
Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Fully-Implicit Relational Coarsest Partitioning
for Faster Bisimulation

(As Preparation for Fully-Implicit Lumping)

Department of Computer Science
University of California at Riverside

Project Presentation for MS CS Oral Examination

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

Outline

1 Overview
Abstract
Bisimulation

2 Algorithms for Bisimulation
Paige and Tarjan
Symbolic Methods
Previous Work

3 Our Work
Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

4 Results and Future Work

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

Abstract

The present work applies interleaved MDD partition
representation to the bisimulation problem. We have
implemented these techniques in the context of the SMART
verification tool. We compare the execution time and
memory consumption of our fully-implicit methods (using
interleaved MDDs) with the execution time and memory
consumption of partially-implicit methods, as applied to the
same bisimulation problems. We found that the fully implicit
method had surprisingly poor speed performance,
especially for models with few variables with many values.
The performance of the fully implicit method was
reasonable for models with many variables having few
values, and there are hints that the fully implicit method will
be an improvement with much larger models.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

Outline

1 Overview
Abstract
Bisimulation

2 Algorithms for Bisimulation
Paige and Tarjan
Symbolic Methods
Previous Work

3 Our Work
Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

4 Results and Future Work

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

Outline

1 Overview
Abstract
Bisimulation

2 Algorithms for Bisimulation
Paige and Tarjan
Symbolic Methods
Previous Work

3 Our Work
Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

4 Results and Future Work

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

Definition of Bisimulation

R is a bisimulation of colored, labeled FSA: 〈S, C, T 〉 |
C ∈ S → color ∧ T ⊆ S × label × S, iff:
R ⊆ S × S ∧ ∀〈s1, s2〉 ∈ R : [C(s1) = C(s2) ∧ (∀〈s, l , s′1〉 ∈ T :
s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2) ∧ R(s′1, s′2)) ∧ (∀〈s, l , s′2〉 ∈ T :
s = s2 =⇒ ∃s′1 ∈ S : T (s1, l , s′1) ∧ R(s′1, s′2))]

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

Original Definition of Bisimulation (Milner 1989)

...

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

Why Bisimulation?

Bisimulation is . . .
A special case of Lumping
(A minimization problem for Markov systems) to simplify
subsequent numeric computations
An extensional notion of equivalence of states (FSA)

Notation:
R ⊆ S × S A relation between states
R(s1, s2) or 〈s1, s2〉 ∈ R “s1 and s2 are bisimilar”
“∼” The Largest Bisimulation

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

A Bisimulation is ...

Definition
(Given a colored, labeled transition system,(st,col,tran)

〈S, C, T 〉 | C ∈ S → color ∧ T ⊆ S × label × S,
A Bisimulation R is a 2-ary relation on S where:

R ⊆ S × S ∧
Each pair in R has the same color,

∀〈s1, s2〉 ∈ R : C(s1) = C(s2) ∧
And has matching transitions to pairs in R

∀〈s, l , s′1〉 ∈ T : s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2)∧R(s′1, s′2)

∧

∀〈s, l , s′2〉 ∈ T : s = s2 =⇒ ∃s′1 ∈ S : T (s1, l , s′1)∧R(s′1, s′2)

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

A Bisimulation is ...

Definition
(Given a colored, labeled transition system,(st,col,tran)

〈S, C, T 〉 | C ∈ S → color ∧ T ⊆ S × label × S,
A Bisimulation R is a 2-ary relation on S where:

R ⊆ S × S ∧
Each pair in R has the same color,

∀〈s1, s2〉 ∈ R : C(s1) = C(s2) ∧
And has matching transitions to pairs in R

∀〈s, l , s′1〉 ∈ T : s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2)∧R(s′1, s′2)

∧

∀〈s, l , s′2〉 ∈ T : s = s2 =⇒ ∃s′1 ∈ S : T (s1, l , s′1)∧R(s′1, s′2)

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

A Bisimulation is ...

Definition
(Given a colored, labeled transition system,(st,col,tran)

〈S, C, T 〉 | C ∈ S → color ∧ T ⊆ S × label × S,
A Bisimulation R is a 2-ary relation on S where:

R ⊆ S × S ∧
Each pair in R has the same color,

∀〈s1, s2〉 ∈ R : C(s1) = C(s2) ∧
And has matching transitions to pairs in R

∀〈s, l , s′1〉 ∈ T : s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2)∧R(s′1, s′2)

∧

∀〈s, l , s′2〉 ∈ T : s = s2 =⇒ ∃s′1 ∈ S : T (s1, l , s′1)∧R(s′1, s′2)

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

A Bisimulation is ...

Definition
(Given a colored, labeled transition system,(st,col,tran)

〈S, C, T 〉 | C ∈ S → color ∧ T ⊆ S × label × S,
A Bisimulation R is a 2-ary relation on S where:

R ⊆ S × S ∧
Each pair in R has the same color,

∀〈s1, s2〉 ∈ R : C(s1) = C(s2) ∧
And has matching transitions to pairs in R

∀〈s, l , s′1〉 ∈ T : s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2)∧R(s′1, s′2)

∧

∀〈s, l , s′2〉 ∈ T : s = s2 =⇒ ∃s′1 ∈ S : T (s1, l , s′1)∧R(s′1, s′2)

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

A Bisimulation is ...

Definition
(Given a colored, labeled transition system,(st,col,tran)

〈S, C, T 〉 | C ∈ S → color ∧ T ⊆ S × label × S,
A Bisimulation R is a 2-ary relation on S where:

R ⊆ S × S ∧
Each pair in R has the same color,

∀〈s1, s2〉 ∈ R : C(s1) = C(s2) ∧
And has matching transitions to pairs in R

∀〈s, l , s′1〉 ∈ T : s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2)∧R(s′1, s′2)

∧

∀〈s, l , s′2〉 ∈ T : s = s2 =⇒ ∃s′1 ∈ S : T (s1, l , s′1)∧R(s′1, s′2)

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

Matching Transitions to Pairs in R.

