{R} \leftarrow \mathcal{X} \backslash \mathcal{Y}$

(1) Handle a few special cases before checking cache:
(1) If $\mathcal{X}=\emptyset$ then return with $\mathcal{R} \leftarrow \emptyset$
(2) If $\mathcal{Y}=\emptyset$ then return with $\mathcal{R} \leftarrow \mathcal{X}$
(3) If $\mathcal{X}=\mathcal{Y}$ then return with $\mathcal{R} \leftarrow \emptyset$
(2) If the cache has $\mathcal{X} \backslash \mathcal{Y}$ then return with $\mathcal{R} \leftarrow$ cached value
(3) Construct new MDD node \mathcal{R} as follows:
(4) Recursively call: $\mathcal{R}_{i} \leftarrow \mathcal{X}_{i} \backslash \mathcal{Y}_{i}$, for each variable value i
(5) If $\forall i: \mathcal{R}_{i}=\emptyset$ then $\mathcal{R} \leftarrow \emptyset$
(C) Make \mathcal{R} canonical: $\mathcal{R} \leftarrow$ unique (\mathcal{R})
(1) Put $\mathcal{R}=\mathcal{X} \backslash \mathcal{Y}$ into the cache
(8) Return \mathcal{R}

Memoized Recursive Algorithm for Set Difference ("\")

Algorithm $\mathcal{R} \leftarrow \mathcal{X} \backslash \mathcal{Y}$

(1) Handle a few special cases before checking cache:
(1) If $\mathcal{X}=\emptyset$ then return with $\mathcal{R} \leftarrow \emptyset$
(2) If $\mathcal{Y}=\emptyset$ then return with $\mathcal{R} \leftarrow \mathcal{X}$
(3) If $\mathcal{X}=\mathcal{Y}$ then return with $\mathcal{R} \leftarrow \emptyset$
(3) If the cache has $\mathcal{X} \backslash \mathcal{Y}$ then return with $\mathcal{R} \leftarrow$ cached value
(3) Construct new MDD node \mathcal{R} as follows:
(4) Recursively call: $\mathcal{R}_{i} \leftarrow \mathcal{X}_{i} \backslash \mathcal{Y}_{i}$, for each variable value i
(5) If $\forall i: \mathcal{R}_{i}=\emptyset$ then $\mathcal{R} \leftarrow \emptyset$
(6) Make \mathcal{R} canonical: $\mathcal{R} \leftarrow$ unique (\mathcal{R})
(1) Put $\mathcal{R}=\mathcal{X} \backslash \mathcal{Y}$ into the cache
(8) Return \mathcal{R}

Memoized Recursive Algorithm for Set Difference (" \backslash ")

Algorithm $\mathcal{R} \leftarrow \mathcal{X} \backslash \mathcal{Y}$

(1) Handle a few special cases before checking cache:
(1) If $\mathcal{X}=\emptyset$ then return with $\mathcal{R} \leftarrow \emptyset$
(2) If $\mathcal{Y}=\emptyset$ then return with $\mathcal{R} \leftarrow \mathcal{X}$
(3) If $\mathcal{X}=\mathcal{Y}$ then return with $\mathcal{R} \leftarrow \emptyset$
(2) If the cache has $\mathcal{X} \backslash \mathcal{Y}$ then return with $\mathcal{R} \leftarrow$ cached value
(3) Construct new MDD node \mathcal{R} as follows:
(4) Recursively call: $\mathcal{R}_{i} \leftarrow \mathcal{X}_{i} \backslash \mathcal{Y}_{i}$, for each variable value i
(5) If $\forall i: \mathcal{R}_{i}=\emptyset$ then $\mathcal{R} \leftarrow \emptyset$
(6) Make \mathcal{R} canonical: $\mathcal{R} \leftarrow$ unique (\mathcal{R})
(7) Put $\mathcal{R}=\mathcal{X} \backslash \mathcal{Y}$ into the cache
(8) Return \mathcal{R}

Memoized Recursive Algorithm for Set Difference (" \backslash ")

Algorithm $\mathcal{R} \leftarrow \mathcal{X} \backslash \mathcal{Y}$

(1) Handle a few special cases before checking cache:
(1) If $\mathcal{X}=\emptyset$ then return with $\mathcal{R} \leftarrow \emptyset$
(2) If $\mathcal{Y}=\emptyset$ then return with $\mathcal{R} \leftarrow \mathcal{X}$
(3) If $\mathcal{X}=\mathcal{Y}$ then return with $\mathcal{R} \leftarrow \emptyset$
(2) If the cache has $\mathcal{X} \backslash \mathcal{Y}$ then return with $\mathcal{R} \leftarrow$ cached value
(3) Construct new MDD node \mathcal{R} as follows:
(4) Recursively call: $\mathcal{R}_{i} \leftarrow \mathcal{X}_{i} \backslash \mathcal{Y}_{i}$, for each variable value i
(5) If $\forall i: \mathcal{R}_{i}=\emptyset$ then $\mathcal{R} \leftarrow \emptyset$
(6) Make \mathcal{R} canonical: $\mathcal{R} \leftarrow$ unique (\mathcal{R})
() Put $\mathcal{R}=\mathcal{X} \backslash \mathcal{Y}$ into the cache
(8) Return \mathcal{R}

Algorithms for Bisimulation
Our Work
Results and Future Work
Summary

Variable Ordering Matters (1)

Overview
Algorithms for Bisimulation
Our Work
Results and Future Work
Summary

Variable Ordering Matters (2)

Represent FSAs as Relations（and MDDs）

＂01＂＞	＂0001＂
〈＂00＂\rightarrow＂10＂${ }^{\text {¢ }}$	＂0010＂
〈＂01＂\rightarrow＂00＂	＂0100＂
〈＂01＂\rightarrow＂11＂${ }^{\text {¢ }}$	＂0111
〈＂10＂\rightarrow＂11＂${ }^{\text {¢ }}$	＂101
〈＂10＂\rightarrow＂ 20 ＂${ }^{\text {¢ }}$	＂1020
〈＂11＂\rightarrow＂10＂${ }^{\text {¢ }}$	＂1110＂
〈＂11＂\rightarrow＂21＂${ }^{\text {¢ }}$	＂112
〈＂20＂\rightarrow＂00＂${ }^{\text {¢ }}$	＂2000＂
〈＂20＂\rightarrow＂21＂${ }^{\text {¢ }}$	＂2021＂
〈＂21＂\rightarrow＂01＂${ }^{\text {¢ }}$	＂2101＂
〈＂21＂\rightarrow＂20＂＞	＂2120

Represent FSAs as Relations (and MDDs)

- Each state variable corresponds to a (set of) variables in tuple.
- Each transition in FSA corresponds to tuple in transition relation.
- Interleaved ordering of variables of source and destination states of transition relation usually yields relatively compact MDDs.
- SMART_{2} produces MDDs of transition relations in interleaved form.

Alternate Ways to Represent Partitions as Relations

(1) Equivalence Relation:

$$
\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S
$$

(2) List of Partition Blocks

Alternate Ways to Represent Partitions as Relations

(1) Equivalence Relation:
$\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
(2) List of Partition Blocks
$B_{1}, B_{2}, B_{3}, B_{4}, \ldots \mid$
$B_{*} \subseteq S$
(3) Block Numbering
$\langle s, n\rangle \mid s \in S, n \in \mathbb{N}$

Alternate Ways to Represent Partitions as Relations

(1) Equivalence Relation:
$\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
(2) List of Partition Blocks
$B_{1}, B_{2}, B_{3}, B_{4}, \ldots \mid$ $B_{*} \subseteq S$
(3) Block Numbering

$$
\langle s, n\rangle \mid s \in S, n \in \mathbb{N}
$$

Ways to Represent Partitions as MDDs

(1) Equivalence Relation (Non-Interleaved)

- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$
(2) Equivalence Relation (Interleaved)
- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}$,
(3) Lists of Partition Blocks
- $B_{1}, B_{2}, B_{3}, B_{4}$,

- Variable ordering: x_{1}, x_{2}, x_{3},
(9) Block Numbering/function of state
- $\langle s, n\rangle \mid s \in S, n \in \mathbb{N}$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots k_{1}, k_{2}, k_{3}$,

Ways to Represent Partitions as MDDs

(1) Equivalence Relation (Non-Interleaved)

- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$
(2) Equivalence Relation (Interleaved) (link)
- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, \ldots$
(3) Lists of Partition Blocks
- $B_{1}, B_{2}, B_{3}, B_{4}$,
- Variable ordering: x_{1}, x_{2}, x_{3},
(4) Block Numbering/function of state
- $\langle s, n\rangle \mid s \in S, n \in \mathbb{N}$
- Variable ordering:

Ways to Represent Partitions as MDDs

(1) Equivalence Relation (Non-Interleaved)

- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$
(2) Equivalence Relation (Interleaved) (link)
- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, \ldots$
(3) Lists of Partition Blocks (link)
- $B_{1}, B_{2}, B_{3}, B_{4}, \ldots \mid B_{*} \subseteq S$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots$
(9) Block Numbering/function of state
- Variable ordering:

Ways to Represent Partitions as MDDs

(1) Equivalence Relation (Non-Interleaved)

- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$
(2) Equivalence Relation (Interleaved) (link)
- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, \ldots$
(3) Lists of Partition Blocks
- $B_{1}, B_{2}, B_{3}, B_{4}, \ldots \mid B_{*} \subseteq S$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots$
(4) Block Numbering/function of state (link)
- $\langle s, n\rangle \mid s \in S, n \in \mathbb{N}$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots k_{1}, k_{2}, k_{3}, \ldots$

Outline

(1) Overview

- Abstract
- Bisimulation
(2) Algorithms for Bisimulation
- Paige and Tarjan
- Symbolic Methods
- Previous Work
(3) Our Work
- Our Algorithms (fully implicit Algorithm 1)
- Our Algorithms (Hybrid Algorithm H)
- Our Algorithms (Saturation Algorithm A)Results and Future Work

Generic Signature-Based Splitting Algorithm

- Split each partition block using all blocks as splitters.
- State Space: S, Partition: $P \in S \rightarrow$ Block, Transition: $Q \subseteq S \times S$, Signature: T
- Signature of a state s includes set of partition blocks to which s has transitions.
- Signature includes current partition block where s resides.
- Signature often described without edge labeling.
- Define new partition of S, with a block for each signature.

Algorithm: Signature-Based Splitting

(1) Signature: $T(s)=\left\langle\mathrm{P}(\mathrm{s}),\left\{P\left(s^{\prime}\right) \mid\left\langle s, s^{\prime}\right\rangle \in Q\right\}\right\rangle$.
(2) New Partition: $P^{\prime}(s)=f(T(s))$ (for some bijection f)
(3) Repeat $1 ; 2 ; P \leftarrow P^{\prime}$ until $P=P^{\prime}$

Algorithms for Bisimulation
Our Work
Results and Future Work
Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Splitting.

Example

Generic Signature-Based Splitting Algorithm

Example

transitions (Q) :

,
 Generic Signature-Based Splitting Algorithm

Generic Signature-Based Splitting Algorithm

$$
T=Q \circ P
$$

-
 Generic Signature-Based Splitting Algorithm

Generic Signature-Based Splitting Algorithm

- Split each partition block using all blocks as splitters.
- State Space: S, Partition: $P \in S \rightarrow$ Block, Transition: $Q \subseteq S \times S$, Signature: T
- Signature of a state s includes set of partition blocks to which s has transitions.
- Signature includes current partition block where s resides.
- Signature often described without edge labeling.
- Define new partition of S, with a block for each signature.

Algorithm: Signature-Based Splitting

(1) Signature: $T(s)=\left\langle\mathrm{P}(\mathrm{s}),\left\{P\left(s^{\prime}\right) \mid\left\langle s, s^{\prime}\right\rangle \in Q\right\}\right\rangle$.
(2) New Partition: $P^{\prime}(s)=f(T(s))$ (for some bijection f)
(3) Repeat $1 ; 2 ; P \leftarrow P^{\prime}$ until $P=P^{\prime}$

Algorithm: Rank-Based Initial Partition

- Agostino Dovier, Carla Piazza, and Alberto Policriti (2004).
- Linear symbolic steps.
- Produces rank-based partition
- Partition representation: lists of partition blocks
- Needs other block splitting algorithm to finish.
- Apply other algorithm to blocks in rank order.
- Strongly connected components cause problems.
- Extract rank-1 elements: $R_{1} \leftarrow S \backslash$ preimage (S)

Algorithm: Rank-Based Initial Partition

Example

Algorithm: Forwarding, Splitting, Ordering

- Ralf Wimmer, Marc Herbstritt, and Bernd Becker (2007).
- Partition representation: lists of blocks AND numbering function
- Algorithm maintains signature and partition.
- Forwarding: Immediately update partition numbering function.
- Split-drive refinement: Only attempt splitting on blocks that might be split.
- Block ordering: Split blocks that might propagate splitting most.

History

(1) Our previous work (summary)

- Review lumping algorithms.
- Ideas: Interleaved partition representation, depth-based
- Limit scope to bisimulation instead of lumping.
- Algorithm 1: Relational interleaved partition refinement
- Implement interleaved partition refinement for bisimulation.
- Review bisimulation: Bouali and De Simone (1992).
- Implement hybrid algorithm to compare representations
- Hybrid algorithm was usually faster, for models we used
(2) Attempted improvements
- Increased integration of set operations (minor variations)
- Calculate bisimulation over \hat{S} (often much worse)
- Symbolic block numbering in Hybrid algorithm (couldn't)
- Idea: Saturation construction of $\bar{\sim}$

Our Algorithms (fully implicit Algorithm 1)
Our Algorithms (Hybrid Algorithm H)
Our Algorithms (Saturation Algorithm A)

Outline

(1) Overview

- Abstract
- Bisimulation
(2) Algorithms for Bisimulation
- Paige and Tarjan
- Symbolic Methods
- Previous Work
(3) Our Work
- Our Algorithms (fully implicit Algorithm 1)
- Our Algorithms (Hybrid Algorithm H)
- Our Algorithms (Saturation Algorithm A)Results and Future Work

Symbolic Bisimulation Minimization

- Amar Bouali and Robert De Simone (1992).
- Partition representation: Equivalence relation (interleaved or non-interleaved)
- Transition representation: Relation (interleaved or non-interleaved (respectively))
- Similar to generic signature-based splitting algorithm.

Our Implementation of Bouali and De Simone's Algorithm

- Partition representation: Equivalence relation (interleaved)
- Transition representation: Relation (interleaved)
- Similar to generic signature-based splitting algorithm, except:
- Equivalence relation allows signature without current partition number.

Algorithm 1 Signature Formula

- S
- $E \subseteq S \times S$
- $Q_{(t)} \subseteq \hat{S} \times \hat{S}$
- $T \subseteq S \times S=Q \circ E$
- $T\left(s_{1}, s_{3}\right)$ iff $\exists s_{2} \in S: Q\left(s_{1}, s_{2}\right) \wedge E\left(s_{2}, s_{3}\right) \wedge S\left(s_{1}\right)$

Generic Signature-Based Splitting Algorithm

Example

transitions (Q):

Our Algorithms (fully implicit Algorithm 1)
Our Algorithms (Hybrid Algorithm H)
Our Algorithms (Saturation Algorithm A)

Algorithm 1 Signature

Example

Algorithm 1 Signature

$$
T=Q \circ P
$$

$=$

Algorithm 1 Signature Calculation

- State space MDD: \mathcal{S}
- Interleaved equivalence relation MDD: $\mathcal{E} \subseteq S \times S$
- Interleaved transition relation MDD: $\mathcal{Q} \subseteq \hat{S} \times \hat{S}$
- Signatures MDD: $\mathcal{T} \leftarrow \operatorname{proj}_{\vee 3}\left(\left(D C_{2}(\mathcal{Q}, \mathcal{S})\right) \cap\left(D C_{1}(\mathcal{E}, \mathcal{S})\right)\right)$
- $T\left(s_{1}, s_{3}\right)$ iff $\exists s_{2} \in S: Q\left(s_{1}, s_{2}\right) \wedge E\left(s_{2}, s_{3}\right) \wedge S\left(s_{1}\right)$

