Non Context-free languages
\[a^n b^n c^n \]

Context-free languages
\[w w^R \]

Deterministic Context-free languages
\[a^n b^n \]

Regular languages
\[a^* b^* \]
Non-context free languages

\{a^n b^n c^n : n \geq 0\} \quad \{ww : w \in \{a, b\}\}

Context-free languages

\{a^n b^n : n \geq 0\} \quad \{ww^R : w \in \{a, b\}^*\}
The Pumping Lemma for Context-Free Languages
Take an **infinite** context-free language

Generates an infinite number of different strings

Example:

\[
S \rightarrow AB \\
A \rightarrow aBb \\
B \rightarrow Sb \\
B \rightarrow b
\]
\[S \rightarrow AB \]
\[A \rightarrow aBb \]
\[B \rightarrow Sb \]
\[B \rightarrow b \]

A derivation:

\[S \Rightarrow AB \Rightarrow aBbB \Rightarrow abbB \Rightarrow \]
\[\Rightarrow abbSb \Rightarrow abbABb \Rightarrow abbaBBb \Rightarrow \]
\[\Rightarrow abbaBBb \Rightarrow abbaBBb \]
Derivation tree

string $abbabbbb$

$S \Rightarrow AB \Rightarrow aBbB \Rightarrow abbB \Rightarrow$
$\Rightarrow abbSb \Rightarrow abbABb \Rightarrow abbaBbBb \Rightarrow$
$\Rightarrow abbabbBb \Rightarrow abbabbbb$
Derivation tree

\[\text{string } abbabbbb \]

\[S \Rightarrow AB \Rightarrow aBbB \Rightarrow abbB \Rightarrow \]
\[\Rightarrow abbSb \Rightarrow abbABb \Rightarrow abbaBbBb \Rightarrow \]
\[\Rightarrow abbabbBb \Rightarrow abbabbbb \]
\[B \Rightarrow Sb \Rightarrow ABb \Rightarrow aBbBb \Rightarrow aBbbb \]

\[B \Rightarrow b \]
Repeated Part

\[B \Rightarrow \ldots \Rightarrow aBbb \]
Another possible derivation

\[B \Rightarrow \ldots \Rightarrow aBbbb \]

\[B \Rightarrow \ldots \Rightarrow aBbbb \ldots \Rightarrow aaBbbbBbbb \]
\[S \Rightarrow \ldots \Rightarrow abbaBbbb \]
$S \Rightarrow \ldots \Rightarrow abbaBb$$bb \Rightarrow \ldots \Rightarrow abbaaBb$$bbbbb$
\[S \Rightarrow \ldots \Rightarrow abbaaBbbbbb \Rightarrow abbaaBbbbbb \]

\[B \Rightarrow b \]
$S \Rightarrow \ldots \Rightarrow abbaabbbbb$

Therefore, the string

\[abbaabbbbb \]

is also generated by the grammar
We know:

\[B \Rightarrow b \]

\[B \Rightarrow \ldots \Rightarrow aBbb \]

\[S \Rightarrow \ldots \Rightarrow abbaBbb \]

We also know this string is generated:

\[S \Rightarrow \ldots \Rightarrow abbaBbb \Rightarrow \quad \]

\[\Rightarrow abbabbb \]
We know: \[B \Rightarrow b \]
\[B \Rightarrow \ldots \Rightarrow aBbbb \]
\[S \Rightarrow \ldots \Rightarrow abbaBbbb \]

Therefore, this string is also generated:

\[S \Rightarrow \ldots \Rightarrow abbaBbbb \Rightarrow \]
\[\Rightarrow abbaaBbbbbb \Rightarrow \]
\[\Rightarrow abbaabbbbbbb \]
We know:
\[B \Rightarrow b \]
\[B \Rightarrow \ldots \Rightarrow aBbbb \]
\[S \Rightarrow \ldots \Rightarrow abbaBbbb \]

Therefore, this string is also generated:
\[S \Rightarrow \ldots \Rightarrow abbaBbbb \Rightarrow \]
\[\Rightarrow abba(a)^2 B(bbb)^2 bbb \]
\[\Rightarrow abba(a)^2 b(bbb)^2 bbb \]
We know: \[B \Rightarrow b \]
\[B \Rightarrow \ldots \Rightarrow aBbbb \]
\[S \Rightarrow \ldots \Rightarrow abbaBbbb \]

