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Dynamic Bayesian Networks for Vehicle
Classification in Video

Mehran Kafai, Student Member, IEEE, and Bir Bhanu, Fellow, IEEE

Abstract— Vehicle classification has evolved into a significant
subject of study due to its importance in autonomous navi-
gation, traffic analysis, surveillance and security systems, and
transportation management. While numerous approaches have
been introduced for this purpose, no specific study has been
conducted to provide a robust and complete video-based vehicle
classification system based on the rear-side view where the
camera’s field of view is directly behind the vehicle. In this
paper we present a stochastic multi-class vehicle classification
system which classifies a vehicle (given its direct rear-side view)
into one of four classes Sedan, Pickup truck, SUV/Minivan, and
unknown. A feature set of tail light and vehicle dimensions is
extracted which feeds a feature selection algorithm to define
a low-dimensional feature vector. The feature vector is then
processed by a Hybrid Dynamic Bayesian Network (HDBN) to
classify each vehicle. Results are shown on a database of 169
videos for four classes.

Index Terms— Classification, Hybrid Dynamic Bayesian Net-
work.

I. INTRODUCTION

OVER the past few years vehicle classification has been
widely studied as part of the broader vehicle recognition

research area. A vehicle classification system is essential
for effective transportation systems (e.g., traffic management
and toll systems), parking optimization, law enforcement,
autonomous navigation, etc. A common approach utilizes
vision-based methods and employs external physical features
to detect and classify a vehicle in still images and video
streams. A human being may be capable of identifying the
class of a vehicle with a quick glance at the digital data (image,
video) but accomplishing that with a computer is not as
straight forward. Several problems such as occlusion, tracking
a moving object, shadows, rotation, lack of color invariance,
and many more must be carefully considered in order to design
an effective and robust automatic vehicle classification system
which can work in real-world conditions.

Feature based methods are commonly used for object clas-
sification. As an example, Scale Invariant Feature Transform
(SIFT) represents a well-studied feature based method. Using
SIFT an image is represented by a set of relatively invariant
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local features. SIFT provides pose invariance by aligning fea-
tures to the local dominant orientation and centering features
at scale space maxima. It also provides appearance change
resilience and local deformation resilience. To the contrary,
reliable feature extraction is limited when dealing with low
resolution images in the real-world conditions.

Much research has been conducted for object classification,
but vehicle classification has shown to have its own specific
problems which motivates research in this area.

In this paper, we propose a Hybrid Dynamic Bayesian
Network as part of a multi-class vehicle classification system
which classifies a vehicle (given its direct rear-side view) into
one of four classes: Sedan, Pickup truck, SUV/Minivan, and
unknown. High resolution and close up images of the logo,
license plate, and rear view are not required due to the use
of simple low-level features (e.g., height, width, and angle)
which are also computationally inexpensive.

In the rest of this paper, Section II describes the related
work and contributions of this work. Section III discusses the
technical approach and system framework steps. Section IV
explains the data collection process and shows the experimen-
tal results. Finally, Section V concludes the paper.

II. RELATED WORK AND OUR CONTRIBUTIONS

A. Related Work

Not much has been done on vehicle classification from
the rear view. For the side view, appearance based methods
especially edge-based methods have been widely used for
vehicle classification. These approaches utilize various meth-
ods such as weighted edge matching [1], Gabor features [2],
edge models [3], shape based classifiers, part based modeling,
and edge point groups [4]. Model-based approaches that use
additional prior shape information have also been investigated
in 2D [5] and more recently in 3D [6], [7].

Shan et al. [1] presented an edge-based method for vehi-
cle matching for images from nonoverlapping cameras. This
feature-based method computed the probability of two vehicles
from two cameras being similar. The authors define the vehicle
matching problem as a 2-class classification problem, there-
after apply a weak classification algorithm to obtain labeled
samples for each class. The main classifier is trained by
a unsupervised learning algorithm built on Gibbs sampling
and Fisher’s linear discriminant using the labeled samples. A
key limitation of this algorithm is that it can only perform
on images that contain similar vehicle pose and size across
multiple cameras.

Wu et al. [3] use a parameterized model to describe vehicle
features, thenceforth embrace a multi-layer perceptron network
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for classification. The authors state that their method falls short
when performing on noisy and low quality images and that the
range in which the vehicle appears is small.