Definitions for Extra Operators

- $D C_{1}(\mathcal{E}, \mathcal{S}) \triangleq \underline{\mathcal{E}}$, where $\underline{\mathcal{E}}(x, y, z)=\mathcal{E}(y, z) \wedge \mathcal{S}(x)$
- $D C_{2}(\mathcal{Q}, \mathcal{S}) \triangleq \underline{\mathcal{Q}}$, where $\underline{\mathcal{Q}}(x, y, z)=\mathcal{Q}(x, z) \wedge \mathcal{S}(y)$
- $\operatorname{proj}_{3}(\mathcal{F}) \triangleq \mathcal{F}^{\prime}$, where $\mathcal{F}^{\prime}(x, y)=\bigvee c: \mathcal{F}(x, y, c)$
- Signatures MDD: $\mathcal{T} \leftarrow \operatorname{proj}_{3}\left(\left(D C_{2}(\mathcal{Q}, \mathcal{S})\right) \cap\left(D C_{1}(\mathcal{E}, \mathcal{S})\right)\right)$
- $\mathcal{T}(x, y) \leftarrow \bigvee z:(\underline{\mathcal{Q}}(x,(y), z) \wedge \underline{\mathcal{E}}((x), y, z))$
- $\mathcal{T}(x, y) \leftarrow \bigvee z:(\mathcal{Q}(x, z) \wedge \mathcal{S}(y) \wedge \mathcal{E}(y, z) \wedge \mathcal{S}(x))$
- $\mathcal{T}\left(s_{1}, s_{3}\right) \leftarrow \bigvee s_{2}:\left(\mathcal{Q}\left(s_{1}, s_{2}\right) \wedge \mathcal{S}\left(s_{3}\right) \wedge \mathcal{E}\left(s_{3}, s_{2}\right) \wedge \mathcal{S}\left(s_{1}\right)\right)$
- $\mathcal{T}\left(s_{1}, s_{3}\right) \leftarrow \bigvee s_{2}:\left(\mathcal{Q}\left(s_{1}, s_{2}\right) \wedge \mathcal{E}\left(s_{3}, s_{2}\right) \wedge \mathcal{S}\left(s_{1}\right)\right)$
- $T\left(s_{1}, s_{3}\right)$ iff $\exists s_{2} \in S: Q\left(s_{1}, s_{2}\right) \wedge E\left(s_{2}, s_{3}\right) \wedge S\left(s_{1}\right)$

Algorithm 1 Equivalence Relation Formula

- S
- $T \subseteq S \times S=Q \circ E$
- $\Delta E \subseteq S \times S$
- $\Delta E\left(s_{1}, s_{3}\right)$ iff $\forall s_{2} \in S: T\left(s_{1}, s_{2}\right)=T\left(s_{3}, s_{2}\right)$
- $E^{\prime} \leftarrow E \wedge \Delta E$

State space Signatures

Equivalence relation update

Algorithm 1 Equivalence Relation Calculation

- State space MDD: \mathcal{S}
- Signatures MDD: \mathcal{T}
- $\Delta \mathcal{E} \leftarrow \operatorname{proj}_{\wedge 3}\left(D C_{2}(\mathcal{T}, \mathcal{S}) \equiv D C_{1}(\mathcal{T}, \mathcal{S})\right)$
- $\mathcal{E}^{\prime} \leftarrow \mathcal{E} \wedge \Delta \mathcal{E}$
- $\Delta E\left(s_{1}, s_{3}\right)$ iff $\forall s_{2} \in S: T\left(s_{1}, s_{2}\right)=T\left(s_{3}, s_{2}\right)$

Algorithm 1 Equivalence Relation Calculation

- $\Delta \mathcal{E} \leftarrow \operatorname{proj}_{\wedge 3}\left(D C_{2}(\mathcal{T}, \mathcal{S}) \equiv D C_{1}(\mathcal{T}, \mathcal{S})\right)$
- $\mathcal{E}^{\prime} \leftarrow \mathcal{E} \wedge \Delta \mathcal{E}$
- $\overline{\Delta \mathcal{E}} \leftarrow \operatorname{proj}_{\checkmark 3}\left(D C_{2}(\mathcal{T}, \mathcal{S}) \cup D C_{1}(\mathcal{T}, \mathcal{S})\right)$
- where $x \cup y \triangleq(x \backslash y) \cup(y \backslash x)$
- $\mathcal{E}^{\prime} \leftarrow \mathcal{E} \backslash \overline{\Delta \mathcal{E}}$

Algorithm 1

Given: Initial partition in variable \mathcal{E}, transition relation in \mathcal{Q}, state space in \mathcal{S}.
Returns final partition in \mathcal{E}.

Algorithm: refinement of equivalence relation using signature relation

Repeat:

- $\mathcal{E}_{\text {old }} \leftarrow \mathcal{E}$
- $\mathcal{T} \leftarrow \operatorname{proj}_{3}\left(\left(D C_{2}(\mathcal{Q}, \mathcal{S})\right) \cap\left(D C_{1}(\mathcal{E}, \mathcal{S})\right)\right)$
- $\overline{\Delta \mathcal{E}} \leftarrow \operatorname{proj}_{3}\left(D C_{2}(\mathcal{T}, \mathcal{S}) \cup D C_{1}(\mathcal{T}, \mathcal{S})\right)$
- $\mathcal{E} \leftarrow \mathcal{E} \backslash \overline{\Delta \mathcal{E}}$

Until $\mathcal{E}=\mathcal{E}_{\text {old }}$

Algorithm 1 with Transition Labeling

Given: Initial partition in variable \mathcal{E}, transition relation in \mathcal{Q}, state space in \mathcal{S}.
Returns final partition in \mathcal{E}.
Algorithm: refinement of equivalence relation using signature relation
Repeat:

- $\mathcal{E}_{\text {old }} \leftarrow \mathcal{E}$
- For each $t \in$ label loop:
- $\mathcal{T} \leftarrow \operatorname{proj}_{3}\left(\left(D C_{2}\left(\mathcal{Q}_{t}, \mathcal{S}\right)\right) \cap\left(D C_{1}(\mathcal{E}, \mathcal{S})\right)\right)$
- $\overline{\Delta \mathcal{E}} \leftarrow \operatorname{proj}_{3}\left(D C_{2}(\mathcal{T}, \mathcal{S}) \cup D C_{1}(\mathcal{T}, \mathcal{S})\right)$
- $\mathcal{E} \leftarrow \mathcal{E} \backslash \overline{\Delta \mathcal{E}}$

Until $\mathcal{E}=\mathcal{E}_{\text {old }}$

Outline

(1) Overview

- Abstract
- Bisimulation
(2) Algorithms for Bisimulation
- Paige and Tarjan
- Symbolic Methods
- Previous Work
(3) Our Work
- Our Algorithms (fully implicit Algorithm 1)
- Our Algorithms (Hybrid Algorithm H)
- Our Algorithms (Saturation Algorithm A)Results and Future Work

Hybrid Algorithm (for Comparison)

- Partition representation: Block numbering function (non-interleaved)
- Transition representation: Relation (interleaved)
- Similar to generic signature-based splitting algorithm.

Hybrid Algorithm Signature Formula (First Try)

- S
- $P \subseteq S \times \mathbb{N}^{+}$
- $Q \subseteq \hat{S} \times \hat{S}$
- $T \subseteq S \times \mathbb{N}^{+} \times \mathbb{N}^{+}$
- $T(s)=\bigcup_{s^{\prime} \in S}\left\{\left\langle P(s), P\left(s^{\prime}\right)\right\rangle \mid\left\langle s, s^{\prime}\right\rangle \in Q\right\}$.
(wrong)
- $T\left(s, b, b^{\prime}\right)$ iff $\exists s^{\prime} \in S:\left(Q\left(s, s^{\prime}\right) \wedge P(s, b) \wedge P\left(s^{\prime}, b^{\prime}\right)\right)$.

Hybrid Algorithm Signature Formula

- S
- $P \subseteq S \times[1,|S|] \quad$ Partition block number function of state
- $Q \subseteq \hat{S} \times \hat{S}$
- $T \subseteq S \times[1,|S|] \times[0,|S|]$ Signature map to pairs of blocks
- $T(s)=\{\langle P(s), 0\rangle\} \cup \bigcup_{s^{\prime} \in S}\left\{\left\langle P(s), P\left(s^{\prime}\right)\right\rangle \mid\left\langle s, s^{\prime}\right\rangle \in Q\right\}$.
- $T\left(s, b, b^{\prime}\right)$ iff $\left(P(s, b) \wedge b^{\prime}=0\right) \vee \exists s^{\prime} \in S$:
$\left(Q\left(s, s^{\prime}\right) \wedge P(s, b) \wedge P\left(s^{\prime}, b^{\prime}\right)\right)$.