Therefore, this string is also generated:
\[S \Rightarrow \ldots \Rightarrow abbaBbbb \Rightarrow \]
\[\Rightarrow \ldots \]
\[\Rightarrow abba(a)^i B(bbb)^i bbb \]
\[\Rightarrow abba(a)^i b(bbb)^i bbb \]
Therefore, knowing that

\[abbabbbb \]

is generated by grammar \(G \), we also know that

\[abba(a)^i b(bb)^i bbb \]

is generated by \(G \)
In general:

We are given an infinite context-free grammar \(G \)

Assume \(G \) has no unit-productions
no \(\lambda \)-productions
Take a string \(w \in L(G) \)
with length bigger than

\[m > \text{(Number of productions)} \times \text{(Largest right side of a production)} \]

Consequence:

Some variable must be repeated in the derivation of \(w \)
u, v, x, y, z : strings of terminals

String $w = uvxyz$

Last repeated variable

repeated
Possible derivations:

* \(S \Rightarrow uAz \)

* \(A \Rightarrow vAy \)

* \(A \Rightarrow x \)
We know:

\[S \Rightarrow uA z \quad A \Rightarrow vA y \quad A \Rightarrow x \]

This string is also generated:

\[S \Rightarrow uA z \Rightarrow u x z \]

\[uv^0 x y^0 z \]
We know:

\[S \Rightarrow uAz \quad A \Rightarrow vAy \quad A \Rightarrow x \]

This string is also generated:

\[S \Rightarrow uAz \Rightarrow uvAy \Rightarrow uvxyz \]

The original \[w = uv^1xy^1z \]
We know:

* \[S \Rightarrow uAz \]
* \[A \Rightarrow vAy \]
* \[A \Rightarrow x \]

This string is also generated:

* * * *
\[S \Rightarrow uAz \Rightarrow uvAy \Rightarrow uvvAy \Rightarrow uvvxyyz \Rightarrow uvvxyyz \]

\[uv^2 xy^2 z \]
We know:

\[
\begin{align*}
S & \Rightarrow uAz \\
A & \Rightarrow vAy \\
A & \Rightarrow x
\end{align*}
\]

This string is also generated:

\[
\begin{align*}
S & \Rightarrow uAz \\
& \Rightarrow uvAy_1z_1 \\
& \Rightarrow uvvyAy_2z_2 \\
& \Rightarrow uvvvvAyyzz_3 \\
& \Rightarrow uvvvvyxyyz
\end{align*}
\]

\[uv^3xy^3z\]
We know:

$S \Rightarrow uAz \quad A \Rightarrow vAy \quad A \Rightarrow x$

This string is also generated:

$S \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvvAyyz \Rightarrow uvvvAyyyy \Rightarrow \ldots$
$\Rightarrow uvvv \ldots vAy \ldots yyyz \Rightarrow$
$\Rightarrow uvvv \ldots vxy \ldots yyyz$

$uv^i x y^i z$
Therefore, any string of the form

$$uv^i xy^i z \quad i \geq 0$$

is generated by the grammar G.
Therefore, knowing that $uvxyz \in L(G)$

we also know that $uv^i xy^i z \in L(G)$
Observation: \(|vxy| \leq m\)

Since \(A\) is the last repeated variable
Observation: \[|vy| \geq 1 \]

Since there are no unit or \(\lambda \) productions
The Pumping Lemma:

For infinite context-free language L

there exists an integer m such that

for any string $w \in L$, $|w| \geq m$

we can write $w = uvxyz$

with lengths $|vxy| \leq m$ and $|vy| \geq 1$

and it must be:

$uv^i xy^i z \in L$, for all $i \geq 0$
Applications of The Pumping Lemma
Non-context free languages

\[\{a^n b^n c^n : n \geq 0\} \]

Context-free languages

\[\{a^n b^n : n \geq 0\} \]
Theorem: The language

\[L = \{ a^n b^n c^n : n \geq 0 \} \]

is **not** context free

Proof: Use the Pumping Lemma for context-free languages
Assume for contradiction that L is context-free

Since L is context-free and infinite we can apply the pumping lemma
\[L = \{a^n b^n c^n : n \geq 0\} \]

Pumping Lemma gives a magic number \(m \)
such that:

Pick any string \(w \in L \) with length \(|w| \geq m \)

We pick: \(w = a^m b^m c^m \)
\[L = \{a^n b^n c^n : n \geq 0\} \]

\[w = a^m b^m c^m \]

We can write: \[w = uvxyz \]

with lengths \[|vxy| \leq m \quad \text{and} \quad |vy| \geq 1 \]
\[L = \{a^n b^n c^n : n \geq 0\} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Pumping Lemma says:

\[uv^i xy^i z \in L \quad \text{for all} \quad i \geq 0 \]
\[L = \{a^n b^n c^n : n \geq 0\} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

