More Properties of Regular Languages
We have proven

Regular languages are closed under:

Union
Concatenation
Star operation
Reverse
Namely, for regular languages L_1 and L_2:

- **Union**: $L_1 \cup L_2$
- **Concatenation**: L_1L_2
- **Star operation**: L_1^*
- **Reverse**: L_1^R

Regular Languages
We will prove

Regular languages are closed under:

Complement

Intersection
Namely, for regular languages L_1 and L_2:

\begin{align*}
\text{Complement} & \quad \overline{L_1} \\
\text{Intersection} & \quad L_1 \cap L_2
\end{align*}

\text{Regular Languages}
Complement

Theorem: For regular language L, the complement \overline{L} is regular.

Proof: Take DFA that accepts L and make
- nonfinal states final
- final states nonfinal
Resulting DFA accepts \overline{L}.
Example:

$L = L(a \ast b)$

```
q_0 ----> b ----> q_1 ----> a,b ----> q_2
```

$\overline{L} = L(a \ast + a \ast b(a + b)(a + b)^*)$

```
q_0 ----> b ----> q_1 ----> a,b ----> q_2
```
Intersection

Theorem: For regular languages \(L_1 \) and \(L_2 \) and the intersection \(L_1 \cap L_2 \) is regular.

Proof: Apply DeMorgan's Law:

\[
L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}
\]
\[L_1, \ L_2 \quad \text{regular} \]

\[\overline{L_1}, \ \overline{L_2} \quad \text{regular} \]

\[\overline{L_1 \cup L_2} \quad \text{regular} \]

\[\overline{L_1} \cup \overline{L_2} \quad \text{regular} \]

\[\overline{L_1 \cup L_2} \quad \text{regular} \]

\[L_1 \cap L_2 \quad \text{regular} \]
Standard Representations of Regular Languages
Standard Representations of Regular Languages

Regular Languages

DFAs

NFAs

Regular Grammars

Regular Expressions
When we say: We are given a Regular Language L

We mean: Language L is in a standard representation
Elementary Questions about Regular Languages
Membership Question

Question: Given regular language L and string w, how can we check if $w \in L$?

Answer: Take the DFA that accepts L and check if w is accepted.
DFA

\[w \in L \]

DFA

\[w \notin L \]
Question: Given regular language \(L \) how can we check if \(L \) is empty: \((L = \emptyset) \)?

Answer: Take the DFA that accepts \(L \) Check if there is a path from the initial state to a final state
\[L \neq \emptyset \]

\[L = \emptyset \]
Question: Given regular language L, how can we check if L is finite?

Answer: Take the DFA that accepts L. Check if there is a walk with cycle from the initial state to a final state.
DFA

L is infinite

DFA

L is finite
Question: Given regular languages L_1 and L_2 how can we check if $L_1 = L_2$?

Answer: Find if $(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset$
\[(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) = \emptyset\]

\[L_1 \cap \overline{L_2} = \emptyset \quad \text{and} \quad \overline{L_1} \cap L_2 = \emptyset\]

\[L_1 \subseteq L_2 \quad \text{and} \quad L_2 \subseteq L_1\]

\[L_1 = L_2\]
\[(L_1 \cap \overline{L_2}) \cup (\overline{L_1} \cap L_2) \neq \emptyset\]

- \(L_1 \cap \overline{L_2} \neq \emptyset\)
- \(L_1 \not\subset L_2\)

or

- \(\overline{L_1} \cap L_2 \neq \emptyset\)
- \(L_2 \not\subset L_1\)

\(L_1 \neq L_2\)
Non-regular languages
Non-regular languages

\{a^n b^n : n \geq 0\}
\{w w^R : w \in \{a, b\}^*\}

Regular languages

\[a^* b \]
\[b^* c + a \]
\[b + c (a + b)^* \]

 etc...
How can we prove that a language L is not regular?

Prove that there is no DFA that accepts L.

Problem: this is not easy to prove.

Solution: the Pumping Lemma !!!
The Pigeonhole Principle
4 pigeons

3 pigeonholes
A pigeonhole must contain at least two pigeons
n pigeons

\cdots

m pigeonholes

$n > m$
The Pigeonhole Principle

n pigeons

m pigeonholes

$n > m$

There is a pigeonhole with at least 2 pigeons
The Pigeonhole Principle

and

DFAs
DFA with 4 states

$q_1 \xrightarrow{a} q_2 \xrightarrow{b} q_3 \xrightarrow{b} q_4 \xrightarrow{b}$
In walks of strings:

- a
- aa
- aab

There is no state that is repeated.
In walks of strings: $aabb$, a state is repeated $bbaa$, $abbb$, $abbbabbbabbb...$
If the walk of string w has length $|w| \geq 4$

then a state is repeated
Pigeonhole principle for any DFA:

If in a walk of a string w transitions \geq states of DFA then a state is repeated.
In general:

A string w has length \geq number of states

A state q must be repeated in the walk w
The Pumping Lemma
Take an infinite regular language L

DFA that accepts L

m states
Take string \(w \) with \(w \in L \)

There is a walk with label \(w \):

walk \(W \)
If string w has length $|w| \geq m$ number of states
then, from the pigeonhole principle:

a state q is repeated in the walk w

walk w
Write \[w = x \ y \ z \]
Observations:

$\text{length } |x y| \leq m$ \hspace{1cm} \text{number of states}

$\text{length } |y| \geq 1$
Observation: The string $x z$ is accepted
Observation: The string $x y y z$ is accepted
Observation: The string $x y y y y z$ is accepted
In General: The string $x\, y^i\, z$ is accepted for $i = 0, 1, 2, \ldots$
In other words, we described:

The Pumping Lemma !!!
The Pumping Lemma:

• Given a infinite regular language L

• there exists an integer m

• for any string $w \in L$ with length $|w| \geq m$

• we can write $w = x y z$

• with $|x y| \leq m$ and $|y| \geq 1$

• such that: $x y^i z \in L$ for $i = 0, 1, 2, ...$
Applications
of
the Pumping Lemma
Theorem: The language \(L = \{ a^n b^n : n \geq 0 \} \) is not regular.

Proof: Use the Pumping Lemma.
\[L = \{a^n b^n : n \geq 0\} \]

Assume for contradiction that \(L \) is a regular language.

Since \(L \) is infinite, we can apply the Pumping Lemma.
\[L = \{a^n b^n : n \geq 0\} \]

Let \(m \) be the integer in the **Pumping Lemma**

Pick a string \(w \) such that: \(w \in L \) \(\quad \text{length } |w| \geq m \)

Example: \(\text{pick } w = a^m b^m \)
Write: \(a^m b^m = x y z \)

From the Pumping Lemma
it must be that: length \(|x y| \leq m, \quad |y| \geq 1 \)

Therefore: \(a^m b^m = a \ldots a a \ldots a a \ldots a b \ldots b \)

\(y = a^k, \quad k \geq 1 \)
We have: \[x \ y \ z = a^m b^m \quad y = a^k, \quad k \geq 1 \]

From the Pumping Lemma: \[x \ y^i z \in L \]
\[i = 0, 1, 2, \ldots \]

Thus: \[x \ y^2 z \in L \]
\[x \ y^2 z = x \ y \ y \ z = a^{m+k} b^m \in L \]
Therefore: \[a^{m+k} b^m \in L \]

\[L = \{a^n b^n : n \geq 0\} \]

\[a^{m+k} b^m \notin L \]

CONTRADICTION!!
Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language
Non-regular languages \(\{a^n b^n : n \geq 0\} \)

Regular languages

\[a^* b \]
\[b^* c + a \]
\[b + c(a + b)^* \]
\[etc... \]
More Applications of the Pumping Lemma
The Pumping Lemma:

- Given a infinite regular language L
- there exists an integer m
- for any string $w \in L$ with length $|w| \geq m$
- we can write $w = x y z$
- with $|x y| \leq m$ and $|y| \geq 1$
- such that: $x y^i z \in L$ for $i = 0, 1, 2, ...$
Non-regular languages \[L = \{ww^R : w \in \Sigma^* \} \]

Regular languages
Theorem: The language

\[L = \{ww^R : w \in \Sigma^*\} \quad \Sigma = \{a, b\} \]

is not regular

Proof: Use the Pumping Lemma
\[L = \{ w w^R : w \in \Sigma^* \} \]

Assume for contradiction that \(L \) is a regular language.

Since \(L \) is infinite, we can apply the Pumping Lemma.
$$L = \{ww^R : w \in \Sigma^*\}$$

Let m be the integer in the Pumping Lemma

Pick a string w such that: $w \in L$ and $|w| \geq m$

pick $w = a^m b^m b^m a^m$
Write \(a^m b^m b^m a^m = x \ y \ z \)

From the **Pumping Lemma** it must be that length \(|x\ y| \leq m, \ |y| \geq 1\)

\[
\begin{align*}
a^m b^m b^m a^m &= \underbrace{\underbrace{a \ldots a}_m a \ldots ab \ldots bb \ldots ba \ldots a}_{m} \\
x &\quad \underbrace{y}_{m} \quad \underbrace{z}_{m}
\end{align*}
\]

\(y = a^k, \ k \geq 1\)
We have: \[x \ y \ z = a^m b^m b^m a^m \]

\[y = a^k, \quad k \geq 1 \]

From the Pumping Lemma: \[x \ y^i z \in L \]

\[i = 0, 1, 2, \ldots \]