Wu et al. [8] propose a PCA based classifier where a
sub-space is inferred for each class using PCA. As a new
query sample appears, it is projected onto all class sub-spaces,
and is classified based on which projection results in smaller
residue or truncation errors. This method is used for multi-
class vehicle classification for static road images. Experiments
show it has better performance compared to linear Support
Vector Machine (SVM) and Fisher Linear Discriminant (FLD).

Vehicle make and model recognition from the frontal view
is investigated in [9] and more recently in [10]. Psyllos et al.
[10] use close up frontal view images and a neural network
classifier to recognize the logo, manufacturer, and model of
a vehicle. The logo is initially segmented and then used to
recognize the manufacturer of the vehicle. The authors report
85% correct recognition rate for manufacturer classification
and only 54% for model recognition. Such an approach
entirely depends on the logo, therefore, it might fail if used
for the rear view as the logo may not always be present.

For the rear view, Dlagnekov et al. [11] develop a vehicle
make and model recognition system for video surveillance
using a database of partial license plate and vehicle vi-
sual description data, and they report a recognition accuracy
of 89.5%. Visual features are extracted using two feature-
based methods (SIFT and shape context matching) and one
appearance-based method (Eigencars). The drawbacks of the
proposed system are that it is relatively slow, and only the
license plate recognition stage is done in real-time.
A summary of related work is shown in Table I.

TABLE I
RELATED WORK SUMMARY

Author Principles & Methodology
Psyllos et al. [10] frontal view, neural network classifi-

cation, Phase congruency calculation,
SIFT fingerprinting

Conos et al. [9] frontal view, kNN classifier, SIFT de-
scriptors, frontal view images

Chen et al. [12] side view, multi-class SVM classifier,
color histograms

Zhang et al. [13] side view, shape features, wavelet frac-
tal signatures, fuzzy k-means

Shan et al. [1] side view, edge-based, binary classi-
fication, Fishers Linear Discriminants,
Gibbs sampling, unsupervised learning

Wu et al. [3] side view, neural network classification,
parametric model

This Paper rear view, Hybrid Dynamic Bayesian
Network

For the side view we have conducted a study for vehi-
cle recognition using pseudo time series. After some pre-
processing (moving vehicle detection, shadow removal) and
automatically tracing the boundary pixels, the vehicle 2D
blob shape is converted to a pseudo time series using either
radius distance scanning or local neighborhood curvature.
Figures 1(b) and 1(c) demonstrate the time series representing
the sample vehicle boundary in Figure 1(a).

(a) Vehicle boundary

(b) Resulting time series using ra-
dius distance

(c) Resulting time series using local
neighborhood curvature

Fig. 1. Converting vehicle boundary shape into time series

Pseudo time series works well for side view vehicle clas-
sification (Section IV-A) but will not perform as well if used
for frontal view or rear view due to boundary shape similarity.

B. Contributions of this Paper

Unlike the previous work, as shown in Table I, the contri-
butions of this paper are the following

1) we introduce the reference set as the basis for similarity
matching. The reference set contains multiple poses of
every individual in the reference set. Every gallery/probe
image id defined as how similar it is to the reference set
images.

2) We propose a reference based matching framework
which generate similarity descriptors for any given im-
age. To do such, the image is compared with every

3) Our reference-based similarity matching framework is
compatible with any existing face recognition algorithm.
In other words, it uses any current recognition algorithm
to compute the similarity between any gallery/probe
image and the reference set images.

4) Using the reference-based similarity has the advantage
of reducing the dimensionality as well. The computed
reference-based similarity descriptor dimensionality is
equal to the number of individuals in the reference set
and independent of the face recognition algorithm being
used. For example, if Local Binary Patterns (LBP) is
chosen to be used as the face descriptor for recognition,
the feature vector dimensionality That is, independent of
the feature vector dimensionality acts a powerful dimin

(a) We propose a probabilistic classification framework
which determines the class of a vehicle given its direct rear
view (Figure 2). We choose the direct rear view for two main
reasons. First, most of the research in this area has focused
on the side view ([2], [1], [3]) whereas the frontal view and
rear view have been less investigated. Secondly, not all states
require a front license plate (19 states in the USA require
only the rear license plate). We introduce a Hybrid Dynamic
Bayesian Network (HDBN) classifier with multiple time slices
corresponding to multiple video frames.