We examine all the possible locations of string \(vxy\) in \(w\)
\[L = \{a^n b^n c^n : n \geq 0\} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 1: \(vxy \) is within \(a^m \)

\[\text{aaa...aaa bbb...bbb ccc...ccc} \]

\[u \quad vxy \quad z \]
L = \{a^n b^n c^n : n \geq 0\}

w = a^m b^m c^m

w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1

Case 2: \(vxy\) is within \(b^m\)
\[L = \{ a^n b^n c^n : n \geq 0 \} \]

\[w = a^m b^m c^m \]

\[w = u v x y z \quad \mid vxy \mid \leq m \quad \mid vy \mid \geq 1 \]

Case 3: \(vxy \) is within \(c^m \)

\[\begin{array}{c}
m \\
\text{aaa...aaa} \\
u
m \\
\text{bbb...bbb} \\
m \\
\text{ccc...ccc} \\
vxy \\
z
\end{array} \]
\[L = \{ a^n b^n c^n : n \geq 0 \} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 4: \(vxy \) overlaps \(a^m \) and \(b^m \)

\[
\begin{array}{c}
\text{aaa...aaa} \\
u
\end{array}
\quad
\begin{array}{c}
\text{bbb...bbb} \\
vxy
\end{array}
\quad
\begin{array}{c}
\text{ccc...ccc} \\
z
\end{array}
\]
\[L = \{ a^n b^n c^n : n \geq 0 \} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 5: \(vxy \) overlaps \(b^m \) and \(c^m \)

\[m \]
\[\text{aaa...aaa} \quad \text{bbb...bbb} \quad \text{ccc...ccc} \]
\[u \quad vxy \quad z \]
\[L = \{a^n b^n c^n : n \geq 0\} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 1: \(vxy \) is within \(a^m \)

\[\begin{array}{c}
\text{aaa...aaa} \\
u \end{array} \quad \begin{array}{c}
\text{bbb...bbb} \\
vxy \end{array} \quad \begin{array}{c}
\text{ccc...ccc} \\
z \end{array} \]
\[L = \{ a^n b^n c^n : n \geq 0 \} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 1: \(v \) and \(y \) consist from only \(a \)

\[
\begin{array}{ccc}
 & m & \\
 u & vxy & z \\
 & m & \\
 aaa...aaa & bbb...bbb & ccc...ccc
\end{array}
\]
\[L = \{ a^n b^n c^n : n \geq 0 \} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 1: Repeating \(v \) and \(y \)

\[k \geq 1 \]

\[u \quad v^2xy^2 \quad bbb...bbb \quad ccc...ccc \quad z \]
\[L = \{a^n b^n c^n : n \geq 0\} \]

\[w = a^m b^m c^m \]

\[w = u v x y z \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 1: From Pumping Lemma: \(uv^2 xy^2 z \in L \)

\[k \geq 1 \]

\[u \quad v^2 xy^2 \quad m \quad m \quad \]

\[aaaaaa...aaaaaa \quad bbb...bbb \quad ccc...ccc \]

\[z \]
\[L = \{ a^n b^n c^n : n \geq 0 \} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad \left| vxy \right| \leq m \quad \left| vy \right| \geq 1 \]

Case 1: From Pumping Lemma: \(uv^2 xy^2 z \in L \)

\[k \geq 1 \]

However: \(uv^2 xy^2 z = a^{m+k} b^m c^m \notin L \)

Contradiction!!
\[L = \{a^n b^n c^n : n \geq 0\} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 2: \(vxy \) is within \(b^m \)

\[
\begin{array}{c}
m \\
\text{aaa...aaa} \\
u
\end{array}
\begin{array}{c}
m \\
\text{bbb...bbb} \\
vxy
\end{array}
\begin{array}{c}
m \\
\text{ccc...ccc} \\
z
\end{array}
\]
\[L = \{a^n b^n c^n : n \geq 0\} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 2: Similar analysis with case 1

\[
\begin{align*}
\text{aaa...aaa} & \quad \text{bbb...bbb} & \quad \text{ccc...ccc} \\
\text{u} & \quad \text{vxy} & \quad \text{z}
\end{align*}
\]
\[L = \{a^n b^n c^n : n \geq 0\} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |\text{vxy}| \leq m \quad |\text{vy}| \geq 1 \]