∀〈s1, s2〉 ∈ R :
∀〈s, l , s′1〉 ∈ T : s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2) ∧ R(s′1, s′2)

s1 s2

s'1

l

=⇒

s1 s2

s'1 s'2

l l

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

The (Largest) Bisimulation is ...

Definition
The Largest Bisimulation, “∼” is the union of all bisimulations R

And is an equivalence relation.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Abstract
Bisimulation

Original Definition of “∼” (Milner 1989)

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Relational Coarsest Partition = Largest Bisimulation.

Generic iterative splitting algorithm:

Iterative update of some equivalence relation variable R.
Start with R = coarsest partition of state space S, S × S
(∼⊆ R)
Initially split R based on state color
Iteratively remove implausible members from R when
required by definition of Bisimulation, by splitting R into
smaller blocks B∗.
∀〈s, l , s′1〉 ∈ T : s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2)∧R(s′1, s′2)

Iteration continues until all blocks have been used as
splitters (inherited stability, block unions).
May iterate over transition labels. Algorithm cores are often
described without reference to labeling.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Splitting.

∀〈s1, s2〉 ∈ R :
∀〈s, l , s′1〉 ∈ T : s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2) ∧ R(s′1, s′2)

Example

s1 s2

s'1 s'2

l l

=⇒

s1 s2

s'1

l

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Matching Transitions to Pairs in R.

∀〈s1, s2〉 ∈ R :
∀〈s, l , s′1〉 ∈ T : s = s1 =⇒ ∃s′2 ∈ S : T (s2, l , s′2) ∧ R(s′1, s′2)

s1 s2

s'1

l

=⇒

s1 s2

s'1 s'2

l l

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Outline

1 Overview
Abstract
Bisimulation

2 Algorithms for Bisimulation
Paige and Tarjan
Symbolic Methods
Previous Work

3 Our Work
Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

4 Results and Future Work

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Splitting produces hierarchy of partition blocks

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

“Process The Smaller Half.” O(m log n)

Start with R = coarsest partition of state space S, S × S
First split uses S as splitter. Separates states with no
transitions.
Remember hierarchy of split blocks for use as splitters
Use 2 splitters K and K0 \ K , where K0 was already a
splitter.
Iteratively split blocks B into smaller blocks B0, B1, and B′

Maintain reverse adjacency lists
Maintain counts of edges from states to states in splitter
blocks

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

“Process The Smaller Half.” O(m log n)

K0\K K

B' B1 B0

s4

s2 s1

s0

s3

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

“Process The Smaller Half.” O(m log n)

Uses edge counts to distinguish between members of B0
and B1.
Avoids processing members of B′ and K0 \ K (by reusing
structures).
Update edge counts.
Each state s occurs in at most log n splitters.
Each edge participates in at most O(log n) splitting
operations
T = O(m log n)

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Outline

1 Overview
Abstract
Bisimulation

2 Algorithms for Bisimulation
Paige and Tarjan
Symbolic Methods
Previous Work

3 Our Work
Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

4 Results and Future Work

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

“Symbolic Methods” 6= Mathematica ®(WolframResearch)

“0001”
“0010”
“0100”
“0111”
“1011”
“1020”
“1110”
“1121”
“2000”
“2021”
“2101”
“2120”

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Multi-Way Decision Diagrams Represent Relations

Each path in MDD (graph) corresponds to tuple in relation.
Canonical: sharing↔ compression, comparison, unique
table, non-mutable.
Efficient memoized recursive algorithms for set operations:
(∈ (not memoized), |()|, ∪, ∩, \, ⊆).
Efficient memoized recursive algorithms for functional
operations: (◦, ∃, ∀).
Set operations implemented in SMART MDD library.
SMART Saturation algorithm for transitive closure (state
space exploration).
“Quasi-reduced”, with “NULL” edges
Variable ordering matters.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Set = Boolean Table (Ŝ = [1, 3]4)

“0001”
“0010”
“0100”
“0111”
“1011”
“1020”
“1110”
“1121”
“2000”
“2021”
“2101”
“2120”

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Empty Subsets

“0001”
“0010”
“0100”
“0111”
“1011”
“1020”
“1110”
“1121”
“2000”
“2021”
“2101”
“2120”

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Replace with “NULL” Edges

“0001”
“0010”
“0100”
“0111”
“1011”
“1020”
“1110”
“1121”
“2000”
“2021”
“2101”
“2120”

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Quasi-Reduce at Leaf Level

“0001”
“0010”
“0100”
“0111”
“1011”
“1020”
“1110”
“1121”
“2000”
“2021”
“2101”
“2120”

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Quasi-Reduced MDD

“0001”
“0010”
“0100”
“0111”
“1011”
“1020”
“1110”
“1121”
“2000”
“2021”
“2101”
“2120”

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Memoized Recursive Algorithm for Set Difference (“\”)

Algorithm R ← X \ Y
1 Handle a few special cases before checking cache:

1 If X = ∅ then return with R ← ∅
2 If Y = ∅ then return with R ← X
3 If X = Y then return with R ← ∅

2 If the cache has X \ Y then return with R ← cached value
3 Construct new MDD node R as follows:
4 Recursively call: Ri ← Xi \ Yi , for each variable value i
5 If ∀i : Ri = ∅ then R ← ∅
6 Make R canonical: R ← unique(R)

7 Put R = X \ Y into the cache
8 Return R

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Memoized Recursive Algorithm for Set Difference (“\”)

Algorithm R ← X \ Y
1 Handle a few special cases before checking cache:

1 If X = ∅ then return with R ← ∅
2 If Y = ∅ then return with R ← X
3 If X = Y then return with R ← ∅

2 If the cache has X \ Y then return with R ← cached value
3 Construct new MDD node R as follows:
4 Recursively call: Ri ← Xi \ Yi , for each variable value i
5 If ∀i : Ri = ∅ then R ← ∅
6 Make R canonical: R ← unique(R)

7 Put R = X \ Y into the cache
8 Return R

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Memoized Recursive Algorithm for Set Difference (“\”)

Algorithm R ← X \ Y
1 Handle a few special cases before checking cache:

1 If X = ∅ then return with R ← ∅
2 If Y = ∅ then return with R ← X
3 If X = Y then return with R ← ∅

2 If the cache has X \ Y then return with R ← cached value
3 Construct new MDD node R as follows:
4 Recursively call: Ri ← Xi \ Yi , for each variable value i
5 If ∀i : Ri = ∅ then R ← ∅
6 Make R canonical: R ← unique(R)

7 Put R = X \ Y into the cache
8 Return R

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Memoized Recursive Algorithm for Set Difference (“\”)

Algorithm R ← X \ Y
1 Handle a few special cases before checking cache:

1 If X = ∅ then return with R ← ∅
2 If Y = ∅ then return with R ← X
3 If X = Y then return with R ← ∅

2 If the cache has X \ Y then return with R ← cached value
3 Construct new MDD node R as follows:
4 Recursively call: Ri ← Xi \ Yi , for each variable value i
5 If ∀i : Ri = ∅ then R ← ∅
6 Make R canonical: R ← unique(R)

7 Put R = X \ Y into the cache
8 Return R

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Memoized Recursive Algorithm for Set Difference (“\”)

Algorithm R ← X \ Y
1 Handle a few special cases before checking cache:

1 If X = ∅ then return with R ← ∅
2 If Y = ∅ then return with R ← X
3 If X = Y then return with R ← ∅

2 If the cache has X \ Y then return with R ← cached value
3 Construct new MDD node R as follows:
4 Recursively call: Ri ← Xi \ Yi , for each variable value i
5 If ∀i : Ri = ∅ then R ← ∅
6 Make R canonical: R ← unique(R)

7 Put R = X \ Y into the cache
8 Return R

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Memoized Recursive Algorithm for Set Difference (“\”)

Algorithm R ← X \ Y
1 Handle a few special cases before checking cache:

1 If X = ∅ then return with R ← ∅
2 If Y = ∅ then return with R ← X
3 If X = Y then return with R ← ∅

2 If the cache has X \ Y then return with R ← cached value
3 Construct new MDD node R as follows:
4 Recursively call: Ri ← Xi \ Yi , for each variable value i
5 If ∀i : Ri = ∅ then R ← ∅
6 Make R canonical: R ← unique(R)

7 Put R = X \ Y into the cache
8 Return R

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Variable Ordering Matters (1)

“0001”
“0010”
“0100”
“0111”
“1011”
“1020”
“1110”
“1121”
“2000”
“2021”
“2101”
“2120”

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Variable Ordering Matters (2)

“0001”
“0100”
“0010”
“0111”
“1101”
“1200”
“1110”
“1211”
“2000”
“2201”
“2011”
“2210”

“0001”
“0010”
“0100”
“0111”
“1011”
“1020”
“1110”
“1121”
“2000”
“2021”
“2101”
“2120”

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Represent FSAs as Relations (and MDDs)

〈 “00”→ “01” 〉
〈 “00”→ “10” 〉
〈 “01”→ “00” 〉
〈 “01”→ “11” 〉
〈 “10”→ “11” 〉
〈 “10”→ “20” 〉
〈 “11”→ “10” 〉
〈 “11”→ “21” 〉
〈 “20”→ “00” 〉
〈 “20”→ “21” 〉
〈 “21”→ “01” 〉
〈 “21”→ “20” 〉

“0001”
“0010”
“0100”
“0111”
“1011”
“1020”
“1110”
“1121”
“2000”
“2021”
“2101”
“2120”

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Represent FSAs as Relations (and MDDs)

Each state variable corresponds to a (set of) variables in
tuple.
Each transition in FSA corresponds to tuple in transition
relation.
Interleaved ordering of variables of source and destination
states of transition relation usually yields relatively compact
MDDs.
SMART2 produces MDDs of transition relations in
interleaved form.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Alternate Ways to Represent Partitions as Relations

1 Equivalence Relation:
〈s1, s2〉 | s1, s2 ∈ S

2 List of Partition Blocks
B1, B2, B3, B4, . . . |
B∗ ⊆ S

3 Block Numbering
〈s, n〉 | s ∈ S, n ∈ N

1

3

 2

 1

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Alternate Ways to Represent Partitions as Relations

1 Equivalence Relation:
〈s1, s2〉 | s1, s2 ∈ S

2 List of Partition Blocks
B1, B2, B3, B4, . . . |
B∗ ⊆ S

3 Block Numbering
〈s, n〉 | s ∈ S, n ∈ N

2

3

 2

 1

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Alternate Ways to Represent Partitions as Relations

1 Equivalence Relation:
〈s1, s2〉 | s1, s2 ∈ S

2 List of Partition Blocks
B1, B2, B3, B4, . . . |
B∗ ⊆ S

3 Block Numbering
〈s, n〉 | s ∈ S, n ∈ N

3

3

 2

 1

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Ways to Represent Partitions as MDDs

1 Equivalence Relation (Non-Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, x2, x3, . . ., y1, y2, y3, . . .

2 Equivalence Relation (Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, y1, x2, y2, x3, y3, . . .

3 Lists of Partition Blocks (link)

B1, B2, B3, B4, . . . | B∗ ⊆ S
Variable ordering: x1, x2, x3, . . .

4 Block Numbering/function of state (link)

〈s, n〉 | s ∈ S, n ∈ N
Variable ordering: x1, x2, x3, . . . k1, k2, k3, . . .

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Ways to Represent Partitions as MDDs

1 Equivalence Relation (Non-Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, x2, x3, . . ., y1, y2, y3, . . .

2 Equivalence Relation (Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, y1, x2, y2, x3, y3, . . .

3 Lists of Partition Blocks (link)

B1, B2, B3, B4, . . . | B∗ ⊆ S
Variable ordering: x1, x2, x3, . . .

4 Block Numbering/function of state (link)

〈s, n〉 | s ∈ S, n ∈ N
Variable ordering: x1, x2, x3, . . . k1, k2, k3, . . .

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Ways to Represent Partitions as MDDs

1 Equivalence Relation (Non-Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, x2, x3, . . ., y1, y2, y3, . . .

2 Equivalence Relation (Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, y1, x2, y2, x3, y3, . . .

3 Lists of Partition Blocks (link)

B1, B2, B3, B4, . . . | B∗ ⊆ S
Variable ordering: x1, x2, x3, . . .