(b) We eliminate the need for high resolution and close up
images of the logo, license plate, and rear view by using simple
low-level features (e.g., height, width, and angle) which are
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Fig. 2. Sample images of the direct rear view of a moving vehicle

also computationally inexpensive, thus, the proposed method
is capable of running in real-time.

(c) The results are shown on a database of 169 real videos
consisting of Sedan, Pickup truck, SUV/minivan, and also a
class for unknown vehicles.

We adapt, modify, and integrate computational techniques to
solve a new problem that has not been addressed or solved by
anyone. Vehicle classification has been investigated by many
people. The novelty of our work comes from using the HDBN
classifier for rear view vehicle classification in video. Our
approach is a solution to important practical applications used
in law enforcement, parking security, etc. For example when
a vehicle is parked in a parking lot the rear view is usually
visible and the frontal view and side view images cannot be
captured. In this case, rear view classification is essential for
parking lot security and management.
The key aspects of our paper are:
• A novel structure for the HDBN is proposed, specifically

designed to solve a practical problem. The HDBN classi-
fier has never before been used in the context of proposed
video application. Rear-side view classification has not
been studied in video.

• The HDBN is defined and structured in a way that adding
more rear view features is easy, missing features that were
not extracted correctly in one or more frames of a video
are inferred in the HDBN and, therefore, classification
does not completely fail.

• A complete system including feature extraction, feature
selection, and classification is introduced with significant
experimental results.

III. TECHNICAL APPROACH

The complete proposed system pipeline is shown in Fig-
ure 3. All components are explained in the following sections.

Fig. 3. System Framework

A. Feature Extraction
Three main types of features are extracted from the im-

ages; tail lights, license plate, and rear dimensions. The tail

light features include separately for each tail light the width,
distance from the license plate, and angle between tail light
and license plate. The license plate location and size is used
as a reference to enable comparison and help normalize tail
light properties and vehicle size values. The feature extraction
component consists of three subcomponents: vehicle detection,
license plate extraction, and tail light extraction.

1) Vehicle Detection: Object detection is an active research
topic in transportation systems([14], [15], [16], [17]). In this
paper a Gaussian mixture model approach is used for moving
object detection. The Gaussian distributions are used to de-
termine if a pixel is more likely to belong to the background
model or not. An AND approach is used which determines
a pixel as background only if it falls within three standard
deviations for all the components in all three R, G, and B color
channels [18]. We validate the detected moving object by using
a simple frame differencing approach and cross checking the
masks from both methods.

The resulting mask may include some shadow and erroneous
pixels. The shadow is removed by finding the vertical axis of
symmetry using an accelerated version of Loy’s symmetry [19]
and readjusting the bounding box containing the mask with
respect to the axis of symmetry. This is done by measuring
the distance between each point on both vertical sides of the
bounding box and the axis symmetry and moving the vertical
side that is farther away closer to the axis of symmetry such
that each side has the same distance from it. Figure 4 shows
results from multiple steps of this approach. The aforemen-
tioned shadow removal method fails if the shadow is behind
the vehicle. In such cases the shadow is removed using the
approach introduced by Nadimi et al. [20] which does not
rely on the common geometrical assumptions such as camera
location, object geometry, and ground surface geometry. Given
the vehicle rear mask, the height and width of the bounding
box, and area of the mask are measured.

(a) original image (b) moving object mask

(c) initial bounding box (d) readjusted bounding box

Fig. 4. Shadow removal and obtaining the bounding box

2) License Plate Extraction: We use the license plate corner
coordinates as input to our algorithm. There are number of
algorithms for license plate extraction ([21],[22]). Anagnos-
topoulo et al. [22] propose using Sliding Concentric Window
segmentation, masking, and Sauvola binarization to identify
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the license plate location. They report a 96.5% success rate
on a database of 1334 images.

In this paper we have focused on novel aspects of HDBN
classifier and the integrated system. This allows us to quantify
the results at the system level independent of the particular
algorithm used for license plate extraction. We have described
a license detection approach in Section III-A.2.a. The classifi-
cation results are obtained by manual license plate detection.
However, the proposed or any other license detection algorithm
can be easily integrated into our system.

a) Automatic License Plate Extraction: The license plate
is extracted using two separate methods and then the ”best” re-
sult is chosen. The first method is proposed by Abolghasemi et
al. in [23] where a matched filtering approach is applied to
extract candidate plate-like regions. The contrast of plate-like
regions is enhanced using vertical edge density, and detection
is performed using colored texture in the plate.