Hybrid Algorithm Signature

$$
T=Q \circ P
$$

Hybrid Algorithm signature Calculation

- State space MDD: \mathcal{S}
- Partition block number function MDD: $\mathcal{P} \subseteq S \times[1,|S|]$
- interleaved transition relation MDD: $\mathcal{Q} \subseteq \hat{S} \times \hat{S}$
- Signatures MDD: $\mathcal{T} \leftarrow \mathcal{W} \cup \mathcal{T}_{\text {partial }}$, where:
- $\mathcal{W}=D C_{3}(\mathcal{P},\{0\})$
- $\mathcal{I}=[0,|\mathcal{S}|]$
- $\mathcal{T}_{\text {partial }}=\operatorname{proj}_{\mathrm{v} 2}($
$D C_{4}\left(D C_{3}(\mathcal{Q}, \mathcal{I}), \mathcal{I}\right) \cap D C_{4}\left(D C_{2}(\mathcal{P}, \mathcal{S}), \mathcal{I}\right) \cap D C_{1}\left(D C_{2}(\mathcal{P}, \mathcal{I}), \mathcal{S}\right)$)
- $T\left(s, b, b^{\prime}\right)$ iff $\left(P(s, b) \wedge b^{\prime}=0\right) \vee \exists s^{\prime} \in S$:
$\left(Q\left(s, s^{\prime}\right) \wedge P(s, b) \wedge P\left(s^{\prime}, b^{\prime}\right)\right)$.

Definitions for Extra Operators

- $D C_{2}(\mathcal{P}, \mathcal{S}) \triangleq \underline{\mathcal{P}}$, where $\underline{\mathcal{P}}(x, y, z)=\mathcal{P}(x, z) \wedge \mathcal{S}(y)$
- $D C_{3}(\mathcal{Q}, \mathcal{I}) \triangleq \underline{\mathcal{Q}}$, where $\underline{\mathcal{Q}}(x, y, z)=\mathcal{Q}(x, y) \wedge \mathcal{I}(z)$
- $D C_{1}(\mathcal{R}, \mathcal{S}) \triangleq \mathcal{R}$, where $\mathcal{R}(x, y, z, h)=\mathcal{R}(y, z, h) \wedge \mathcal{S}(x)$
- $D C_{4}(\mathcal{R}, \mathcal{I}) \triangleq \mathcal{R}$, where $\underline{\mathcal{R}}(x, y, z, h)=\mathcal{R}(x, y, z) \wedge \mathcal{I}(h)$
- $\operatorname{proj}_{\mathrm{V}_{2}}(\mathcal{F}) \triangleq \mathcal{F}^{\prime}$, where $\mathcal{F}^{\prime}(x, y, z)=\bigvee c: \mathcal{F}(x, c, y, z)$
- Signatures MDD: $\mathcal{T} \leftarrow \mathcal{W} \cup \mathcal{T}_{\text {partial }}$, where:
- $\mathcal{W}=D C_{3}(\mathcal{P},\{0\})$
- $\mathcal{I}=[0,|\mathcal{S}|]$
- $\tau_{\text {partial }}=$ proj $_{2}($
$D C_{4}\left(D C_{3}(\mathcal{Q}, \mathcal{I}), \mathcal{I}\right) \cap D C_{4}\left(D C_{2}(\mathcal{P}, \mathcal{S}), \mathcal{I}\right) \cap D C_{1}\left(D C_{2}(\mathcal{P}, \mathcal{I}), \mathcal{S}\right)$)
- $\mathcal{W}\left(s, b, b^{\prime}\right)$ iff $\mathcal{P}(s, b) \wedge b^{\prime} \in\{0\}$
- $T\left(s, b, b^{\prime}\right)$ iff $\left(P(s, b) \wedge b^{\prime}=0\right) \vee \exists s^{\prime} \in S$:
$\left(Q\left(s, s^{\prime}\right) \wedge P(s, b) \wedge P\left(s^{\prime}, b^{\prime}\right)\right)$.

Substituting Extra Operators into $\mathcal{T}_{\text {partial }}$

- $D C_{2}(\mathcal{P}, \mathcal{S}) \triangleq \underline{\mathcal{P}}$, where $\underline{\mathcal{P}}(x, y, z)=\mathcal{P}(x, z) \wedge \mathcal{S}(y)$
- $D C_{3}(\mathcal{Q}, \mathcal{I}) \triangleq \underline{\mathcal{Q}}$, where $\underline{\mathcal{Q}}(x, y, z)=\mathcal{Q}(x, y) \wedge \mathcal{I}(z)$
- $D C_{1}(\mathcal{R}, \mathcal{S}) \triangleq \underline{\mathcal{R}}$, where $\underline{\mathcal{R}}(x, y, z, h)=\mathcal{R}(y, z, h) \wedge \mathcal{S}(x)$
- $D C_{4}(\mathcal{R}, \mathcal{I}) \triangleq \underline{\mathcal{R}}$, where $\underline{\mathcal{R}}(x, y, z, h)=\mathcal{R}(x, y, z) \wedge \mathcal{I}(h)$
- $\operatorname{proj}_{\mathrm{V}_{2}}(\mathcal{F}) \triangleq \mathcal{F}^{\prime}$, where $\mathcal{F}^{\prime}(x, y, z)=\bigvee c: \mathcal{F}(x, c, y, z)$
- $\mathcal{T}_{\text {partial }}=\operatorname{proj}^{\mathrm{V} 2}$
- $D C_{4}\left(D C_{3}(\mathcal{Q}, \mathcal{I}), \mathcal{I}\right) \cap D C_{4}\left(D C_{2}(\mathcal{P}, \mathcal{S}), \mathcal{I}\right) \cap D C_{1}\left(D C_{2}(\mathcal{P}, \mathcal{I}), \mathcal{S}\right)$
- $\mathcal{T}_{\text {partial }}\left(s, b, b^{\prime}\right)$ iff $\bigvee s^{\prime}$
- $D C_{4}\left(D C_{3}(\mathcal{Q}, \mathcal{I}), \mathcal{I}\right)\left(s, s^{\prime}, b, b^{\prime}\right) \wedge$ $D C_{4}\left(D C_{2}(\mathcal{P}, \mathcal{S}), \mathcal{I}\right)\left(s, s^{\prime}, b, b^{\prime}\right) \wedge$ $D C_{1}\left(D C_{2}(\mathcal{P}, \mathcal{I}), \mathcal{S}\right)\left(s, s^{\prime}, b, b^{\prime}\right)$
- $T\left(s, b, b^{\prime}\right)$ iff $\left(P(s, b) \wedge b^{\prime}=0\right) \vee \exists s^{\prime} \in S$:
$\left(Q\left(s, s^{\prime}\right) \wedge P(s, b) \wedge P\left(s^{\prime}, b^{\prime}\right)\right)$.

Substituting Extra Operators into $\mathcal{T}_{\text {partial }}$

- $D C_{2}(\mathcal{P}, \mathcal{S}) \triangleq \underline{\mathcal{P}}$, where $\underline{\mathcal{P}}(x, y, z)=\mathcal{P}(x, z) \wedge \mathcal{S}(y)$
- $D C_{3}(\mathcal{Q}, \mathcal{I}) \triangleq \underline{\mathcal{Q}}$, where $\underline{\mathcal{Q}}(x, y, z)=\mathcal{Q}(x, y) \wedge \mathcal{I}(z)$
- $D C_{1}(\mathcal{R}, \mathcal{S}) \triangleq \mathcal{R}$, where $\mathcal{R}(x, y, z, h)=\mathcal{R}(y, z, h) \wedge \mathcal{S}(x)$
- $D C_{4}(\mathcal{R}, \mathcal{I}) \triangleq \underline{\mathcal{R}}$, where $\underline{\mathcal{R}}(x, y, z, h)=\mathcal{R}(x, y, z) \wedge \mathcal{I}(h)$
- $\operatorname{proj}_{\mathfrak{v} 2}(\mathcal{F}) \triangleq \mathcal{F}^{\prime}$, where $\mathcal{F}^{\prime}(x, y, z)=\bigvee c: \mathcal{F}(x, c, y, z)$
- $\mathcal{I}_{\text {partial }}=\operatorname{proj}_{2}$
- $D C_{4}\left(D C_{3}(\mathcal{Q}, \mathcal{I}), \mathcal{I}\right) \cap D C_{4}\left(D C_{2}(\mathcal{P}, \mathcal{S}), \mathcal{I}\right) \cap D C_{1}\left(D C_{2}(\mathcal{P}, \mathcal{I}), \mathcal{S}\right)$
- $\mathcal{T}_{\text {partial }}\left(s, b, b^{\prime}\right)$ iff $\bigvee s^{\prime}$
- $\left[\mathcal{Q}\left(s, s^{\prime}\right) \wedge \mathcal{I}(b) \wedge \mathcal{I}\left(b^{\prime}\right)\right] \wedge\left[\mathcal{P}(s, b) \wedge \mathcal{S}\left(s^{\prime}\right) \wedge \mathcal{I}\left(b^{\prime}\right)\right] \wedge$ $\left[\mathcal{P}\left(s^{\prime}, b^{\prime}\right) \wedge \mathcal{I}(b) \wedge \mathcal{S}(s)\right]$
- $T\left(s, b, b^{\prime}\right)$ iff $\left(P(s, b) \wedge b^{\prime}=0\right) \vee \exists s^{\prime} \in S$: $\left(Q\left(s, s^{\prime}\right) \wedge P(s, b) \wedge P\left(s^{\prime}, b^{\prime}\right)\right)$.