Case 3: \text{vxy is within} \(c^m \)

\[
\begin{array}{c}
m \\
\text{aaa...aaa} \\
\text{bbb...bbb} \\
\text{ccc...ccc} \\
\text{u} \\
\text{vxy} \\
\text{z}
\end{array}
\]
\[L = \{a^n b^n c^n : n \geq 0\} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 3: Similar analysis with case 1

\[
\begin{array}{c}
\text{aaa...aaa} \\
\text{bbb...bbb} \\
\text{ccc...ccc} \\
\text{u} \\
\text{vxy} \\
\text{z}
\end{array}
\]
\[L = \{a^n b^n c^n : n \geq 0\} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 4: vxy overlaps \(a^m\) and \(b^m\)
\[L = \{a^n b^n c^n : n \geq 0\} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vx| \leq m \quad |vy| \geq 1 \]

Case 4: Possibility 1: \(v\) contains only \(a\)

\(y\) contains only \(b\)

\[
\begin{array}{c}
m \\
\vdots \\
\text{aaa...aaa} \\
\text{bbb...bbb} \\
\text{ccc...ccc} \\
\end{array}
\]

\[
\begin{array}{c}
u \\
vxy \\
z
\end{array}
\]
\[L = \{ a^n b^n c^n : n \geq 0 \} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxym| \leq m \quad |vy| \geq 1 \]

Case 4: Possibility 1: \(v \) contains only \(a \)
\(k_1 + k_2 \geq 1 \)
\(m + k_1 \)
\(\underbrace{aaa...aaa} \)
\(u \)

\(v^2 xy^2 \)

\(m + k_2 \)
\(\underbrace{bbb...bbb} \)

\(ccc...ccc \)

\(m \)

\(z \)
\[L = \{ a^n b^n c^n : n \geq 0 \} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 4: From Pumping Lemma: \[uv^2xy^2z \in L \]

\[k_1 + k_2 \geq 1 \]

\[u \quad v^2xy^2 \quad m+k_2 \quad m \]

\[aaa...aaaaaaa bbbbbb...bbb ccc...ccc \]

\[z \]
\[L = \{a^n b^n c^n : n \geq 0\} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 4: From Pumping Lemma: \(uv^2xy^2z \in L \)

\[k_1 + k_2 \geq 1 \]

However: \(uv^2xy^2z = a^{m+k_1}b^{m+k_2}c^m \notin L \)

Contradiction!!!
$L = \{ a^n b^n c^n : n \geq 0 \}$

$w = a^m b^m c^m$

$w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1$

Case 4: Possibility 2: v contains a and b

y contains only b

$\begin{array}{c}
\text{aaa...aaa} \\
u
\end{array} \quad \begin{array}{c}
\text{bbb...bbb} \\
vxy
\end{array} \quad \begin{array}{c}
\text{ccc...ccc} \\
z
\end{array}$
\[L = \{ a^n b^n c^n : n \geq 0 \} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad \mid vxy \mid \leq m \quad \mid vy \mid \geq 1 \]

Case 4: Possibility 2: \(v \) contains \(a \) and \(b \)

\(k_1 + k_2 + k \geq 1 \) \quad \text{\(y \) contains only \(b \)}

\[
\begin{align*}
\text{aaa...aaaa} & \quad \text{abbaabb} \quad \text{bbbbbb...b} \quad \text{ccc...ccc} \\
\text{u} & \quad \text{v}^2 \text{xy}^2 & \quad \text{m+k} & \quad \text{m} \\
\end{align*}
\]
\[L = \{ a^n b^n c^n : n \geq 0 \} \]
\[w = a^m b^m c^m \]
\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 4: From Pumping Lemma: \(uv^2xy^2z \in L \)

\[k_1 + k_2 + k \geq 1 \]

\[u \quad \overset{m}{aaa...aaaab} \quad \overset{k_1}{aabb} \quad \overset{k_2}{bbbbbb} \quad \overset{m+k}{bbb} \quad \overset{m}{ccc...ccc} \quad z \]
$$L = \{ a^n b^n c^n : n \geq 0 \}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1$$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$

However:

$$k_1 + k_2 + k \geq 1$$

$$uv^2xy^2z = a^m b^{k_1} a^{k_2} b^{m+k} c^m \notin L$$

Contradiction!!!
\[L = \{a^n b^n c^n : n \geq 0\} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 4: Possibility 3: \(v\) contains only \(a\), \(y\) contains \(a\) and \(b\)

\[
\begin{array}{cccc}
m & \quad & m & \quad & m \\
\underline{aaa...aaa} & \quad & \underline{bbb...bbb} & \quad & \underline{ccc...ccc} \\
u & \quad & vxy & \quad & z
\end{array}
\]
\[L = \{ a^n b^n c^n : n \geq 0 \} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 4: Possibility 3: \(v \) contains only \(a \)
\(y \) contains \(a \) and \(b \)