4 Block Numbering/function of state (link)

〈s, n〉 | s ∈ S, n ∈ N
Variable ordering: x1, x2, x3, . . . k1, k2, k3, . . .

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Ways to Represent Partitions as MDDs

1 Equivalence Relation (Non-Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, x2, x3, . . ., y1, y2, y3, . . .

2 Equivalence Relation (Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, y1, x2, y2, x3, y3, . . .

3 Lists of Partition Blocks (link)

B1, B2, B3, B4, . . . | B∗ ⊆ S
Variable ordering: x1, x2, x3, . . .

4 Block Numbering/function of state (link)

〈s, n〉 | s ∈ S, n ∈ N
Variable ordering: x1, x2, x3, . . . k1, k2, k3, . . .

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Outline

1 Overview
Abstract
Bisimulation

2 Algorithms for Bisimulation
Paige and Tarjan
Symbolic Methods
Previous Work

3 Our Work
Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

4 Results and Future Work

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Generic Signature-Based Splitting Algorithm

Split each partition block using all blocks as splitters.
State Space: S, Partition: P ∈ S → Block , Transition:
Q ⊆ S × S, Signature: T
Signature of a state s includes set of partition blocks to
which s has transitions.
Signature includes current partition block where s resides.
Signature often described without edge labeling.
Define new partition of S, with a block for each signature.

Algorithm: Signature-Based Splitting

1 Signature: T (s) = 〈 P(s), {P(s′)|〈s, s′〉 ∈ Q} 〉.
2 New Partition: P ′(s) = f (T (s)) (for some bijection f)

3 Repeat 1;2;P ← P ′ until P = P ′

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Splitting.

Example

s1 s2

s'1 s'2

l l

=⇒

s1 s2

s'1

l

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Generic Signature-Based Splitting Algorithm

Example

partition (P):

3

 2

 1

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

transitions (Q):

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

T (s4) = 〈

3

, {

 2

3

}〉

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Generic Signature-Based Splitting Algorithm

P, Q:

 1

 2

3

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

, T :

3

 2

 1

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Generic Signature-Based Splitting Algorithm

T = Q ◦ P

3

 2

 1

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

=

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

◦

3

 2

 1

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Generic Signature-Based Splitting Algorithm

T :

3

 2

 1

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

, P ′:

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Generic Signature-Based Splitting Algorithm

Split each partition block using all blocks as splitters.
State Space: S, Partition: P ∈ S → Block , Transition:
Q ⊆ S × S, Signature: T
Signature of a state s includes set of partition blocks to
which s has transitions.
Signature includes current partition block where s resides.
Signature often described without edge labeling.
Define new partition of S, with a block for each signature.

Algorithm: Signature-Based Splitting

1 Signature: T (s) = 〈 P(s), {P(s′)|〈s, s′〉 ∈ Q} 〉.
2 New Partition: P ′(s) = f (T (s)) (for some bijection f)

3 Repeat 1;2;P ← P ′ until P = P ′

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Algorithm: Rank-Based Initial Partition

Agostino Dovier, Carla Piazza, and Alberto Policriti (2004).
Linear symbolic steps.
Produces rank-based partition
Partition representation: lists of partition blocks
Needs other block splitting algorithm to finish.
Apply other algorithm to blocks in rank order.
Strongly connected components cause problems.
Extract rank-1 elements: R1 ← S \ preimage(S)

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Algorithm: Rank-Based Initial Partition

Example

2

 1

 0

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Paige and Tarjan
Symbolic Methods
Previous Work

Algorithm: Forwarding, Splitting, Ordering

Ralf Wimmer, Marc Herbstritt, and Bernd Becker (2007).
Partition representation: lists of blocks AND numbering
function
Algorithm maintains signature and partition.
Forwarding: Immediately update partition numbering
function.
Split-drive refinement: Only attempt splitting on blocks that
might be split.
Block ordering: Split blocks that might propagate splitting
most.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

History

1 Review lumping algorithms.
2 Contrive new ideas.

Interleaved partition representation (Ciardo)
Depth-based initial partition (Mumme)

3 Limit scope to bisimulation instead of lumping.
4 Devise new algorithms

Saturation for distance calculation (Ciardo)
Relational operations for interleaved partition refinement
(Mumme)

5 Implement interleaved partition refinement for bisimulation.
6 Review bisimulation algorithms.
7 Amar Bouali and Robert De Simone (1992).
8 Implement hybrid algorithm to compare partition

representations.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Outline

1 Overview
Abstract
Bisimulation

2 Algorithms for Bisimulation
Paige and Tarjan
Symbolic Methods
Previous Work

3 Our Work
Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

4 Results and Future Work

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Symbolic Bisimulation Minimization

Amar Bouali and Robert De Simone (1992).
Partition representation: Equivalence relation (interleaved
or non-interleaved)
Transition representation: Relation (interleaved or
non-interleaved (respectively))
Similar to generic signature-based splitting algorithm.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Our Implementation of Bouali and De Simone’s
Algorithm

Partition representation: Equivalence relation (interleaved)
Transition representation: Relation (interleaved)
Similar to generic signature-based splitting algorithm,
except:
Equivalence relation allows signature without current
partition number.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Algorithm 1 Signature Formula

S State space
E ⊆ S × S Equivalence relation
Q(t) ⊆ Ŝ × Ŝ Transition relation (for transition t)
T ⊆ S × S = Q ◦ E Signatures
T (s1, s3) iff ∃s2 ∈ S : Q(s1, s2) ∧ E(s2, s3) ∧ S(s1)

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Generic Signature-Based Splitting Algorithm

Example

partition (P):

3

 2

 1

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

transitions (Q):

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

T (s4) = 〈

3

, {

 2

3

}〉

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Algorithm 1 Signature

Example

partition (P):

3

 2

 1

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

transitions (Q):

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

T (s4) =

S
5

S
4 S

6

S
1

S
2

S
3

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Algorithm 1 Signature

T = Q ◦ P

=

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

◦

3

 2

 1

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Algorithm 1 Signature Calculation