In addition to the method from [23] we apply a blob detec-
tion and filtering method to improve license plate detection.
This additional method consists of the followings steps:

1) Detect edges
2) Generate binary image with selectable blobs. Image is

processed to accent the more apparent detected edges
and to fill and smooth the image where appropriate.

3) Determine the blob that most likely corresponds to
the license plate. In a cascading form, filter the blobs
using the following attributes: blobs with a side length
comparable to a license plate, blobs that are horizontally
aligned, blob size relative to a license plate, squareness
of blob, blobs that are far to linear in shape, closest
ideal area, and closest total distant to the centroid from
multiple points.

The result from the method of vertical edge detection and
match filtering is compared with the result from the method
of blob detection and match filtering.

Both methods are given a score on which solution is most
likely the actual license plate. The scoring systems awards
points for the following attributes: accurate license plate to
bounding box ratios, the centering of the license plate returned
across the axis of symmetry, how equal the centering on the
axis of symmetry is, prediction of each side in comparison
to the centroid, the average color of the license plate, and
the squareness presented by both solutions. The solution with
the highest score value is then selected as the most accurate
prediction of the license plate location. Figure 5 shows some
results of the license plate extraction component. The overall

Fig. 5. License plate extraction

license plate extraction rate is 98.2% on a dataset of 845

images. The extracted license plate height and width measure-
ments for 93.5% of the dataset have ±15% error compared to
the actual license plate dimensions, and 4.7% have between
±15% and ±30% error.

3) Tail Light Extraction: For tail light detection the regions
of the image where red color pixels are dominant are located.
We compute the redness of each image pixel by fusing two
methods. In the first approach [24] the image is converted
to HSV color space and then pixels are classified into three
main color groups red, green, and blue. The second method
proposed by Gao et al. [25] defines the red level of each
pixel as ri = 2Ri

Gi+Bi
in RGB color space. A bounding box

surrounding each tail light is generated by combining results
from both methods and checking if the regions with high
redness can be a tail light (e.g., are symmetric, are close to
the edges of the vehicle). Figure 6 presents results of the two
methods and the combined result as two bounding boxes. Both

Fig. 6. Tail light detection

these methods fail if the vehicle body color is red itself. To
overcome this, the vehicle color is estimated using a HSV
color space histogram analysis approach which determines if
the vehicle is red or not. If a red vehicle is detected, the tail
light detection component is enhanced by adding an extra level
of post-processing which includes Otsu’s thresholding [26],
color segmentation, removing large and small regions, and
symmetry analysis. After the tail lights are detected, the width,
centroid, and distance and angle with the license plate are
separately computed for both left and right tail lights.

Tail-light detection is challenging for red vehicles. Our
approach performs well considering the different components
involved (symmetry analysis, size filtering, thresholding, ...)
. However, for more accurate tail light extraction Otsu’s
method may not be sufficient. For our future work we plan to
consider more sophisticated methods such as using physical
models [20] to distinguish the lights from the body based on
the characteristics of the material of a vehicle.

4) Feature Set: As the result of the feature extraction
component the following 11 features are extracted from each
image frame (all distances are normalized with respect to the
license plate width):

1) perpendicular distance from license plate centroid to a
line connecting two tail light centroids

2) right tail light width
3) left tail light width
4) right tail light-license plate angle
5) left tail light-license plate angle
6) right tail light-license plate distance
7) left tail light-license plate distance
8) bounding box width
9) bounding box height

10) license plate distance to bounding box bottom side
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11) vehicle mask area
A vehicle may have a symmetric structure but we chose to
have separate features for the left side and right side so that the
classifier does not completely fail if during feature extraction a
feature (e.g., tail light) on one side is not extracted accurately.
Also, the tail light-license plate angles may differ for the left
and right side because the license plate may not be located in
the center exactly.