Similar analysis with Possibility 2
\[L = \{ a^n b^n c^n : n \geq 0 \} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 5: \(vxy \) overlaps \(b^m \) and \(c^m \)

\[
\begin{array}{c}
\text{aaa...aaa} \\
\text{bbb...bbb} \\
\text{ccc...ccc}
\end{array}
\]

\[
\begin{array}{c}
u \\
vxy \\
z
\end{array}
\]
\[L = \{ a^n b^n c^n : n \geq 0 \} \]

\[w = a^m b^m c^m \]

\[w = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 5: Similar analysis with case 4
There are no other cases to consider

(since \(|vxy| \leq m\), string \(vxy\) cannot

overlap \(a^m\), \(b^m\) and \(c^m\) at the same time)
In all cases we obtained a contradiction

Therefore: The original assumption that

\[L = \{a^n b^n c^n : n \geq 0\} \]

is context-free must be wrong

Conclusion: \(L \) is not context-free
More Applications of The Pumping Lemma
The Pumping Lemma:
For infinite context-free language L
there exists an integer m such that
for any string $w \in L$, $|w| \geq m$
we can write $w = uvxyz$
with lengths $|vxy| \leq m$ and $|vy| \geq 1$
and it must be:
$uv^i xy^i z \in L$, for all $i \geq 0$
Theorem: The language
\[L = \{ww : w \in \{a,b\}^*\} \]
is not context free

Proof: Use the Pumping Lemma for context-free languages
\[L = \{ ww : w \in \{a,b\}^* \} \]

Assume for contradiction that \(L \) is context-free

Since \(L \) is context-free and infinite we can apply the pumping lemma
\[L = \{ww : w \in \{a,b\}^*\} \]

Pumping Lemma gives a magic number \(m \) such that:

Pick any string of \(L \) with length at least \(m \)

we pick: \(a^m b^m a^m b^m \in L \)
\[L = \{ww : w \in \{a, b\}^*\} \]

We can write: \(a^m b^m a^m b^m = uvxyz \)

with lengths \(|vxy| \leq m \) and \(|vy| \geq 1 \)

Pumping Lemma says:

\[uv^ixy^iz \in L \quad \text{for all} \quad i \geq 0 \]
\[L = \{ww : w \in \{a, b\}^* \} \]

\[a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

We examine all the possible locations of string \(vxy \) in \(a^m b^m a^m b^m \)
\[L = \{ww : w \in \{a, b\}^*\} \]

\[a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 1: \(vxy\) is within the first \(a^m\)
\[L = \{ww : w \in \{a, b\}^*\} \]

\[a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 2: \(v \) is in the first \(a^m \)
\(y \) is in the first \(b^m \)
$L = \{ww : w \in \{a, b\}^*\}$

$a^m b^m a^m b^m = uvxyz$ \quad | \quad vy \leq m \quad | \quad vy \geq 1$

Case 3: v overlaps the first $a^m b^m$

y is in the first b^m
\[L = \{ww : w \in \{a, b\}^*\} \]
\[a^m b^m a^m b^m = uvxyz \quad |vx| \leq m \quad |vy| \geq 1 \]

Case 4: \(v \) in the first \(a^m \)

y Overlaps the first \(a^m b^m \)
\[L = \{ww : w \in \{a,b\}^*\} \]

\[a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 1: vxy is within the first \(a^m\)

\[v = a^{k_1} \quad y = a^{k_2} \quad k_1 + k_2 \geq 1 \]
\(L = \{ww : w \in \{a, b\}^*\} \)

\[a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 1: \(vxy\) is within the first \(a^m\)

\[v = a^{k_1} \quad y = a^{k_2} \quad k_1 + k_2 \geq 1 \]

\[u \quad v^2 \quad x \quad y^2 \quad z \]

\[a \ldots a^m \quad b \ldots b \quad a \ldots a^m \quad b \ldots b \]
\[L = \{ww : w \in \{a,b\}^*\} \]

\[a^m b^m a^m b^m = uvxyz \quad \mid vxy \mid \leq m \quad \mid vy \mid \geq 1 \]