Thus: \[x \ y^2 z \in L \]

\[x \ y^2 z = x \ y \ y \ z = a^{m+k} b^m b^m a^m \in L \]
Therefore: \[a^{m+k} b^m b^m a^m \in L \]

BUT: \[L = \{ww^R : w \in \Sigma^*\} \]

\[a^{m+k} b^m b^m a^m \notin L \]

CONTRADICTION!!!
Therefore: Our assumption that L
is a regular language is not true

Conclusion: L is not a regular language
Non-regular languages

\[L = \{a^n b^l c^{n+l} : n, l \geq 0\} \]

Regular languages
Theorem: The language

\[L = \{a^n b^l c^{n+l} : n, l \geq 0\} \]

is not regular

Proof: Use the Pumping Lemma
\[L = \{a^n b^l c^{n+l} : n, l \geq 0\} \]

Assume for contradiction that \(L \) is a regular language.

Since \(L \) is infinite, we can apply the Pumping Lemma.
\[L = \{ a^n b^l c^{n+l} : n, l \geq 0 \} \]

Let \(m \) be the integer in the Pumping Lemma.

Pick a string \(w \) such that: \(w \in L \) and \(\text{length } |w| \geq m \).

pick \(w = a^m b^m c^{2m} \)
Write \(a^m b^m c^{2m} = x y z \)

From the **Pumping Lemma** it must be that length \(|x y| \leq m, \quad |y| \geq 1 \)

\[
a^m b^m c^{2m} = a_{x} a_{y} a_{y} a_{b} b_{c} b_{c} c_{c} c_{c} \ldots c_{z}
\]

\(y = a^k, \quad k \geq 1 \)
We have: \[x \quad y \quad z = a^m b^m c^{2m} \]

\[y = a^k, \quad k \geq 1 \]

From the Pumping Lemma: \[x \; y^i \; z \in L \]

\[i = 0, 1, 2, ... \]

Thus: \[x \; y^0 \; z \in L \]

\[x \; y^0 \; z = x \; z = a^{m-k} b^m c^{2m} \in L \]
Therefore: \(a^{m-k} b^m c^{2m} \in L \)

\textbf{BUT:} \[L = \{a^n b^l c^{n+l} : n, l \geq 0\} \]

\[a^{m-k} b^m c^{2m} \not\in L \]

\textbf{CONTRACTION!!!}
Therefore: Our assumption that L is a regular language is not true.

Conclusion: L is not a regular language.
Non-regular languages

\[L = \{a^n!: n \geq 0\} \]

Regular languages
Theorem: The language $L = \{a^{n!} : n \geq 0\}$ is not regular.

$n! = 1 \cdot 2 \cdot \cdots (n-1) \cdot n$

Proof: Use the Pumping Lemma.
\[L = \{ a^n! : n \geq 0 \} \]

Assume for contradiction that \(L \) is a regular language.

Since \(L \) is infinite, we can apply the Pumping Lemma.
\[L = \{a^n! : n \geq 0\} \]

Let \(m \) be the integer in the Pumping Lemma

Pick a string \(w \) such that: \(w \in L \), length \(|w| \geq m \)

pick \(w = a^m! \)
Write \(a^{m!} = x \ y \ z \)

From the **Pumping Lemma**

it must be that length \(|x \ y| \leq m, \ |y| \geq 1 \)

\[
a^{m!} = \underbrace{a \ldots a}_{m} \underbrace{a \ldots a}_{m!-m} \underbrace{a \ldots a}_{x} \underbrace{a \ldots a}_{y} \underbrace{a \ldots a}_{z}
\]

\(y = a^k, \ 1 \leq k \leq m \)
We have: \[x \ y \ z = a^m! \]

\[y = a^k, \quad 1 \leq k \leq m \]

From the Pumping Lemma:

\[x \ y^i \ z \in L \]

\[i = 0, 1, 2, \ldots \]

Thus:

\[x \ y^2 \ z \in L \]

\[x \ y^2 \ z = x \ y \ y \ z = a^{m! + k} \in L \]
Therefore: \[a^{m!+k} \in L \quad 1 \leq k \leq m \]

And since: \[L = \{a^n!: \ n \geq 0\} \]

There is \(p \): \[m!+k = p! \quad 1 \leq k \leq m \]
However: \[m! + k \leq m! + m \quad \text{for} \quad m > 1 \]

\[\leq m! + m! \]

\[< m!m + m! \]

\[= m!(m + 1) \]

\[= (m + 1)! \]

\[m! + k < (m + 1)! \]

\[m! + k \neq p! \quad \text{for any} \quad p \]
Therefore: \[a^{m!+k} \in L \]

BUT: \[L = \{ a^n : n \geq 0 \} \] and \[1 \leq k \leq m \]

\[a^{m!+k} \notin L \]

CONTRADICTION!!!
Therefore: Our assumption that L is a regular language is not true

Conclusion: L is not a regular language