Geospatial Imagery Analysis: Application - Change Detection.

By Jerry Zhu & Jonathan Peng
Introduction

- Change Detection of High Spatial Resolution Images (HSR)
- Using Region-Line Primitive Association Analysis and Evidence Fusion
- HSRs can have spectral confusion and image noise
 - A solution is proposed by combining multiple detection methods that are primarily from Object-based Change Detections (OBCD)
Methodology Overview

- Create temporal region primitives (TRP) and temporal line primitives (TLP)
- OBCD - Object-based Change Detection
 - Feature similarity measure
 - Evidence Fusion
 - Refinement
Methodology
Methodology

- Feature similarity measure
 - obtains the mean, variance and covariance from two different TRPs, and finds the similarity measure (SSIM) with the following equation.

\[
SSIM(X, Y) = \frac{(2\mu_X\mu_Y + C1)(2\sigma_{XY} + C2)}{(\mu_X^2 + \mu_Y^2 + C1)(\sigma_X^2 + \sigma_Y^2 + C2)},
\]

- Evidence Fusion
 - Basic probability assignment function (BPAF)

\[
m_i(\{Y\}) = (1.0 - S_i) \times \alpha_i, m_i(\{N\}) = S_i \times \alpha_i, m_i(\{Y, N\}) = 1.0 - \alpha_i, \ i = 1, 2, 3,
\]
Methodology

• Region-line primitive association framework (RLPAF)
 • changes with low BPAF values will might get ignored in evidence fusion
Methodology

- Evidence Fusion then Refinement

Algorithm 1. Two-stage change detection

Input: TRPs \(\{P\} \), TLPs \(\{L_1\} \), and \(\{L_2\} \), Change threshold \(T \), Scaling factor \(S \)

Output: Changed TRPs \(\{P_C\} \)

For each \(P \) within \(\{P\} \):

1. Calculate its spectral BPAF, gradient BPAF, and edge BPAF and fuse them to obtain \(B_N \)
2. If \(P \)'s \(B_N < T \), put \(P \) to \(\{P_C\} \)
3. Else

 Obtain \(P \)'s bitemporal \(MLD_1 \) and \(MLD_2 \) using its contacted lines extracted from \(\{L_1\} \) and \(\{L_2\} \)

 If \(MLD_1 \) is not equal to \(MLD_2 \)

 Relax threshold \(T \) to \(T_1 (T \times S) \)

 If \(B_N < T_1 \), put \(P \) to \(\{P_C\} \)

Return \(\{P_C\} \)
Experimental & Analysis

Figure 4. Three experimental areas. (a,b) Original bitemporal images of area 1. (c,d) Original bitemporal images of area 2. (e,f) Original bitemporal images of area 3.
Area 1
Area 1

- CVA(g), PCA-k(h), IRMAD(i)
Area 1 Result

Table 2. Precision in area 1. TP: the number of change image objects correctly detected, FP: the number of unchanged image objects incorrectly detected as changed ones, FN: the number of changed image objects incorrectly detected as unchanged ones, TN: the number of unchanged image objects correctly detected, FA: false alarm, MA: missed alarm, OA: overall accuracy.