Case 1: \(vxy \) is within the first \(a^m \)

\[a^{m+k_1+k_2} b^m a^m b^m = uv^2xy^2z \not\in L \]

\[k_1 + k_2 \geq 1 \]
\[L = \{ww : w \in \{a,b\}^*\} \]

\[a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 1: \(vxy\) is within the first \(a^m\)

\[a^{m+k_1+k_2} b^m a^m b^m = uv^2xy^2z \notin L \]

However, from Pumping Lemma: \(uv^2xy^2z \in L\)

**Contradiction!!!
\[L = \{ww : w \in \{a,b\}^*\} \]

\[a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 2: \(v \) is in the first \(a^m \)

\[y \] is in the first \(b^m \)

\[v = a^{k_1} \quad y = b^{k_2} \quad k_1 + k_2 \geq 1 \]
\[L = \{ww : w \in \{a,b\}^*\} \]

\[a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 2: \(v \) is in the first \(a^m \)

\(y \) is in the first \(b^m \)

\[v = a^{k_1} \quad y = b^{k_2} \quad k_1 + k_2 \geq 1 \]

\[u \underline{a} \cdots \underline{a} \underline{b} \cdots \underline{b} \underline{a} \cdots \underline{a} \underline{b} \cdots \underline{b} \underline{z} \]
\[L = \{ww : w \in \{a,b\}^*\} \]
\[a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 2: \(v \) is in the first \(a^m \)
\(y \) is in the first \(b^m \)

\[a^{m+k_1} b^{m+k_2} a^m b^m = uv^2 xy^2 z \not\in L \]

\[k_1 + k_2 \geq 1 \]
\[L = \{ ww : w \in \{a, b\}^* \} \]

\[a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 2: \(v \) is in the first \(a^m \)
\(y \) is in the first \(b^m \)

\[a^{m+k_1} b^{m+k_2} a^m b^m = uv^2 xy^2 z \notin L \]

However, from Pumping Lemma: \(uv^2 xy^2 z \in L \)

Contradiction!!!
\[L = \{ w \in \{a, b\}^* \} \]

\[a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 3: \(v \) overlaps the first \(a^m b^m \)

\(y \) is in the first \(b^m \)

\[v = a^{k_1} b^{k_2} \quad y = b^{k_3} \quad k_1, k_2 \geq 1 \]
\[L = \{ww : w \in \{a, b\}^*\} \]

\[a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 3: \(v\) overlaps the first \(a^m b^m\)

\(y\) is in the first \(b^m\)

\[v = a^{k_1} b^{k_2} \quad y = b^{k_3} \quad k_1, k_2 \geq 1 \]

\[
\begin{array}{cccccc}
 a & \ldots & a & b & \ldots & b \\
 u & & v^2 & x & y^2 & z \\
 a & \ldots & a & b & \ldots & b \\
\end{array}
\]
\[L = \{ww : w \in \{a, b\}^*\} \]

\[a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad \left|vy\right| \geq 1 \]

Case 3: \(v\) overlaps the first \(a^m b^m\)
\(y\) is in the first \(b^m\)

\[a^m b^{k_2} a^{k_1} b^{m+k_3} a^m b^m = uv^2 xy^2 z \notin L \]

\(k_1, k_2 \geq 1\)
\[L = \{ww : w \in \{a, b\}^*\} \]
\[a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Case 3: \(v \) overlaps the first \(a^m b^m \)
\(y \) is in the first \(b^m \)

\[a^m b^{k_2} a^{k_1} b^{k_3} a^m b^m = uv^2 xy^2 z \notin L \]

However, from Pumping Lemma: \(uv^2 xy^2 z \in L \)

Contradiction!!!
$$L = \{ww : w \in \{a, b\}^*\}$$

$$a^m b^m a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1$$

Case 4: v in the first a^m

y Overlaps the first $a^m b^m$

Analysis is similar to case 3
Other cases: \(vxy\) is within

\[
\begin{array}{c}
a^m b^m a^m b^m \\
\text{or} \\
a^m b^m a^m b^m \\
\text{or} \\
a^m b^m a^m b^m
\end{array}
\]

Analysis is similar to case 1:
More cases: vxy overlaps \[a^m b^m a^m b^m \]

or

\[a^m b^m a^m b^m \]

Analysis is similar to cases 2,3,4:
There are no other cases to consider

Since $|vxy| \leq m$, it is impossible for vxy to overlap:

\[a^m b^m a^m b^m \]

nor

\[a^m b^m a^m b^m \]

nor

\[a^m b^m a^m b^m \]
In all cases we obtained a contradiction

Therefore: The original assumption that \[L = \{ ww : w \in \{a,b\}^* \} \]
is context-free must be wrong