Substituting Extra Operators into $\mathcal{T}_{\text {partial }}$

- $D C_{2}(\mathcal{P}, \mathcal{S}) \triangleq \underline{\mathcal{P}}$, where $\underline{\mathcal{P}}(x, y, z)=\mathcal{P}(x, z) \wedge \mathcal{S}(y)$
- $D C_{3}(\mathcal{Q}, \mathcal{I}) \triangleq \underline{\mathcal{Q}}$, where $\underline{\mathcal{Q}}(x, y, z)=\mathcal{Q}(x, y) \wedge \mathcal{I}(z)$
- $D C_{1}(\mathcal{R}, \mathcal{S}) \triangleq \mathcal{R}$, where $\mathcal{R}(x, y, z, h)=\mathcal{R}(y, z, h) \wedge \mathcal{S}(x)$
- $D C_{4}(\mathcal{R}, \mathcal{I}) \triangleq \underline{\mathcal{R}}$, where $\underline{\mathcal{R}}(x, y, z, h)=\mathcal{R}(x, y, z) \wedge \mathcal{I}(h)$
- $\operatorname{proj}_{\mathfrak{v} 2}(\mathcal{F}) \triangleq \mathcal{F}^{\prime}$, where $\mathcal{F}^{\prime}(x, y, z)=\bigvee c: \mathcal{F}(x, c, y, z)$
- $\mathcal{I}_{\text {partial }}=\operatorname{proj}_{2}$
- $D C_{4}\left(D C_{3}(\mathcal{Q}, \mathcal{I}), \mathcal{I}\right) \cap D C_{4}\left(D C_{2}(\mathcal{P}, \mathcal{S}), \mathcal{I}\right) \cap D C_{1}\left(D C_{2}(\mathcal{P}, \mathcal{I}), \mathcal{S}\right)$
- $\mathcal{T}_{\text {partial }}\left(s, b, b^{\prime}\right)$ iff $\bigvee s^{\prime}$
- $\left[\mathcal{Q}\left(s, s^{\prime}\right)\right] \wedge[\mathcal{P}(s, b)] \wedge\left[\mathcal{P}\left(s^{\prime}, b^{\prime}\right)\right] \wedge \mathcal{S}(s) \wedge \mathcal{S}\left(s^{\prime}\right) \wedge \mathcal{I}(b) \wedge$ $\mathcal{I}\left(b^{\prime}\right)$
- $T\left(s, b, b^{\prime}\right)$ iff $\left(P(s, b) \wedge b^{\prime}=0\right) \vee \exists s^{\prime} \in S$: $\left(Q\left(s, s^{\prime}\right) \wedge P(s, b) \wedge P\left(s^{\prime}, b^{\prime}\right)\right)$.

Hybrid Algorithm Block Splitting/Numbering

- S
- $T \subseteq S \times[1,|S|] \times[0,|S|] \quad$ Signature map to pairs of blocks
- $P^{\prime} \subseteq S \times[1,|S|] \quad$ Partition block number function of state
- New partition blocks for each different signature.
- Block number for each state according to its signature.
- $\exists f \in[1,|S|] \times[1,|S|] \times[0,|S|]: \forall s \in S: \forall b \in[1,|S|]:$ $P^{\prime}(s, b)$ iff $\left\{\left\langle b_{1}, b_{2}\right\rangle \mid f\left(b, b_{1}, b_{2}\right)\right\}=\left\{\left\langle b_{1}, b_{2}\right\rangle \mid T\left(s, b_{1}, b_{2}\right)\right\}$.

Hybrid Algorithm Block Splitting

Hybrid Algorithm Block Renumbering Calculation

- Utilize canonicity of MDD
- Utilize fact that MDD is non-interleaved with state toward root
- Recursively DFS signature MDD \mathcal{T}
- Assign new partition number upon finding new signature.

Hybrid Algorithm: Signatures MDD

Malcolm Mumme
Fully-Implicit Bisimulation

Hybrid Algorithm: Block Renumbering $S \rightarrow \mathbb{N}$

Hybrid Algorithm: Block Renumbering $S \rightarrow \mathbb{N}$

Hybrid Algorithm Block Renumbering Algorithm

Assign new block number, corresponding to signature, to each state.

Algorithm: SigRenum(MDD \mathcal{T})

Return SigRenum(MDD \mathcal{T}) from cache if possible.
If \mathcal{T} is above signature level then

- let $\mathcal{R}=$ new MDD with each child $\mathcal{R}_{i}=\operatorname{SigRenum}\left(\mathcal{T}_{i}\right)$
else
- let $\mathcal{R}=$ BDD for value of counter
- increment counter

Put $\mathcal{R}=\operatorname{SigRenum}(\operatorname{MDD} \mathcal{T})$ into cache.
Return \mathcal{R}

Hybrid Algorithm

Given: Initial partition block numbering in variable \mathcal{P}, transition relation in \mathcal{Q}, state space in \mathcal{S}.
Returns final partition block numbering in \mathcal{P}.
Algorithm: refinement of block numbering using signature

Repeat:

- $\mathcal{P}_{\text {old }} \leftarrow \mathcal{P}$
- $\mathcal{T} \leftarrow \mathcal{W} \cup \mathcal{T}_{\text {partial }}$, where:

$$
\text { - let: } \mathcal{W} \leftarrow D C_{3}(\mathcal{P},\{0\}) \text {, and: } \mathcal{I} \leftarrow[0,|\mathcal{S}|]
$$

- $\mathcal{T}_{\text {partial }} \leftarrow$ proj$_{\mathrm{V} 2}$
$D C_{4}\left(D C_{3}(\mathcal{Q}, \mathcal{I}), \mathcal{I}\right) \cap D C_{4}\left(D C_{2}(\mathcal{P}, \mathcal{S}), \mathcal{I}\right) \cap D C_{1}\left(D C_{2}(\mathcal{P}, \mathcal{I}), \mathcal{S}\right)$
- $\mathcal{P} \leftarrow \operatorname{SigRenum}(\mathcal{T})$

Until $\mathcal{P}=\mathcal{P}_{\text {old }}$

Hybrid Algorithm with Transition Labeling

Given: Initial partition block numbering in variable \mathcal{P}, transition relation in \mathcal{Q}, state space in \mathcal{S}.
Returns final partition block numbering in \mathcal{P}.
Algorithm: refinement of block numbering using signature
Repeat:

- $\mathcal{P}_{\text {old }} \leftarrow \mathcal{P}$
- For each $t \in$ label loop:
- $\mathcal{T} \leftarrow \mathcal{W} \cup \mathcal{T}_{\text {partial }}$, where:
- let: $\mathcal{W} \leftarrow D C_{3}(\mathcal{P},\{0\})$, and: $\mathcal{I} \leftarrow[0,|\mathcal{S}|]$
- $\mathcal{T}_{\text {partial }} \leftarrow$ proj$_{\mathrm{v} 2}$
$D C_{4}\left(D C_{3}\left(\mathcal{Q}_{t}, \mathcal{I}\right), \mathcal{I}\right) \cap D C_{4}\left(D C_{2}(\mathcal{P}, \mathcal{S}), \mathcal{I}\right) \cap D C_{1}\left(D C_{2}(\mathcal{P}, \mathcal{I}), \mathcal{S}\right)$
- $\mathcal{P} \leftarrow \operatorname{SigRenum}(\mathcal{T})$