B. Feature Selection

Given a set of features Y , feature selection determines a
subset X which optimizes an evaluation criterion J . Feature
selection is performed for various reasons including improving
classification accuracy, shortening computational time, reduc-
ing measurements costs, and relieving the curse of dimension-
ality. We chose to use Sequential Floating Forward Selection
(SFFS), a deterministic statistical pattern recognition (SPR)
feature selection method which returns a single suboptimal
solution. SFFS starts from an empty set and adds the most
significant features (e.g., features that increase accuracy the
most). It provides a kind of back tracking by removing the least
significant feature during the third step, conditional exclusion.
A stopping condition is required to halt the SFFS algorithm,
therefore, we limit the number of feature selection iterative
steps to 2n−1 (n is the number of features) and also define a
correct classification rate (CCR) threshold of b% where b is
greater than the CCR of the case when all features are used.
In other words, the algorithm stops when either the CCR is
greater than b%, or 2n−1 iterations are completed. Below the
pseudocode for SFFS is shown (k is the number of features
already selected).

1) Initialization: k = 0; X0 = {∅}
2) Inclusion: add the most significant feature

xk+1 = arg maxx∈(Y−Xk)
[J(Xk + x)]

Xk+1 = Xk + xk+1; repeat step 2 if k < 2
3) Conditional Exclusion: find the least significant

feature and remove (if not last added)
xr = arg maxx∈Xk

[J(Xk − x)]
if xr = xk+1 then k = k + 1; Go to step 2
else X ′k = Xk+1 − xr

4) Continuation of Conditional Exclusion
xs = arg maxx∈X′

k
[J(X ′k − x)]

if J(X ′k − xs) ≤ J(Xk−1) then
Xk = X ′k; Go to step 2

else X ′k−1 = X ′k − xs; k = k − 1
5) Stopping Condition Check

if halt condition = true then STOP
else Go to step 4

Figure 7 presents the correct classification rate plot with
feature selection steps as the x-axis and correct classification
rate as the y-axis. The plot peaks at x = 5 and the algorithm
returns features 1, 4, 6, 10, and 11 as the suboptimal solution.

C. Classification

1) Known or Unknown class: The classification component
consists of a two stage approach. Initially the vehicle feature
vector is classified as known or unknown. To do such, we

Fig. 7. Feature selection subset CCR plot

estimate the Gaussian distribution parameters of the distance to
the nearest neighbor for all vehicles in the training dataset. To
determine if a vehicle test case is known or unknown first the
distance to its nearest neighbor is computed. Then following
the empirical rule if the distance does not lie within 4 standard
deviations of the mean (µ ± 4σ) it is classified as unknown.
If the vehicle is classified as known it is a candidate for the
second stage of classification.

2) DBNs for Classification: We propose to use Dynamic
Bayesian Networks (DBNs) for vehicle classification in video.
Bayesian networks offer a very effective way to represent and
factor joint probability distributions in a graphical manner
which makes them suitable for classification purposes. A
Bayesian network is defined as a directed acyclic graph G =
(V,E) where the nodes (vertices) represent random variables
from the domain of interest and the arcs (edges) symbolize
the direct dependencies between the random variables. For a
Bayesian network with n nodes X1, X2, . . . , Xn the full joint
distribution is defined as:

p(x1, x2, . . . , xn) = p(x1)× p(x2|x1)× . . .
× p(xn|x1, x2, . . . , xn−1)

=

n∏
i=1

p(xi|x1, . . . , xi−1) (1)

but a node in a Bayesian network is only conditional on its
parent’s values so

p(x1, x2, . . . , xn) =

n∏
i=1

p(xi|parents(Xi)) (2)

where p(x1, x2, . . . , xn) is an abbreviation for p(X1 = x1 ∧
. . . ∧Xn = xn). In other words, a Bayesian network models
a probability distribution if each variable is conditionally
independent of all its non-descendants in the graph given the
value of its parents.