Conclusion: \[L \text{ is not context-free} \]
Non-context free languages

\{a^n b^n c^n : n \geq 0\} \quad \{ww : w \in \{a,b\}\}

\{a^n! : n \geq 0\}

Context-free languages

\{a^n b^n : n \geq 0\} \quad \{ww^R : w \in \{a,b\}^*\}
Theorem: The language

\[L = \{a^n! : n \geq 0\} \]

is \textbf{not} context free

Proof: Use the Pumping Lemma for context-free languages
\[L = \{a^n!: n \geq 0\} \]

Assume for contradiction that \(L \) is context-free

Since \(L \) is context-free and infinite we can apply the pumping lemma
\[L = \{ a^n! : n \geq 0 \} \]

Pumping Lemma gives a magic number \(m \) such that:

Pick any string of \(L \) with length at least \(m \), we pick: \(a^m! \in L \)
\[L = \{ a^n! : n \geq 0 \} \]

We can write: \[a^m! = uvxyz \]

with lengths \(|vxy| \leq m \) and \(|vy| \geq 1 \)

Pumping Lemma says:

\[uv^i xy^i z \in L \quad \text{for all} \quad i \geq 0 \]
\[L = \{ a^n! : n \geq 0 \} \]

\[a^m! = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

We examine all the possible locations of string \(vxy \) in \(a^m! \)

How many cases to consider?
\[L = \{a^n! : n \geq 0\} \]

\[a^m! = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

We examine **all** the possible locations of string \(vxy \) in \(a^m! \)

There is only one case to consider
\[L = \{ a^n! : n \geq 0 \} \]

\[a^m! = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

\[v = a^{k_1} \quad y = a^{k_2} \quad 1 \leq k_1 + k_2 \leq m \]
\[L = \{a^n! : n \geq 0\} \]
\[a^m! = uvxyz \quad \mid vxy \mid \leq m \quad \mid vy \mid \geq 1 \]

\[m! + k_1 + k_2 \]

\[u \quad v^2 \quad x \quad y^2 \quad z \]

\[v = a^{k_1} \quad y = a^{k_2} \quad 1 \leq k_1 + k_2 \leq m \]
\[L = \{a^{n!} : n \geq 0\} \]

\[a^m! = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

\[a \underbrace{..........}_m+k z \]

\[k = k_1 + k_2 \]

\[v = a^{k_1} \quad y = a^{k_2} \quad 1 \leq k \leq m \]
\[L = \{a^n! : n \geq 0\} \]

\[a^{m!} = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

\[a^{m!+k} = uv^2xy^2z \]

\[1 \leq k \leq m \]
\[L = \{a^n! : n \geq 0\} \]

\[a^{m!+k} = uv^2x y^2z \quad 1 \leq k \leq m \]

Is \(a^{m!+k} \in L \)?
Since $1 \leq k \leq m$, for $m \geq 2$ we have:

$$m! + k \leq m! + m$$

$$< m! + m! m$$

$$= m!(1 + m)$$

$$= (m + 1)!$$

$$m! < m! + k < (m + 1)!$$
\[L = \{a^n! : n \geq 0 \} \]

\[a^m! = uvxyz \quad \mid vxy \mid \leq m \quad \mid vy \mid \geq 1 \]

\[m! < m! + k < (m + 1)! \]

\[a^{m! + k} = uv^2xy^2z \not\in L \]
\[L = \{ a^n! : n \geq 0 \} \]

\[a^m! = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

However, from Pumping Lemma: \[uv^2xy^2z \in L \]

\[a^{m!+k} = uv^2xy^2z \notin L \]

Contradiction!!
We obtained a contradiction

Therefore: The original assumption that

$$L = \{a^n! : n \geq 0\}$$

is context-free must be wrong

Conclusion: L is not context-free
Non-context free languages

\{a^n b^n c^n : n \geq 0\} \quad \{w w : w \in \{a, b\}\}

\{a^{n^2} b^n : n \geq 0\} \quad \{a^n ! : n \geq 0\}

Context-free languages

\{a^n b^n : n \geq 0\} \quad \{w w^R : w \in \{a, b\}^*\}
Theorem: The language
\[L = \{a^{n^2}b^n : n \geq 0\} \]
is not context free

Proof: Use the Pumping Lemma for context-free languages
\[L = \{ a^{n^2} b^n : n \geq 0 \} \]

Assume for contradiction that \(L \) is context-free

Since \(L \) is context-free and infinite we can apply the pumping lemma
\[L = \{ a^{n^2} b^n : n \geq 0 \} \]