State space MDD: S
Interleaved equivalence relation MDD: E ⊆ S × S
Interleaved transition relation MDD: Q ⊆ Ŝ × Ŝ
Signatures MDD: T ← proj∨3((DC2(Q,S)) ∩ (DC1(E ,S)))

T (s1, s3) iff ∃s2 ∈ S : Q(s1, s2) ∧ E(s2, s3) ∧ S(s1)

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Definitions for Extra Operators

DC1(E ,S) , E , where E(x , y , z) = E(y , z) ∧ S(x)

DC2(Q,S) , Q, where Q(x , y , z) = Q(x , z) ∧ S(y)

proj∨3(F) , F ′, where F ′(x , y) =
∨

c : F(x , y , c)

Signatures MDD: T ← proj∨3((DC2(Q,S)) ∩ (DC1(E ,S)))

T (x , y) ←
∨

z : (Q(x , (y), z) ∧ E((x), y , z))

T (x , y) ←
∨

z : (Q(x , z) ∧ S(y) ∧ E(y , z) ∧ S(x))

T (s1, s3) ←
∨

s2 : (Q(s1, s2) ∧ S(s3) ∧ E(s3, s2) ∧ S(s1))

T (s1, s3) ←
∨

s2 : (Q(s1, s2) ∧ E(s3, s2) ∧ S(s1))

T (s1, s3) iff ∃s2 ∈ S : Q(s1, s2) ∧ E(s2, s3) ∧ S(s1)

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Algorithm 1 Equivalence Relation Formula

S State space
T ⊆ S × S = Q ◦ E Signatures
∆E ⊆ S × S Equivalence relation update
∆E(s1, s3) iff ∀s2 ∈ S : T (s1, s2) = T (s3, s2)

E ′ ← E ∧∆E

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Algorithm 1 Equivalence Relation Calculation

State space MDD: S
Signatures MDD: T
∆E ← proj∧3(DC2(T ,S) ≡ DC1(T ,S))

E ′ ← E ∧∆E
∆E(s1, s3) iff ∀s2 ∈ S : T (s1, s2) = T (s3, s2)

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Algorithm 1 Equivalence Relation Calculation

∆E ← proj∧3(DC2(T ,S) ≡ DC1(T ,S))

E ′ ← E ∧∆E
∆E ← proj∨3(DC2(T ,S) ·∪DC1(T ,S))

where x ·∪y , (x \ y) ∪ (y \ x)

E ′ ← E \∆E

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Algorithm 1

Given: Initial partition in variable E , transition relation in Q, state
space in S.
Returns final partition in E .

Algorithm: refinement of equivalence relation using signature
relation
Repeat:

Eold ← E
T ← proj∨3((DC2(Q,S)) ∩ (DC1(E ,S)))

∆E ← proj∨3(DC2(T ,S) ·∪DC1(T ,S))

E ← E \∆E
Until E = Eold

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Algorithm 1 with Transition Labeling

Given: Initial partition in variable E , transition relation in Q, state
space in S.
Returns final partition in E .

Algorithm: refinement of equivalence relation using signature
relation
Repeat:

Eold ← E
For each t ∈ label loop:

T ← proj∨3((DC2(Qt ,S)) ∩ (DC1(E ,S)))
∆E ← proj∨3(DC2(T ,S) ·∪DC1(T ,S))
E ← E \∆E

Until E = Eold

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Hybrid Algorithm (for Comparison)

Partition representation: Block numbering function
(non-interleaved)
Transition representation: Relation (interleaved)
Similar to generic signature-based splitting algorithm.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Hybrid Algorithm Signature Formula (First Try)

S State Space
P ⊆ S × N+ Partition block number function of state
Q ⊆ Ŝ × Ŝ Transition relation
T ⊆ S × N+ × N+ Signature map state to pairs of blocks
T (s) =

⋃
s′∈S {〈P(s), P(s′)〉|〈s, s′〉 ∈ Q}. (wrong)

T (s, b, b′) iff ∃s′ ∈ S : (Q(s, s′) ∧ P(s, b) ∧ P(s′, b′)).

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Hybrid Algorithm Signature Formula

S State Space
P ⊆ S × [1, |S|] Partition block number function of state
Q ⊆ Ŝ × Ŝ Transition relation
T ⊆ S × [1, |S|]× [0, |S|] Signature map to pairs of blocks
T (s) = {〈P(s), 0〉} ∪

⋃
s′∈S {〈P(s), P(s′)〉|〈s, s′〉 ∈ Q}.

T (s, b, b′) iff (P(s, b) ∧ b′ = 0) ∨ ∃s′ ∈ S :
(Q(s, s′) ∧ P(s, b) ∧ P(s′, b′)).

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Hybrid Algorithm Signature

T = Q ◦ P

3

 2

 1

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

=

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

◦

3

 2

 1

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Hybrid Algorithm signature Calculation

State space MDD: S
Partition block number function MDD: P ⊆ S × [1, |S|]
interleaved transition relation MDD: Q ⊆ Ŝ × Ŝ
Signatures MDD: T ← W ∪ Tpartial , where:

W = DC3(P, {0})
I = [0, |S|]
Tpartial = proj∨2(
DC4(DC3(Q, I), I)∩DC4(DC2(P,S), I)∩DC1(DC2(P, I),S)
)

T (s, b, b′) iff (P(s, b) ∧ b′ = 0) ∨ ∃s′ ∈ S :
(Q(s, s′) ∧ P(s, b) ∧ P(s′, b′)).