Until $\mathcal{P}=\mathcal{P}_{\text {old }}$

Example from Algorithm 1 Signature MDD

- Signatures MDD: $\mathcal{T} \leftarrow \operatorname{proj}_{{ }_{3}}\left(\left(D C_{2}(\mathcal{Q}, \mathcal{S})\right) \cap\left(D C_{1}(\mathcal{E}, \mathcal{S})\right)\right)$
- Calculate: $\left(\left(D C_{2}(\mathcal{Q}, \mathcal{S})\right) \cap\left(D C_{1}(\mathcal{E}, \mathcal{S})\right)\right)$ using single recursive function.
- Avoid construction of intermediates: $D C_{2}(\mathcal{Q}, \mathcal{S})$ and $D C_{1}(\mathcal{E}, \mathcal{S})$.
- Recursive function will have 3 MDD parameters: $\mathcal{Q}, \mathcal{E}, \mathcal{S}$.
- Given $\mathcal{E}=\mathcal{E}^{-1}$ and $\mathcal{E} \subseteq S \times S$.
- Each recursive call level corresponds to level of output MDD.

Algorithm 6: Unprojected Relational Composition

Calculate: $\mathcal{R}=\left(\left(D C_{2}(\mathcal{Q}, \mathcal{S})\right) \cap\left(D C_{1}(\mathcal{E}, \mathcal{S})\right)\right)$, so that $\mathcal{R}(a, b, c)$ iff $\mathcal{Q}(a, c) \wedge \mathcal{E}(b, c) \wedge \mathcal{S}(a)$

Algorithm: UcompL(MDD $\mathcal{Q}, \mathcal{E}, \mathcal{S})$ (memoized)

- Leaf level: Return $\mathcal{Q} \cap \mathcal{E}$
- "a" level
- Return new MDD \mathcal{R} where child $\mathcal{R}_{i}=\operatorname{UcompL}\left(\mathcal{Q}_{i}, \mathcal{E}, \mathcal{S}_{i}\right)$
- "b" level
- Return new MDD \mathcal{R} where child $\mathcal{R}_{i}=\operatorname{UcompL}\left(\mathcal{Q}, \mathcal{E}_{i}, \mathcal{S}\right)$
- "c" level
- Return new MDD \mathcal{R} where child $\mathcal{R}_{i}=\operatorname{UcompL}\left(\mathcal{Q}_{i}, \mathcal{E}_{i}, \mathcal{S}\right)$

Improvements Applied to Both Algorithms

- Improvement implemented as a single highly parameterized recursive function: GenericComposeQQ.
- Applied to: $\mathcal{T} \leftarrow \operatorname{proj}_{\vee_{3}}\left(\left(D C_{2}(\mathcal{Q}, \mathcal{S})\right) \cap\left(D C_{1}(\mathcal{E}, \mathcal{S})\right)\right)$, (signature for Algorithm 1).
- Applied to: $\mathcal{T}_{\text {partial }}=\operatorname{proj}_{\mathrm{V}_{2}}($
$D C_{4}\left(D C_{3}(\mathcal{Q}, \mathcal{I}), \mathcal{I}\right) \cap D C_{4}\left(D C_{2}(\mathcal{P}, \mathcal{S}), \mathcal{I}\right) \cap$
$D C_{1}\left(D C_{2}(\mathcal{P}, \mathcal{I}), \mathcal{S}\right)$), (signature for Hybrid Algorithm).
- Not applied to: $\overline{\Delta \mathcal{E}} \leftarrow \operatorname{proj}_{\mathrm{V}_{3}}\left(D C_{2}(\mathcal{T}, \mathcal{S}) \cup D C_{1}(\mathcal{T}, \mathcal{S})\right)$, (\mathcal{E} update for Algorithm 1).
- where $x \cup y \triangleq(x \backslash y) \cup(y \backslash x)$
- Could have been (avoid calculating $(x \backslash y)$ and $(y \backslash x)$).

Outline

(1) Overview

- Abstract
- BisimulationAlgorithms for Bisimulation
- Paige and Tarjan
- Symbolic Methods
- Previous Work
(3) Our Work
- Our Algorithms (fully implicit Algorithm 1)
- Our Algorithms (Hybrid Algorithm H)
- Our Algorithms (Saturation Algorithm A)Results and Future Work

Transitive Closure (Finite \hat{S})

Given: $t_{[\varepsilon]} \subseteq \hat{S} \times \hat{S}$
Given: $S_{i n} \subseteq \hat{S}$
indexed set of transition relations set of initial states
Returns: $S \subseteq \hat{S} \quad$ states reachable from $S_{i n}$ by transitions $t_{[\mathcal{E}]}$
Algorithm: Iterative TransitiveClosure $\left(t_{[\&]}, S_{i n}\right)$

- $S \leftarrow S_{\text {in }}$
- Repeat:
- $S_{\text {old }} \leftarrow S$
- For each $\alpha \in \mathcal{E}$ loop:
- $S \leftarrow S \cup t_{[\alpha]}(S)$
- Until $S=S_{\text {old }}$
- Return: S

Saturation Transitive Closure (Finite \hat{S})

Same givens and result as for previous Transitive Closure.
Algorithm: SaturationClosure $\left(\tau_{[\varepsilon]}, S_{i n}\right)$

- $S \leftarrow S_{\text {in }}$
- $S \leftarrow$ SaturateChildren $\left(t_{[\varepsilon]}, S\right)$
- Repeat:
- $S_{\text {old }} \leftarrow S$
- For each $\alpha \in \mathcal{E}$ loop:
- $\quad S \leftarrow S \cup t_{[\alpha]}(S)$
- Until $S=S_{\text {old }}$
- Return: S

Saturation Transitive Closure (Finite \hat{S})

Same givens and result as for previous Transitive Closure.
Algorithm: SaturationClosure $\left(t_{[\varepsilon]}, S_{i n}\right)$

- $S \leftarrow S_{\text {in }}$
- $S \leftarrow$ SaturateChildren $\left(t_{[\varepsilon]}, S\right)$
- Repeat:
- $S_{\text {old }} \leftarrow S$
- For each $\alpha \in \mathcal{E}$ loop: If $\operatorname{Top}\left(t_{[\alpha]}\right)$ is top of S then:
- - $S \leftarrow S \cup t_{[\alpha]}(S)$
- Until $S=S_{\text {old }}$
- Return: S

Saturation Transitive Closure (Finite \hat{S})

Same givens and result as for previous Transitive Closure.
Algorithm: SaturationClosure $\left(\dagger_{[\varepsilon]}, S_{i n}\right)$

- $S \leftarrow S_{\text {in }}$
- $S \leftarrow$ SaturateChildren $\left({ }_{[\varepsilon \varepsilon]}, S\right)$
- Repeat:
- $S_{\text {old }} \leftarrow S$
- For each $\alpha \in \mathcal{E}$ loop: If $\operatorname{Top}\left(t_{[\alpha]}\right)$ is top of S then:
- $\quad S \leftarrow S \cup t_{[\alpha]}(S)$
$S \leftarrow$ SaturateChildren $\left(t_{[\varepsilon]}, S\right)$
- Until $S=S_{\text {old }}$
- Return: S

Saturation Transitive Closure (Finite \hat{S})

Same givens and result as for previous Transitive Closure.
Algorithm: SaturationClosure $\left(\dagger_{[\varepsilon]}, S_{i n}\right)$

- $S \leftarrow S_{\text {in }}$
- $S \leftarrow$ SaturateChildren $\left({ }_{[\varepsilon \varepsilon]}, S\right)$
- Repeat:
- $S_{\text {old }} \leftarrow S$
- For each $\alpha \in \mathcal{E}$ loop: If $\operatorname{Top}\left(t_{[\alpha]}\right)$ is top of S then:
- $\quad S \leftarrow S \cup t_{[\alpha]}(S)$
$S \leftarrow$ SaturateChildren $\left(t_{[\varepsilon]}, S\right)$
- Until $S=S_{\text {old }}$
- Return: S