The structure of a Bayesian network is crucial in how
accurate the model is. Learning the best structure/topology
for a Bayesian network takes exponential time because the
numbers of possible structures for a set of given nodes is
super-exponential in the number of nodes. To avoid performing
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(a) K2 generated structure

(b) Manually structured Bayesian network

Fig. 8. Bayesian network structures

exhaustive search we use the K2 algorithm (Cooper and
Herskovits, 1992) to determine a sub-optimal structure. K2
is a greedy algorithm that incrementally add parents to a
node according to a score function. In this paper we use the
BIC (Bayesian Information Criterion) function as the scoring
function. Figure 8(a) illustrates the resulting Bayesian network
structure. We also define our manually structured network
(Figure 8(b)) and we compare the two structures in Section IV-
E. The details for each node are as following:
• C: vehicle class, discrete hidden node, size=3
• LP : license plate, continuous observed node, size=2
• LTL: left tail light, continuous observed node, size=3
• RTL: right tail light, continuous observed node, size=3
• RD: rear dimensions, continuous observed node, size=3

For continuous nodes the size indicates the number of features
each node is representing, and for the discrete node C it
denotes the number of classes. RTL and LTL are continuous
nodes and each contain the normalized width, angle with
the license plate, and normalized Euclidean distance with the
license plate centroid. LP is a continuous node with distance
to the bounding box bottom side and perpendicular distance to
the line connecting the two tail light centroids as its features.
RD is a continuous node with bounding box width and height,
and vehicle mask area as its features. For each continuous
node of size n we define a multivariate Gaussian conditional
probability distribution (CPD) where each feature of each
continuous node has µ = [µ1 . . . µn]T and Σ as an n × n
symmetric, positive definite covariance matrix. The discrete
node C has a corresponding conditional probability table
(CPT) assigned to it which defines the probabilities P (C =
sedan), P (C = pickup), and P (C = SUV or minivan).

Adding a temporal dimension to a standard Bayesian net-
work creates a DBN. The time dimension is explicit, discrete,

Fig. 9. DBN structure for time slices ti,i=1,2,3

and helps model a probability distribution over a time-invariant
process. In simpler words, a DBN is created by replicating
a Bayesian network with time-dependent random variables
over T time slices. A new set of arcs defining the transition
model is also used to determine how various random variables
are related between time slices. We model our video based
classifier by extending the aforementioned Bayesian network
(Figure 8(b)) to a DBN. The DBN structure is defined as
following:
• for each time slice ti,i=1,2,...,5 the DBN structure is simi-

lar to the Bayesian network structure given in Figure 8(b).
• each feature Xt

i is the parent of Xt+1
i .

• Ct is the parent of Ct+1.
• all intra slice dependencies (arcs) also hold as inter time

slices except for arcs from time slice t hidden nodes to
time slice t+ 1 observed nodes.

Figure 9 demonstrates the DBN structure for 3 time slices.
Such a network is identified as a Hybrid Dynamic Bayesian
Network (HDBN) because it consists of discrete and contin-
uous nodes. Training the HDBN or in other words learning
the parameters of the HDBN is required before classifi-
cation is performed. Therefore, the probability distribution
for each node given its parents should be determined. For
time slice t1 this includes p(LTL|C), p(RTL|C), p(RD|C),
p(LP |C,LTL,RTL), and p(C). For time slices ti,i=2,...,5 it
includes :

p(LTLt|Ct, LTLt−1), p(RTLt|Ct, RTLt−1)

p(Ct|Ct−1), p(RDt|Ct, RDt−1)

p(LP t|Ct, LTLt, RTLt, LP t−1, LTLt−1, RTLt−1) (3)

For example, to determine p(LTLt|Ct, LTLt−1) three dis-
tributions with different parameters, one for each value of
Ct, are required. Hence, p(LTLt|LTLt−1, Ct = sedan),
p(LTLt|LTLt−1, Ct = pickup), and p(LTLt|LTLt−1, Ct =
SUV or Minivan) are estimated, and p(LTLt|LTLt−1) is
derived by summing over all the Ct cases.

The next step is inference where a probability distribution
over the set of vehicle classes is assigned to the feature vector
representing a vehicle. In other words inference provides
p(Ct|f (1:t)) where f (1:t) refers to all features from time slice
t1 to t5.
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Fig. 10. Pattern-Feature matrix for different vehicles

IV. EXPERIMENTAL RESULTS

A. Side View Vehicle Recognition

Our initial experiments are performed on a dataset consist-
ing of 120 vehicles. The dataset includes 4 vehicle classes;
sedan, pickup truck, minivan, and SUV, each containing 30
vehicles. We use Dynamic Time Warping (DTW) [27] to
compute the distance, nearest neighbor for classification, and
k-fold cross validation with k = 10 to evaluate our approach.
The resulting confusion matrix is shown in Table II. The

TABLE II
CONFUSION MATRIX

Predicted Class → Sedan Pickup Minivan SUV
Sedan 30 0 0 0
Pickup 0 30 0 0

Minivan 0 0 28 2
SUV 2 1 2 25

presented results are obtained by using radius distance time
series as described earlier. We performed similar experiments
using local neighborhood curvature and found similar results
which are not shown here.