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Definitions for Extra Operators

DC2(P,S) , P, where P(x , y , z) = P(x , z) ∧ S(y)

DC3(Q, I) , Q, where Q(x , y , z) = Q(x , y) ∧ I(z)

DC1(R,S) , R, where R(x , y , z, h) = R(y , z, h) ∧ S(x)

DC4(R, I) , R, where R(x , y , z, h) = R(x , y , z) ∧ I(h)

proj∨2(F) , F ′, where F ′(x , y , z) =
∨

c : F(x , c, y , z)
Signatures MDD: T ← W ∪ Tpartial , where:

W = DC3(P, {0})
I = [0, |S|]
Tpartial = proj∨2(
DC4(DC3(Q, I), I)∩DC4(DC2(P,S), I)∩DC1(DC2(P, I),S)
)

W(s, b, b′) iff P(s, b) ∧ b′ ∈ {0}
T (s, b, b′) iff (P(s, b) ∧ b′ = 0) ∨ ∃s′ ∈ S :
(Q(s, s′) ∧ P(s, b) ∧ P(s′, b′)).

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Substituting Extra Operators into Tpartial

DC2(P,S) , P, where P(x , y , z) = P(x , z) ∧ S(y)

DC3(Q, I) , Q, where Q(x , y , z) = Q(x , y) ∧ I(z)

DC1(R,S) , R, where R(x , y , z, h) = R(y , z, h) ∧ S(x)

DC4(R, I) , R, where R(x , y , z, h) = R(x , y , z) ∧ I(h)

proj∨2(F) , F ′, where F ′(x , y , z) =
∨

c : F(x , c, y , z)
Tpartial = proj∨2

DC4(DC3(Q, I), I)∩DC4(DC2(P,S), I)∩DC1(DC2(P, I),S)

Tpartial(s, b, b′) iff
∨

s′

DC4(DC3(Q, I), I)(s, s′, b, b′) ∧
DC4(DC2(P,S), I)(s, s′, b, b′) ∧
DC1(DC2(P, I),S)(s, s′, b, b′)

T (s, b, b′) iff (P(s, b) ∧ b′ = 0) ∨ ∃s′ ∈ S :
(Q(s, s′) ∧ P(s, b) ∧ P(s′, b′)).

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Substituting Extra Operators into Tpartial

DC2(P,S) , P, where P(x , y , z) = P(x , z) ∧ S(y)

DC3(Q, I) , Q, where Q(x , y , z) = Q(x , y) ∧ I(z)

DC1(R,S) , R, where R(x , y , z, h) = R(y , z, h) ∧ S(x)

DC4(R, I) , R, where R(x , y , z, h) = R(x , y , z) ∧ I(h)

proj∨2(F) , F ′, where F ′(x , y , z) =
∨

c : F(x , c, y , z)

Tpartial = proj∨2
DC4(DC3(Q, I), I)∩DC4(DC2(P,S), I)∩DC1(DC2(P, I),S)

Tpartial(s, b, b′) iff
∨

s′

[Q(s, s′) ∧ I(b) ∧ I(b′)] ∧ [P(s, b) ∧ S(s′) ∧ I(b′)] ∧
[P(s′, b′) ∧ I(b) ∧ S(s)]

T (s, b, b′) iff (P(s, b) ∧ b′ = 0) ∨ ∃s′ ∈ S :
(Q(s, s′) ∧ P(s, b) ∧ P(s′, b′)).

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Substituting Extra Operators into Tpartial

DC2(P,S) , P, where P(x , y , z) = P(x , z) ∧ S(y)

DC3(Q, I) , Q, where Q(x , y , z) = Q(x , y) ∧ I(z)

DC1(R,S) , R, where R(x , y , z, h) = R(y , z, h) ∧ S(x)

DC4(R, I) , R, where R(x , y , z, h) = R(x , y , z) ∧ I(h)

proj∨2(F) , F ′, where F ′(x , y , z) =
∨

c : F(x , c, y , z)

Tpartial = proj∨2
DC4(DC3(Q, I), I)∩DC4(DC2(P,S), I)∩DC1(DC2(P, I),S)

Tpartial(s, b, b′) iff
∨

s′

[Q(s, s′)] ∧ [P(s, b)] ∧ [P(s′, b′)] ∧ S(s) ∧ S(s′) ∧ I(b) ∧
I(b′)

T (s, b, b′) iff (P(s, b) ∧ b′ = 0) ∨ ∃s′ ∈ S :
(Q(s, s′) ∧ P(s, b) ∧ P(s′, b′)).

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Hybrid Algorithm Block Splitting/Numbering

S State Space
T ⊆ S × [1, |S|]× [0, |S|] Signature map to pairs of blocks
P ′ ⊆ S × [1, |S|] Partition block number function of state
New partition blocks for each different signature.
Block number for each state according to its signature.
∃f ∈ [1, |S|]× [1, |S|]× [0, |S|] : ∀s ∈ S : ∀b ∈ [1, |S|] :
P ′(s, b) iff {〈b1, b2〉|f (b, b1, b2)} = {〈b1, b2〉|T (s, b1, b2)}.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Hybrid Algorithm Block Splitting

T :

3

 2

 1

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

, P ′:

S
5

S
4 S

6

S
1

S
2

S
3

S
7

S
8

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Hybrid Algorithm Block Renumbering Calculation

Utilize canonicity of MDD
Utilize fact that MDD is non-interleaved with state toward
root
Recursively DFS signature MDD T
Assign new partition number upon finding new signature.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Hybrid Algorithm: Signatures MDD

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Hybrid Algorithm: Block Renumbering S → N

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Hybrid Algorithm: Block Renumbering S → N

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Hybrid Algorithm Block Renumbering Algorithm

Assign new block number, corresponding to signature, to each
state.

Algorithm: SigRenum(MDD T)

Return SigRenum(MDD T) from cache if possible.
If T is above signature level then

let R = new MDD with each child Ri = SigRenum(Ti)
else

let R = BDD for value of counter
increment counter

Put R = SigRenum(MDD T) into cache.
Return R

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Hybrid Algorithm

Given: Initial partition block numbering in variable P, transition
relation in Q, state space in S.
Returns final partition block numbering in P.

Algorithm: refinement of block numbering using signature
Repeat:

Pold ← P
T ← W ∪ Tpartial , where:

let: W ← DC3(P, {0}), and: I ← [0, |S|]
Tpartial ← proj∨2
DC4(DC3(Q, I), I)∩DC4(DC2(P,S), I)∩DC1(DC2(P, I),S)

P ← SigRenum(T)
Until P = Pold

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Hybrid Algorithm with Transition Labeling

Given: Initial partition block numbering in variable P, transition
relation in Q, state space in S.
Returns final partition block numbering in P.