Helper Function for Saturation

Given: $t_{[\varepsilon]} \subseteq \hat{S} \times \hat{S}$
Given: $S_{\text {in }} \subseteq \hat{S}$
indexed set of transition relations set of initial states Returns: $S \subseteq \hat{S} \quad$ states reachable from $S_{i n}$ by transitions $t_{[\varepsilon]}$ where $\operatorname{Top}\left(t_{[\alpha]}\right)$ is below top of S

Algorithm: SaturateChildren $\left(\tau_{[\varepsilon]}, S_{\text {in }}\right)$

- $S \leftarrow$ new MDD Where:
- child $S_{[i]} \leftarrow$ SaturationClosure $\left({ }_{[[]]}, S_{i n[i]}\right)$
- Return: S

Saturation Transitive Closure (Finite \hat{S})

Given: $t_{[\varepsilon]} \subseteq \hat{S} \times \hat{S}$ And: $S_{\text {in }} \subseteq \hat{S}$ Returns: $S \subseteq \hat{S}$

Algorithm: SaturationClosure $\left(\tau_{[\varepsilon]}, S_{i n}\right)$

- $S \leftarrow S_{\text {in }}$
- $S_{[]]} \leftarrow$ SaturationClosure $\left.^{\left(t_{[]]},\right.}, S_{[\eta]}\right)$
- Repeat:
- $S_{\text {old }} \leftarrow S$
- For each $\alpha \in \mathcal{E}$ loop:
- For each $\alpha \in \mathcal{E}$ loop: If $\operatorname{Top}\left(t_{[\alpha]}\right)$ is top of S then:
- $\quad S \leftarrow S \cup t_{[\alpha]}(S)$
- $S_{[i]} \leftarrow$ SaturationClosure $\left(t_{[\mathcal{E}]}, S_{[i]}\right) \quad \forall i$
- Until $S=S_{\text {old }}$
- Return: S

Saturation Discussion.

- Child MDDs always Saturated
- Sharing Preserved
- Similar to local block iteration

Splitting.

Example

Malcolm Mumme
Fully-Implicit Bisimulation

Splitting with Deterministic Transitions.

Example

Splitting with Deterministic Transitions is a Transition.

Example

Splitting with Deterministic Transitions is a Transition.

Example

Splitting with Deterministic Transitions is a Transition.

- Given bisimulation problem:
- Transitions: $\mathcal{T}_{[\mathcal{E}]} \subseteq S \times S$
- Construct new domain: $\hat{\mathcal{B}}=S \times S$
- Create new transitions: $T_{[\mathcal{E}]} \subseteq \hat{\mathcal{B}} \times \hat{\mathcal{B}}$.
- $T_{[\alpha]}\left(\left\langle s_{1}, s_{2}\right\rangle\right)=$ pairs $\left\langle s_{3}, s_{4}\right\rangle$
- where $s_{1}=\mathcal{T}_{[\alpha]}\left(s_{3}\right) \wedge s_{2}=\mathcal{T}_{[\alpha]}\left(s_{4}\right)$
$(\forall \alpha \in \mathcal{E})$
- $T_{[\alpha]}=\left(\mathcal{T}_{[\alpha]} \times \mathcal{T}_{[\alpha]}\right)^{-1}$
$(\forall \alpha \in \mathcal{E})$

Main Idea.

- Given bisimulation problem:
- Transitions: $\mathcal{T}_{[\mathcal{E}]} \subseteq S \times S$
- $T_{[\alpha]}=\left(\mathcal{T}_{[\alpha]} \times \mathcal{T}_{[\alpha]}\right)^{-1}$

$$
(\forall \alpha \in \mathcal{E})
$$

- \sim is closed under $T_{[\varepsilon]}$
- Main Idea: Use Saturation to take closure of $T_{[\mathcal{E}]}$
- Then: $\sim=\hat{\mathcal{B}} \backslash \approx$
- Initialization? closure applied to ?

Main Idea.

- Given bisimulation problem:
- Transitions: $\mathcal{T}_{[\mathcal{E}]} \subseteq S \times S$
- $T_{[\alpha]}=\left(\mathcal{T}_{[\alpha]} \times \mathcal{T}_{[\alpha]}\right)^{-1}$

$$
(\forall \alpha \in \mathcal{E})
$$

- \sim is closed under $T_{[\mathcal{E}]}$
- Main Idea: Use Saturation to take closure of $T_{[\varepsilon]}$
- Then: $\sim=\hat{\mathcal{B}} \backslash \bar{\sim}$
- Initialization? closure applied to ?

Main Idea.

- Given bisimulation problem:
- Transitions: $\mathcal{I}_{[\mathcal{E}]} \subseteq S \times S$
- $T_{[\alpha]}=\left(\mathcal{T}_{[\alpha]} \times \mathcal{T}_{[\alpha]}\right)^{-1}$

$$
(\forall \alpha \in \mathcal{E})
$$

- \sim is closed under $T_{[\mathcal{E}]}$
- Main Idea: Use Saturation to take closure of $T_{[\mathcal{E}]}$
- Then: $\sim=\hat{\mathcal{B}} \backslash \bar{\sim}$
- Initialization? closure applied to ?

Main Idea.

- Given bisimulation problem:
- Transitions: $\mathcal{I}_{[\mathcal{E}]} \subseteq S \times S$
- $T_{[\alpha]}=\left(\mathcal{T}_{[\alpha]} \times \mathcal{T}_{[\alpha]}\right)^{-1}$

$$
(\forall \alpha \in \mathcal{E})
$$

- \sim is closed under $T_{[\mathcal{E}]}$
- Main Idea: Use Saturation to take closure of $T_{[\mathcal{E}]}$
- Then: $\sim=\hat{\mathcal{B}} \backslash \bar{\sim}$
- Initialization? closure applied to ?

Overview
Algorithms for Bisimulation
Our Work
Results and Future Work Summary

"Splitting" with Deterministic Transitions is Incomplete.

Example

Initial Set.

- Given bisimulation problem:
- Transitions: $\mathcal{T}_{[\varepsilon]} \subseteq S \times S$
- New domain: $\hat{\mathcal{B}}=S \times S$
- Initial Set: $\overline{\mathcal{B}}_{\text {init }} \subseteq \hat{\mathcal{B}}$, where only 1 member of each pair enables $\mathcal{T}_{[\alpha]}$, for some $\alpha \in \mathcal{E}$.
- Initial Set: $\overline{\mathcal{B}}_{\text {init }}=\bigcup_{\alpha \in \mathcal{E}}\left(\mathcal{S}_{[\alpha]} \times\left(S \backslash \mathcal{S}_{[\alpha]}\right)\right) \cup\left(\left(S \backslash \mathcal{S}_{[\alpha]}\right) \times \mathcal{S}_{[\alpha]}\right)$ where $\mathcal{S}_{[\alpha]}=\left\{s \in S \mid \exists s^{\prime}:\left\langle s, s^{\prime}\right\rangle \in \mathcal{T}_{[\alpha]}\right\}$.

Algorithm A

- Given bisimulation problem:
- Transitions: $\mathcal{T}_{[\mathcal{E}]} \subseteq S \times S$

Algorithm: Saturation $\overline{\text { Bisimulation }}\left(S, \mathcal{T}_{[\mathcal{E}]}\right)$

- Define: $\hat{\mathcal{B}}=S \times S$
- For $(\alpha \in \mathcal{E})$ loop: $T_{[\alpha]} \leftarrow\left(\mathcal{T}_{[\alpha]} \times \mathcal{T}_{[\alpha]}\right)^{-1}$
- Construct: $\overline{\mathcal{B}}_{\text {init }} \leftarrow \bigcup_{\alpha \in \mathcal{E}}\left(\mathcal{S}_{[\alpha]} \times\left(S \backslash \mathcal{S}_{[\alpha]}\right)\right) \cup\left(\left(S \backslash \mathcal{S}_{[\alpha]}\right) \times \mathcal{S}_{[\alpha]}\right)$ where $\mathcal{S}_{[\alpha]}=\left\{s \in S \mid \exists s^{\prime}:\left\langle s, s^{\prime}\right\rangle \in \mathcal{T}_{[\alpha]}\right\}$.
- $\sim \leftarrow$ SaturationClosure $\left(T_{[\mathcal{E}]}, \overline{\mathcal{B}}_{\text {init }}\right)$
- Return: $\hat{\mathcal{B}} \backslash \approx$