Pumping Lemma gives a magic number \(m \) such that:

Pick any string of \(L \) with length at least \(m \) we pick: \(a^{m^2} b^m \in L \)
\[L = \{ a^{n^2} b^n : n \geq 0 \} \]

We can write:

\[a^m b^m = uvxyz \]

with lengths \(|vxy| \leq m\) and \(|vy| \geq 1\)

Pumping Lemma says:

\[uv^i xy^i z \in L \quad \text{for all} \quad i \geq 0 \]
\[L = \{a^{n^2}b^n : n \geq 0\} \]

\[a^{m^2}b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

We examine **all** the possible locations

of string \(vxy \) in \(a^{m^2}b^m \)
$L = \{a^{n^2}b^n : n \geq 0\}$

$a^m b^m = uvxyz$ \quad |vy| \leq m \quad |vy| \geq 1

Most complicated case:

\begin{itemize}
 \item v is in a^m
 \item y is in b^m
\end{itemize}

\begin{center}
\begin{tikzpicture}
 \node (a) at (0,0) {a};
 \node (b) at (1.5,0) {b};
 \node (u) at (0,-1) {u};
 \node (v) at (0.5,-1) {v};
 \node (x) at (1.0,-1) {x};
 \node (y) at (1.5,-1) {y};
 \node (z) at (2.0,-1) {z};
 \draw (a) -- (b);
 \draw (u) -- (v);
 \draw (x) -- (y);
 \draw (y) -- (z);
 \node at (0.75,0.5) {m^2};
 \node at (1.5,0.5) {m};
\end{tikzpicture}
\end{center}
\[L = \{a^{n^2}b^n : n \geq 0\} \]

\[a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

\[v = a^{k_1} \quad y = b^{k_2} \quad 1 \leq k_1 + k_2 \leq m \]
\[L = \{ a^{n^2} b^n : n \geq 0 \} \]
\[a^m b^n = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Most complicated sub-case: \(k_1 \neq 0 \) and \(k_2 \neq 0 \)

\[v = a^{k_1} \quad y = b^{k_2} \quad 1 \leq k_1 + k_2 \leq m \]
\[L = \{a^{n^2} b^n : n \geq 0\} \]

\[a^m b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

Most complicated sub-case: \(k_1 \neq 0 \) and \(k_2 \neq 0 \)

\[v = a^{k_1} \quad y = b^{k_2} \quad 1 \leq k_1 + k_2 \leq m \]

\[\begin{array}{c}
\text{a} & \ldots & \text{a} & \text{b} & \ldots & \text{b} \\
\text{u} & \text{v}_0 & \text{x} & \text{y}_0 & \text{z}
\end{array} \]
\[L = \{a^{n^2} b^n : n \geq 0\} \]

\[a^m b^m = u v x y z \quad \mid v x y \mid \leq m \quad \mid v y \mid \geq 1 \]

Most complicated sub-case: \(k_1 \neq 0 \) and \(k_2 \neq 0 \)

\[v = a^{k_1} \quad y = b^{k_2} \quad 1 \leq k_1 + k_2 \leq m \]

\[a^{m^2 - k_1} b^{m - k_2} = u v^0 x y^0 z \]
\[a^{m^2-k_1} b^{m-k_2} \]

\[k_1 \neq 0 \text{ and } k_2 \neq 0 \quad 1 \leq k_1 + k_2 \leq m \]

\[(m-k_2)^2 \leq (m-1)^2 \]

\[= m^2 - 2m + 1 \]

\[< m^2 - k_1 \]

\[m^2 - k_1 \neq (m-k_2)^2 \]
\[L = \{ a^{n^2} b^n : n \geq 0 \} \]

\[a^{m^2} b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

\[m^2 - k_1 \neq (m - k_2)^2 \]

\[a^{m^2-k_1} b^{m-k_2} = uv^0 x y^0 z \notin L \]
\[L = \{ a^{n^2} b^n : n \geq 0 \} \]

\[a^{m^2} b^m = uvxyz \quad |vxy| \leq m \quad |vy| \geq 1 \]

However, from Pumping Lemma: \(uv^0 xy^0 z \in L \)

\[a^{m^2-k_1} b^{m-k_2} = uv^0 xy^0 z \notin L \]

Contradiction!!!
When we examine the rest of the cases we also obtain a contradiction
In all cases we obtained a contradiction

Therefore: The original assumption that

\[L = \{a^{n^2}b^n : n \geq 0\} \]

is context-free must be wrong

Conclusion: \(L \) is not context-free