B. Rear View Data Collection

We collected video data of passing vehicles using a Sony
HDR-SR12 Video Camera. The videos are taken in the early
afternoon with sunny and partly cloudy conditions. Lossless
compressed PNG image files are extracted from the original
HD MPEG4 AVC/H.264 video format, then downsampled
from 1440 × 1080 to 320 × 240 using bicubic interpolation.
Downsampling is performed to reduce the computation time.
All image frames were manually labeled with the vehicle class
to provide the ground-truth for evaluation purposes. Figure 11
shows three examples for each known vehicle class. The
number in front of the class label denotes the difficulty level
of classifying that case (e.g., Sedan 3 (Fig. 11(c)) is harder to
classify than Sedan 1 (Fig. 11(a))).

(a) Sedan 1 (b) Sedan 2 (c) Sedan 3

(d) Pickup 1 (e) Pickup 2 (f) Pickup 3
.

(g) SUV 1 (h) SUV 2 (i) SUV 3

Fig. 11. Known vehicle examples for each class

The dataset consists of 100 sedans, 27 pickup trucks, and
42 SUV/minivans. We have not added more SUV and pickup
images to the database because the current number of samples
for each class in the database reflects the actual distribution of
vehicle classes at our data capture location. Before extracting
the features and generating the feature set, it’s important to
determine the number of frames required for classification.
We recorded classification accuracy for different number of
frames. The maximum accuracy is achieved when 5 frames
are used. Note that these frames are not successive. We are
using ∆t = 2 which means leaving out two frames between
candidate frames. This value is directly related to the speed
of the vehicle and the overall time the vehicle is visible in the
camera’s field of view. Although currently a predetermined
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value is used for ∆t, we plan to automatically determine the
optimal value as part of future work.

To evaluate how well the algorithm performs in the case
of an unknown vehicle we also collected 8 unknown vehicles
which are not part of the training dataset. Figure 12 shows
two examples of unknown vehicles.

Fig. 12. Unknown vehicle examples

Figure 10 shows the corresponding pattern-feature matrix.
The y-axis represents the extracted features and the x-axis
symbolizes all 845 (169 vehicles × 5 frames) feature vectors.
For presentation purposes each row has been normalized by
dividing by the maximum value of the same feature.

C. Feature Selection Evaluation

Table III shows classification evaluation metrics both when
(a) using the entire feature set, and (b) using a suboptimal
subset. Results show that using the subset of the features
generated by SFFS decreases the accuracy and precision
by approximately 1%. Feature selection also decreases the
average testing time per frame from 0.05 to 0.03 seconds.
The selected feature numbering is according to the features
listed in Section III-A.4.

TABLE III
FEATURE SELECTION RESULTS

Selected Prec- FA CCR Testing
FS Method↓ features ision Rate time(s)

(a) None all 95.68 0.02 97.63 0.05
(b) SFFS 1,4,6,10,11 94.23 0.03 96.68 0.03

D. Classification Results

We use the Bayes Net Toolbox (BNT) [28], an open source
Matlab package, for defining the DBN structure, parameter
learning, and computing the marginal distribution on the class
node. The proposed classification system was tested on our
dataset consisting of 169 known and 8 unknown vehicles. We
use stratified k-fold cross-validation with k = 10 to evaluate
our approach. The resulting confusion matrix is shown in
Table IV. All sedans are correctly classified except for the

TABLE IV
CONFUSION MATRIX

Pred. Class → Unknown Sedan Pickup SUV/ Total
True Class↓ Minivan
Unknown 8 0 0 0 8

Sedan 0 99 1 0 100
Pickup 0 0 27 0 27

SUV/Minivan 0 3 2 37 42

one which is misclassified as a pickup truck (Figure 13(a)).

Figure 13(b) shows an SUV misclassified as a pickup truck. A
closer look at the data and pattern-feature matrix shows great
similarity for both these cases with the pickup class due to the
license plate location and rear tail light width.