SMART Integration

- All code implemented in a single unit: "ms_lumping".
- Invoked from SMART by a single C++ function call: "bigint ComputeNumEQClass(state_model *mdl);"
- Calculates largest bisimulation and returns number of equivalence classes.
- Invocation caused by "num_eqclass" function in model.
- Uses multiple caches supplied by SMART MDD library (Thanks, Min!).
- Uses operations: \cup, \cap, \backslash, new MDD, ||, etc. from SMART MDD library.
- Implements operations for interleaved MDDs: projㄱN, $, \circ, D C_{*}, \mid$ classes \mid
- Implements SigRenum

Summary of Our Bisimulation Algorithms

Three Algorithms:

Fully Implicit
Transition
relation:
Interleaved MDD
Partition:
Equivalence, Interleaved MDD
Method: Iterative Splitting

Hybrid
Transition
relation:
Interleaved MDD
Partition: Block
number function
MDD
Method: Iterative
Splitting

Saturation
Transition
relation:
Interleaved MDD
Partition:
Equivalence, Interleaved MDD
Method: Closure
of Splitting
Function

Dining Philosophers

Existing Petri net model, parameterized in number of philosophers N. Has $6 N$ places and $4 N$ transitions. Variable ordering/assignment to levels changed to avoid non-deterministic transitions. Ideal case for Interleaved Ordering

$3 \times N$ "Comb" and $N \times N$ "Comb"

Contrived Simple Petri net, parameterized in rows N and columns M. Has $M N$ places and $M(N-1)$ transitions.

Summary of Our Models

Three Models:

Model:
Trans graph:
\# places:
\# transitions:
Token density:
Depth
Fanout S:
Event span:
N phil's
Cyclic
$\mathrm{O}(N)$
$\mathrm{O}(N)$
$\mathrm{O}(1)$
$\mathrm{O}(N)$
O(1)
O(1)
$3 \times N$ "Comb" acyclic
$\mathrm{O}(3 N)$
$\mathrm{O}(3 N)$
O(1)
$\mathrm{O}(N)$
O(1)
O(3)
$N \times N$ "Comb" acyclic
$\mathrm{O}\left(N^{2}\right)$
$\mathrm{O}\left(N^{2}\right)$
$\mathrm{O}(1)$
$\mathrm{O}\left(N^{2}\right)$
O(1)
$\mathrm{O}(N)$

Model Statistics

N philosophers

N	states	classes
2	18	17
3	76	76
4	322	321
5	1364	1363
6	5778	5777
7	2.4×10^{4}	2.4×10^{4}
8	1.0×10^{5}	1.0×10^{5}
9	4.3×10^{5}	4.3×10^{5}
10	1.9×10^{6}	1.9×10^{6}
11	7.9×10^{6}	7.9×10^{6}
12	3.3×10^{7}	3.3×10^{7}
13	1.4×10^{8}	1.4×10^{8}
14	6.0×10^{8}	6.0×10^{8}

$3 \times N$ comb

N	states	classes
2	4	2
3	13	3
4	40	4
5	121	5
6	364	6
7	1093	7
8	3280	8
9	9841	9
10	3.0×10^{4}	10
11	8.9×10^{4}	11
12	2.7×10^{5}	12
13	8.0×10^{5}	13
14	2.4×10^{6}	14
15	7.2×10^{6}	15
16	$2.2 \times 10^{\prime}$	16
17	$6.5 \times 10^{\prime}$	17
18	1.9×10^{8}	18
19	5.8×10^{8}	19
20	1.7×10^{9}	20

$N \times N$ comb

N	states	classes
2	4	4
3	13	3
4	85	4
5	781	5
6	9331	6
7	1.4×10^{5}	7
8	2.4×10^{6}	8
9	4.8×10^{7}	9
10	1.1×10^{9}	10
11	2.9×10^{10}	11
12	8.1×10^{11}	12
13	2.5×10^{13}	13
14	8.5×10^{14}	14
15	3.1×10^{16}	15
16	1.2×10^{18}	16
17	5.2×10^{19}	17
18	2.3×10^{21}	18
19	1.1×10^{23}	19
20	5.5×10^{24}	20

Run-Time for Dining Philosophers

Compute time for bisimulation: \mathbf{N} dining philosophers

Space for Dining Philosophers

Maximum nodes in bisimulation: \mathbf{N} Dining philosophers

Output Size for Dining Philosophers

output size for saturation: N Dining philosophers

Combined Dining Philosophers Results

Maximum nodes in bisimulation: \mathbf{N} Dining philosophers

Results and Future Work

Combined $3 \times N$ "Comb" Results

Bisimulation memory usage for 3XN comb

Combined $N \times N$ "Comb" Results

Bisimulation memory usage for $\mathbf{N X N}$ comb

Discussion of Results

Qualitative evaluation of Quantitative results:

- Saturation performed well in all cases (especially D. P.).
- Classic algorithm had surprisingly better memory use.
- Saturation was not always fastest.

Additional Thoughts:

- This is approximately what we sought.
- Additional optimizations are possible.
- Hybrid algorithm is not exactly the same as fastest known.

Future Work

Improvements to current work:

- Extend to non-deterministic transitions.
- Additional models.
- Increase operator integration.
- Quantification/projection improvements.
- "Weak" bisimulation (invisible transitions).

Other related work:

- Implement fastest (previously) known algorithm.
- SMART library improvements.
- If possible, apply to lumping problem.

Summary

- Implementation of three bisimulation algorithms in SMART
- Comparison using three Petri net models.
- Obtained algorithm with good performance and (relatively) small output
- Future:
- Improve and extend to non-deterministic transitions.
- Compare with fastest (previously) known algorithm.
- Publish.

Algorithms for Bisimulation

Our Work
Results and Future Work
Summary

The End

fin

After The End

(Click here for a reference.)

Ways to Represent Partitions

(1) Equivalence Relation (Non-Interleaved)

- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$
(2) Equivalence Relation (Interleaved)
- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}$,
(3) Lists of Partition Blocks
- $B_{1}, B_{2}, B_{3}, B_{4}, \ldots \mid B_{*} \subseteq S$
- Variable ordering: x_{1}, x_{2}, x_{3},
(9) Block Numbering/function of state
- $\langle s, n\rangle \mid s \in S, n \in \mathbb{N}$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots k_{1}, k_{2}, k_{3}$,

Ways to Represent Partitions

(1) Equivalence Relation (Non-Interleaved)

- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$
(2) Equivalence Relation (Interleaved) (link)
- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, \ldots$
(3) Lists of Partition Blocks
- $B_{1}, B_{2}, B_{3}, B_{4}$,
- Variable ordering: x_{1}, x_{2}, x_{3},
(4) Block Numbering/function of state
- Variable ordering:

Ways to Represent Partitions

(1) Equivalence Relation (Non-Interleaved)

- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$
(2) Equivalence Relation (Interleaved) (Inink)
- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, \ldots$
(3) Lists of Partition Blocks (link)
- $B_{1}, B_{2}, B_{3}, B_{4}, \ldots \mid B_{*} \subseteq S$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots$
(9) Block Numbering/function of state
- Variable ordering:

Ways to Represent Partitions

(1) Equivalence Relation (Non-Interleaved)

- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots, y_{1}, y_{2}, y_{3}, \ldots$
(2) Equivalence Relation (Interleaved) (link)
- $\left\langle s_{1}, s_{2}\right\rangle \mid s_{1}, s_{2} \in S$
- Variable ordering: $x_{1}, y_{1}, x_{2}, y_{2}, x_{3}, y_{3}, \ldots$
(3) Lists of Partition Blocks (ink)
- $B_{1}, B_{2}, B_{3}, B_{4}, \ldots \mid B_{*} \subseteq S$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots$
(4) Block Numbering/function of state (link)
- $\langle s, n\rangle \mid s \in S, n \in \mathbb{N}$
- Variable ordering: $x_{1}, x_{2}, x_{3}, \ldots k_{1}, k_{2}, k_{3}, \ldots$

Partition Representation: Equivalence Relation (Interleaved) $\{\langle x, y\rangle \mid E(x, y)\}$

Partition Representation: Lists of Partition Blocks (or Array etc) $\mathbb{N} \rightarrow S$

Partition Representation: Equivalence Relation (Non-Interleaved) $\{\langle x, y\rangle \mid E(x, y)\}$

Partition Representation: Block Numbering/function of state $S \rightarrow \mathbb{N}$

Bibliography I

R. Milner.

Communication and Concurrency. Prentice Hall, 1989.