Algorithm: refinement of block numbering using signature
Repeat:

Pold ← P
For each t ∈ label loop:

T ← W ∪ Tpartial , where:
let: W ← DC3(P, {0}), and: I ← [0, |S|]
Tpartial ← proj∨2

DC4(DC3(Qt , I), I)∩DC4(DC2(P,S), I)∩DC1(DC2(P, I),S)

P ← SigRenum(T)

Until P = Pold

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Outline

1 Overview
Abstract
Bisimulation

2 Algorithms for Bisimulation
Paige and Tarjan
Symbolic Methods
Previous Work

3 Our Work
Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

4 Results and Future Work

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Example from Algorithm 1 Signature MDD

Signatures MDD: T ← proj∨3((DC2(Q,S)) ∩ (DC1(E ,S)))

Calculate: ((DC2(Q,S)) ∩ (DC1(E ,S))) using single
recursive function.
Avoid construction of intermediates: DC2(Q,S) and
DC1(E ,S).
Recursive function will have 3 MDD parameters: Q, E ,S.
Given E = E−1 and E ⊆ S × S.
Each recursive call level corresponds to level of output
MDD.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Algorithm 6: Unprojected Relational Composition

Calculate: R = ((DC2(Q,S)) ∩ (DC1(E ,S))),
so that R(a, b, c) iff Q(a, c) ∧ E(b, c) ∧ S(a)

Algorithm: UcompL(MDD Q, E ,S) (memoized)

Leaf level: Return Q ∩ E
“a” level

Return new MDD R where child Ri = UcompL(Qi , E ,Si)
“b” level

Return new MDD R where child Ri = UcompL(Q, Ei ,S)
“c” level

Return new MDD R where child Ri = UcompL(Qi , Ei ,S)

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Improvements Applied to Both Algorithms

Improvement implemented as a single highly
parameterized recursive function: GenericComposeQQ.
Applied to: T ← proj∨3((DC2(Q,S)) ∩ (DC1(E ,S))),

(signature for Algorithm 1).
Applied to: Tpartial = proj∨2(
DC4(DC3(Q, I), I) ∩ DC4(DC2(P,S), I) ∩
DC1(DC2(P, I),S)), (signature for Hybrid Algorithm).
Not applied to: ∆E ← proj∨3(DC2(T ,S) ·∪DC1(T ,S)),

(E update for Algorithm 1).
where x ·∪y , (x \ y) ∪ (y \ x)

Could have been (avoid calculating (x \ y) and (y \ x)).

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

SMART Integration

All code implemented in a single unit: “ms_lumping”.
Invoked from SMART by a single C++ function call:
“bigint ComputeNumEQClass(state_model *mdl);”
Calculates largest bisimulation and returns number of
equivalence classes.
Invocation caused by “num_eqclass” function in model.
Uses multiple caches supplied by SMART MDD library
(Thanks, Min!).
Uses operations: ∪, ∩, \, new MDD, ||, etc. from SMART
MDD library.
Implements operations for interleaved MDDs:
proj∨, ◦, DC∗, |classes|
Implements SigRenum

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Summary of Our Bisimulation Algorithms

Two Algorithms:
Fully Implicit
Transition relation:
Interleaved MDD
Partition: Equivalence,
Interleaved MDD

Hybrid
Transition relation:
Interleaved MDD
Partition: Block number
function MDD

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Outline

1 Overview
Abstract
Bisimulation

2 Algorithms for Bisimulation
Paige and Tarjan
Symbolic Methods
Previous Work

3 Our Work
Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

4 Results and Future Work

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

“Short” Simple Fork-JoinModel

Simple Fork-Join Petri net, parameterized in number of tokens
N, in place 1 Has 6 places, 5 transitions, and initially N tokens.

N

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

“Tall” Simple Fork-JoinModel

Simple Fork-Join Petri net, parameterized in number of levels
N, in parallel chain. Has 2N+2 places and 2N+1 transitions.

1

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Summary of Our Models

Two simple fork-join models:
“Short” model
Fixed # places (variables)
Fixed # transitions
Growing # tokens = many
values
Fixed depth, growing fanout

“Tall” model
Growing # places (variables)
Growing # transitions
Fixed # tokens = few values
Growing depth, fixed fanout

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Our Algorithms (Algorithm 1 and Hybrid Algorithm)
Improvements for Complex MDD Expressions
Models

Model Statistics

“Short” model
N states classes iterations

1 6 5 3
2 20 15 3
3 50 35 4
4 105 70 4
5 196 126 5
6 336 210 6
7 540 330 7
8 825 495 8
9 1210 715 9

10 1716 1001 10
11 2366 1365 11
12 3185 1820 12
13 4200 2380 13

“Tall” model
N states classes iterations

1 3 3 2
2 6 5 2
3 11 7 4
4 18 9 6
5 27 11 8
6 38 13 10
7 51 15 12
8 66 17 14
9 83 19 16

10 102 21 18
11 123 23 20
12 146 25 22
13 171 27 24

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

“Tall” MDD Size Results

Size of output (Nodes),for simple "Tall" fork-join model

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14

N

N
o

d
e
s

Hybrid Interleaved Explicit

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

“Short” MDD Size Results (The Bright Side ...)

