
Managing the Evolution to Future Internet

Architectures and Seamless Interoperation

Mohammad Jahanian∗, Jiachen Chen†, and K. K. Ramakrishnan∗

∗University of California, Riverside, CA, USA. Email: mjaha001@ucr.edu, kk@cs.ucr.edu
†WINLAB, Rutgers University, NJ, USA. Email: jiachen@winlab.rutgers.edu

Abstract—With the increasing diversity of application needs
(datacenters, IoT, content retrieval, industrial automation, etc.),
new network architectures are continually being proposed to
address specific and particular requirements. From a network
management perspective, it is both important and challenging
to enable evolution towards such new architectures. Given the
ubiquity of the Internet, a clean-slate change of the entire
infrastructure to a new architecture is impractical. It is believed
that we will see new network architectures coming into existence
with support for interoperability between separate architectural
islands. We may have servers, and more importantly, content,
residing in domains having different architectures. This paper
presents COIN, a content-oriented interoperability framework
for current and future Internet architectures. We seek to provide
seamless connectivity and content accessibility across multiple
of these network architectures, including the current Internet.
COIN preserves each domain’s key architectural features and
mechanisms, while allowing flexibility for evolvability and exten-
sibility. We focus on Information-Centric Networks (ICN), the
prominent class of Future Internet architectures. COIN avoids
expanding domain-specific protocols or namespaces. Instead, it
uses an application-layer Object Resolution Service to deliver
the right “foreign” names to consumers. COIN uses translation
gateways that retain essential interoperability state, leverages
encryption for confidentiality, and relies on domain-specific signa-
tures to guarantee provenance and data integrity. Using NDN and
MobilityFirst as important candidate solutions of ICN, and IP,
we evaluate COIN. Measurements from an implementation of the
gateways show that the overhead is manageable and scales well.

Index Terms—Future Internet Architectures; Interoperability;
Information-Centric Networking

I. INTRODUCTION

The evolution of the Internet has been driven by demand

from new applications and services, the majority of which

facilitate improved information delivery. Even though IP is

ubiquitous, a number of network research projects have pro-

posed radically new architectural designs to improve delivery

of capabilities in a more timely or convenient way, rather

than using IP as the common network layer protocol. Each

of these solutions revisit and challenge the principles behind

IP, primarily in terms of its communication model aspects,

such as addressing, connectivity, and mobility support. With

the ubiquity of IP and the scale of the Internet, managing the

evolution of the network layer and the infrastructure is likely

to be increasingly difficult. The ossification of the Internet may

lead to a “ManyNets” world rather than the “OneNet” Internet

we have today [1]. In other words, there may be multiple

“islands” coexisting with each other, each being a separate

domain having a unique and distinct network architecture [2].

Reachability across domains with different architectures is

important and challenging. We believe a pragmatic approach

to manage network evolution would be to design an interoper-

ability framework between these different domains, or in other

words, “bridging the many islands”. This way, we can avoid

having to necessarily change all existing designs (including

legacy IP networks), while allowing different architectural

designs (including the several ‘future Internet architectures’

being currently considered [3]) to advance and be used in their

own domains. In addition, we seek to support the evolution

to even other future Internet architectures, thereby sustaining

research into such architectures.

There have been many attempts over several decades ad-

dressing interoperability across network architectures in the

form of multi-protocol routers and gateways. We believe that

the concept needs to be revisited today, since compared to

previous efforts, the architectures we seek to support for

interoperation are much more different in nature than in

the past. Some of the proposed architectures for the future

Internet challenge the very core idea of the IP-based and

host-centric architecture of today’s Internet. An important

class of architectures that attempt this are Information-Centric

Networks (ICN) [4]–[10]. Focusing on what rather than where,

ICN proposes a content-centric, location-independent network

layer, motivated by the fact that the main purpose served

by today’s Internet is information delivery, rather than mere

computer-to-computer connectivity [4]. ICN has gained a great

deal of interest from both academia and industry in the recent

years [11], [12]. ICN has a set of key features and benefits,

such as location-independent forwarding [4], content-oriented

security [13], and in-network caching [14].

In this paper, we propose COIN, a framework for inter-

operability between legacy and future Internet architectures,

focusing on the important class of ICNs, which are signifi-

cantly different from today’s IP architecture. COIN does not

require any change in existing individual domain architectures

and preserves their key features and mechanisms. Additionally,

COIN does not require content to be moved or replicated to al-

low access to it from users and end-systems that are in a differ-

ent network domain. It also does not require the identity/name

of a content item to be replicated for each existing domain

and end host’s understandable semantics. For content-oriented

interoperability, it is key that naming is harmonized across

different domains. An integral part of this harmonization is that

the native naming schema of each domain type (e.g., hierar-

chical structure of NDN [5]) is retained while enabling access

and retrieval of content across domains with different naming

schema. This goal would be very difficult to achieve with

an overlay approach, especially for traversals across multiple

domains of different architectures [2]. On the other hand, an

efficient translation of content requests and responses between

domains can support this interoperability. To this end, rather

than creating a new universal layer or overlay, COIN provides

translation-based interoperation across multiple domains, with

the use of gateways that process requests/responses and retain

state information. COIN supports both static and dynamic

content requests. Using encryption/decryption as well as it-

erative signatures performed as we cross from one domain to

another domain, COIN ensures confidentiality, integrity and

provenance. To obtain content names in a foreign domain,

COIN incorporates an Object Resolution Service (ORS) [15].