<table>
<thead>
<tr>
<th>Type</th>
<th>Method</th>
<th>TP</th>
<th>FP</th>
<th>FN</th>
<th>TN</th>
<th>OA (%)</th>
<th>MA (%)</th>
<th>FA (%)</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CVA</td>
<td>52</td>
<td>219</td>
<td>21</td>
<td>1000</td>
<td>81.42%</td>
<td>28.77%</td>
<td>20.82%</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>IRMAD</td>
<td>41</td>
<td>50</td>
<td>32</td>
<td>1169</td>
<td>93.65%</td>
<td>43.84%</td>
<td>4.13%</td>
<td>0.47</td>
</tr>
<tr>
<td>Segment-based</td>
<td>PCA-K-means</td>
<td>44</td>
<td>78</td>
<td>29</td>
<td>1141</td>
<td>91.72%</td>
<td>39.73%</td>
<td>6.58%</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>Initial detection</td>
<td>49</td>
<td>8</td>
<td>24</td>
<td>1211</td>
<td>97.52%</td>
<td>32.88%</td>
<td>0.63%</td>
<td>0.74</td>
</tr>
<tr>
<td></td>
<td>Direct threshold relaxation</td>
<td>54</td>
<td>19</td>
<td>19</td>
<td>1200</td>
<td>97.06%</td>
<td>26.03%</td>
<td>1.52%</td>
<td>0.72</td>
</tr>
<tr>
<td></td>
<td>Refined detection</td>
<td>54</td>
<td>11</td>
<td>19</td>
<td>1208</td>
<td>97.68%</td>
<td>26.03%</td>
<td>0.87%</td>
<td>0.77</td>
</tr>
</tbody>
</table>
Area 3
Area 3
Area 3 Result

![Image](image_url)

<table>
<thead>
<tr>
<th>Type</th>
<th>Method</th>
<th>TP</th>
<th>FP</th>
<th>FN</th>
<th>TN</th>
<th>OA (%)</th>
<th>MA (%)</th>
<th>FA (%)</th>
<th>Kappa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CVA</td>
<td>123</td>
<td>1018</td>
<td>154</td>
<td>2710</td>
<td>70.74%</td>
<td>55.60%</td>
<td>35.93%</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>IRMAD</td>
<td>16</td>
<td>419</td>
<td>261</td>
<td>3309</td>
<td>83.02%</td>
<td>94.22%</td>
<td>12.60%</td>
<td>-0.04</td>
</tr>
<tr>
<td></td>
<td>PCA-K-means</td>
<td>145</td>
<td>342</td>
<td>132</td>
<td>3386</td>
<td>88.16%</td>
<td>47.65%</td>
<td>9.69%</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>Initial detection</td>
<td>138</td>
<td>65</td>
<td>139</td>
<td>3663</td>
<td>94.91%</td>
<td>50.18%</td>
<td>1.71%</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td>Direct threshold relaxation</td>
<td>221</td>
<td>289</td>
<td>56</td>
<td>3439</td>
<td>91.39%</td>
<td>20.22%</td>
<td>7.90%</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>Refined detection</td>
<td>199</td>
<td>139</td>
<td>78</td>
<td>3589</td>
<td>94.58%</td>
<td>28.16%</td>
<td>3.67%</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Table 4. Detection precision in area 3.
Discussion

• Main Steps
 1. TRP and TLP creation
 2. feature similarity calculation
 3. CD by evidence fusion
 4. CD refinement using RLPAF

• System Environment: Windows 7 64-bit OS with a CPU (Intel Core i7-4790, 3.60 GHz), RAM (8 GB), and a GPU (NVIDIA GT 630, 2 GB)
Discussion

- bitemporal images needed to be segmented separately and straight lines were detected twice
- Area 3 CD refinement longer than others, because the TLPs in area 3 were more densely distributed

Table 5. Method efficiency (unit: seconds).

<table>
<thead>
<tr>
<th>Area</th>
<th>TRP and TLP Creation</th>
<th>Feature similarity Calculation</th>
<th>CD by Evidence Fusion</th>
<th>CD Refinement Using RLPAF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area 1</td>
<td>84.78</td>
<td>7.7</td>
<td>1.06</td>
<td>13.99</td>
</tr>
<tr>
<td>Area 2</td>
<td>89.84</td>
<td>23.27</td>
<td>1.19</td>
<td>24.25</td>
</tr>
<tr>
<td>Area 3</td>
<td>138.09</td>
<td>29.56</td>
<td>1.49</td>
<td>117.93</td>
</tr>
</tbody>
</table>
Conclusion

- Multifeature fusion in the initial CD stage obtains fair method accuracy.
- RLPAP feature subsets of line and region–line association offers effective information for OBCD.
- CD is limited within the areas with distinctive MLD changes.
ANY QUESTIONS?