(a) Sedan misclas-
sified as pickup

(b) SUV misclas-
sified as pickup

(c) Minivan mis-
classified as sedan

(d) Minivan mis-
classified as sedan

Fig. 13. Misclassified examples

E. Structure Learning Evaluation

Table V presents the classification evaluation metrics for
the two structures given in Figure 8(a) and Figure 8(b). The
results show that learning the structure using K2 decreases
the classification accuracy and precision. This is due to the
fact that the K2 search algorithm requires a known linear
ordering of nodes prior to model selection. One way to
overcome this is to determine the ordering of nodes prior
to performing K2. Determining the required ordering using
a dynamic programming approach takes O(n22n) time and
O(n2n) space where n is the number of nodes. The linear
order determines the possible parent candidates for each node
in a way that the BN is guaranteed to be an acyclic graph.

TABLE V
STRUCTURE LEARNING EVALUATION

Structure Learning Method Precision FA Rate CCR
K2 algorithm & BIC (Figure 8(a)) 93.68 0.04 96.06
Manual chosen structure (Figure 8(b)) 95.68 0.02 97.63

F. Comparison with Other Methods

We compare our results with 3 well-known classifiers: k-
nearest neighbor (kNN), linear discriminant analysis (LDA),
and support vector machines (SVM). All classification al-
gorithms use the same feature set as the HDBN classifier.
Tables VI, VII, and VIII show classification accuracy, false
positive ratio (false alarm), and precision respectively. The
class ‘unknown‘ is not included in computing the results for
Tables VI, VII, and VIII.

TABLE VI
CCR COMPARISON FOR KNN, LDA, SVM, AND HDBN

Classifier→ kNN LDA SVM HDBN
Vehicle Class↓

Sedan 88.25 94.67 96.44 97.63
Pickup 95.12 94.67 96.44 98.22

SUV/Minivan 90.90 92.89 92.30 97.04
Overall 91.42 94.07 95.06 97.63

Figure 14 demonstrates how each feature individually con-
tributes to the CCR for all four classifiers kNN, LDA, SVM,
and the proposed HDBN. Each bar indicates how much on
average the corresponding feature increases/decrease the CCR.
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TABLE VII
FALSE ALARM PERCENTAGES COMPARISON

Classifier→ kNN LDA SVM HDBN
Vehicle Class↓

Sedan 0.17 0.07 0.06 0.04
Pickup 0.04 0.05 0.03 0.02

SUV/Minivan 0.04 0.02 0.04 0
Overall 0.09 0.05 0.04 0.02

TABLE VIII
PRECISION PERCENTAGES COMPARISON

Classifier→ kNN LDA SVM HDBN
Vehicle Class↓

Sedan 88.46 95.05 96.07 97.05
Pickup 80.64 78.13 86.20 90.00

SUV/Minivan 85.29 91.67 87.17 100
Overall 84.80 88.28 89.81 95.68

The experiment shows that when using HDBN every feature
has a positive contribution, whereas for the other three clas-
sifiers particular features may decrease the CCR (e.g., feature
for kNN, feature 8 for kNN, LDA, and SVM). This observing
shows that HDDN is more tolerant to unreliable/noisy features
than the other classifiers discussed here. Another interesting
fact is related to each classifiers performance on the features.
On our dataset, HDBN tends to be a more accurate classifier
when features are not linearly separable (e.g., feature 8).

Fig. 14. Feature CCR Contribution Comparison

Figure 15 presents the Receiver Operating Characteristic
(ROC) curves for all the four classifiers. Although the ROC
curves are similar but it is clear that HDBN outperforms SVM,
LDA, and KNN.

V. CONCLUSIONS

We proposed a Dynamic Bayesian Network for vehicle
classification and showed that using multiple video frames
in a DBN structure can outperform well known classifiers
such as kNN, LDA, and SVM. Our experiments showed that
obtaining high classification accuracy does not always require
high level features and simple features (e.g., normalized dis-
tance and angle) may also provide such results making it
possible to perform real-time classification. Future work will
involve converting the current training-testing model to an
incremental online learning model, stochastic vehicle make
and model identification, and adaptive DBN structure learning
for classification purposes.

Fig. 15. Performance ROC plot
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