Size of output (Nodes), for simple "Short" fork-join model

0

1000

2000

3000

4000

5000

6000

0 1 2 3 4 5 6 7 8 9 10

N

N
o

d
e
s

Hybrid
Interleaved
Explicit

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

“Short” Maximum Storage

Maximum storage (Nodes) for "Short" fork-join model

0

500000

1000000

1500000

2000000

2500000

3000000

0 1 2 3 4 5 6 7 8 9 10

N

N
o

d
e
s

Hybrid
Interleaved

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

“Short” CPU Time

Cpu time (S.), for "Short" fork-join model

0

5

10

15

20

25

30

35

0 1 2 3 4 5 6

N (truncated)

S
e
co

n
d

s

Hybrid
Interleaved

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

“Short” CPU Time

Cpu time (S), for "Short" fork-join model

0

2000

4000

6000

8000

10000

12000

14000

16000

0 1 2 3 4 5 6 7 8 9 10

N

S
e
co

n
d

s

Hybrid
Interleaved

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

“Tall” Maximum Storage

Maximum storage (Nodes), for "Tall" fork-join model

0

50000

100000

150000

200000

250000

300000

350000

0 2 4 6 8 10 12 14

N

N
o

d
e
s

Hybrid Interleaved

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

“Tall” CPU Time

Cpu time (S.), for "Tall" fork-join model

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6

N (truncated)

S
e
co

n
d

s

Hybrid
Interleaved

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

“Tall” CPU Time

Cpu time (S.), for "Tall" fork-join model

0

20

40

60

80

100

120

0 2 4 6 8 10 12 14

N

S
e
co

n
d

s

Hybrid Interleaved

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Discussion of Results

Qualitative evaluation of Quantitative results:
In nearly all cases, pure interleaved MDD algorithm
performed poorly.
Hybrid algorithm was surprisingly reasonable considering it
is partly explicit.
Output size of interleaved MDD is better in one case.

Additional Thoughts:
Perhaps models are too small.
“Short” model output results show trend for interleaved
output size growing slower than |S|.
Optimization should have been done for Algorithm 1
partition update.
Intermediate results in symmetric difference may be large.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Future Work

Improvements to current work:
Algorithm 1 partition update.
Quantification/Projection Improvements.
Additional models.

Other related work:
If reasonable, apply to lumping problem.
Affine decision diagrams.
Apply distance algorithm for initial partition.
Saturation for direct exploration of ∼.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

Summary

Implementation of two bisimulation algorithms in SMART
Comparison using two Petri net models.
Initially, partition representation by block numbering
function wins.

Future:
Interleaved representation of equivalence relation may
actually be reasonable.
Saturation should also be applied to this problem.
Lumping.

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

The End

fin

Malcolm Mumme Fully-Implicit Bisimulation

Overview
Algorithms for Bisimulation

Our Work
Results and Future Work

Summary

After The End

(Click here for a reference.)

Malcolm Mumme Fully-Implicit Bisimulation

Appendix For Further Reading

Ways to Represent Partitions

1 Equivalence Relation (Non-Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, x2, x3, . . ., y1, y2, y3, . . .

2 Equivalence Relation (Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, y1, x2, y2, x3, y3, . . .

3 Lists of Partition Blocks (link)

B1, B2, B3, B4, . . . | B∗ ⊆ S
Variable ordering: x1, x2, x3, . . .

4 Block Numbering/function of state (link)

〈s, n〉 | s ∈ S, n ∈ N
Variable ordering: x1, x2, x3, . . . k1, k2, k3, . . .

Malcolm Mumme Fully-Implicit Bisimulation

Appendix For Further Reading

Ways to Represent Partitions

1 Equivalence Relation (Non-Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, x2, x3, . . ., y1, y2, y3, . . .

2 Equivalence Relation (Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, y1, x2, y2, x3, y3, . . .

3 Lists of Partition Blocks (link)

B1, B2, B3, B4, . . . | B∗ ⊆ S
Variable ordering: x1, x2, x3, . . .

4 Block Numbering/function of state (link)

〈s, n〉 | s ∈ S, n ∈ N
Variable ordering: x1, x2, x3, . . . k1, k2, k3, . . .

Malcolm Mumme Fully-Implicit Bisimulation

Appendix For Further Reading

Ways to Represent Partitions

1 Equivalence Relation (Non-Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, x2, x3, . . ., y1, y2, y3, . . .

2 Equivalence Relation (Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, y1, x2, y2, x3, y3, . . .

3 Lists of Partition Blocks (link)

B1, B2, B3, B4, . . . | B∗ ⊆ S
Variable ordering: x1, x2, x3, . . .

4 Block Numbering/function of state (link)

〈s, n〉 | s ∈ S, n ∈ N
Variable ordering: x1, x2, x3, . . . k1, k2, k3, . . .

Malcolm Mumme Fully-Implicit Bisimulation

Appendix For Further Reading

Ways to Represent Partitions

1 Equivalence Relation (Non-Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, x2, x3, . . ., y1, y2, y3, . . .

2 Equivalence Relation (Interleaved) (link)

〈s1, s2〉 | s1, s2 ∈ S
Variable ordering: x1, y1, x2, y2, x3, y3, . . .

3 Lists of Partition Blocks (link)

B1, B2, B3, B4, . . . | B∗ ⊆ S
Variable ordering: x1, x2, x3, . . .

4 Block Numbering/function of state (link)

〈s, n〉 | s ∈ S, n ∈ N
Variable ordering: x1, x2, x3, . . . k1, k2, k3, . . .

Malcolm Mumme Fully-Implicit Bisimulation

Appendix For Further Reading

Partition Representation: Equivalence Relation
(Interleaved) {〈x , y〉|E(x , y)}

Malcolm Mumme Fully-Implicit Bisimulation

Appendix For Further Reading

Partition Representation: Lists of Partition Blocks (or
Array etc) N→ S

Malcolm Mumme Fully-Implicit Bisimulation

Appendix For Further Reading

Partition Representation: Equivalence Relation
(Non-Interleaved) {〈x , y〉|E(x , y)}

Malcolm Mumme Fully-Implicit Bisimulation

Appendix For Further Reading

Partition Representation: Block Numbering/function of
state S → N

Malcolm Mumme Fully-Implicit Bisimulation

Appendix For Further Reading

Bibliography I

R. Milner.
Communication and Concurrency.
Prentice Hall, 1989.

Malcolm Mumme Fully-Implicit Bisimulation

	Overview
	Abstract
	Bisimulation

	Algorithms for Bisimulation
	Paige and Tarjan
	Symbolic Methods
	Previous Work

	Our Work
	Our Algorithms (Algorithm 1 and Hybrid Algorithm)
	Improvements for Complex MDD Expressions
	Models

	Results and Future Work
	Summary
	Appendix
	Appendix
	