ORS is an important capability that enables cross-domain

name retrieval and usage through a systematic, application-

layer procedure. Our ORS design, importantly, relieves the

interoperability framework and content providers from re-

naming content for each domain, and consumers from having

to understand new name formats foreign to them. Focusing

on the candidate cases of IP, Named Data Network (NDN)

[5] and MobilityFirst (MF) [6], we implement and experiment

with our design for interoperation. We focus on NDN and MF

for two reasons: 1) The Future Internet Architecture (FIA)

community treats these as two prominent ICN projects [3],

with continuing research efforts and community involvement.

2) The two architectures have significant differences and rep-

resent two different “sub-classes” of ICN architectures: NDN

supports hierarchical naming with implicit name resolution in

the network, while MF supports flat names with explicit name

resolution. Taking these differences into account, we evaluate

COIN and show that it is effective and efficient.

The contributions of this paper are: 1) a generic interoper-

ability framework among ICN and IP domains for secure static

and dynamic content retrieval that preserves key features of do-

mains, thus managing evolution in a flexible manner; 2) an im-

plementation of the framework [16] for interoperability among

IP/HTTP, NDN and MF; and 3) measurements based on the

implementation of the framework across different domains to

demonstrate its utility from a performance perspective.

II. BACKGROUND AND RELATED WORK

A. Information-Centric Networking

Information-Centric Networking (ICN) enables access to

named objects, independent of their locations. There have been

a number of different ICN proposals in the past decade, e.g.,

NDN [5], MobilityFirst (MF) [6], DONA [7], XIA [8], Net-

Inf [9], and PURSUIT [10]. In this paper, we mainly focus on

two notable ICNs, namely NDN and MF. There are differences

between IP and ICNs [4], and also between different ICNs

[17]. ICN has several key features and aspects, which we wish

to support and preserve while enabling interoperation:

1) Naming: In ICN, the network layer is aware of names,

while in IP it is only aware of addresses. Different ICNs

have different naming schemas: NDN uses human-readable

hierarchical names [5], while MF uses 20-byte flat names

called GUIDs (Globally Unique Identifiers) [6]. An important

service is Name Resolution Service (NRS), which maps names

to locations, either implicitly (FIBs in NDN [5]). or explicitly

(DNS in IP or GNRS in MF [6]). 2) Name-based forwarding

and routing: The ICN network layer makes forwarding and

routing decisions based on names, which provides benefits

such as location-independence and inherent support for mo-

bility [4], [6]. MF forwards both requests and responses

based on the source/destination network address (like IP)

after late-binding of the name to address, while NDN uses

reverse path forwarding (RPF) policy for delivering the re-

sponse back to the consumer, through Pending Interest Tables

(PIT) [5]. 3) Connectionless transport: While there has been

some work on TCP-like additions to NDN [18] and MF

[19], ICN primarily enables content request and retrieval

without establishing an end-to-end channel, in contrast to

today’s HTTP/TCP/IP-based connection-oriented communica-

tion channel-based content retrieval [4]. 4) Content-oriented

security: ICN secures the data itself, as opposed to IP’s

channel-based and host-based security [13]. NDN uses a trust

schema [20] while MF uses self-certifying objects [6] to ensure

provenance and integrity. 5) In-network content caching: ICNs

typically cache content, indexed by names, at every router [14].

This extends the selective and limited CDN-like caching done

in today’s IP. Many studies have shown ICN caching to be very

beneficial for reducing the response time for content delivery

as well as availability, especially at the edge [21], [22].

B. ICN Interoperability

There have been different recent approaches for interoper-

ability involving ICNs (surveyed in [23]):

1) Tunneling (Overlay/Underlay): Some approaches use

ICN-over-IP tunneling. For example, the basic design of [24]

is an NDN-overlay: NDN packets are encapsulated into UDP,

TCP or native IP packets traversing IP routers. This enables in-

cremental deployment of ICN over IP and has been used as the

starting point for development of software packages of most

ICN architectures [4], [9], [10], [25]. Work in [2] introduces

a layer 3.5 as overlay, and this layer allows new architectures

such as NDN to run. In this approach, each new architecture

would have its own layer 3.5 protocol, having to go through the

overhead of mapping from/to the underlying layers. Similarly,

each overlay has its own naming schema. However, the work

does not go into details on how the right name to use is chosen

or obtained by a requesting client. IP-over-ICN solutions,

such as [18], [26], [27], allow legacy (HTTP/TCP) applications

function across an ICN infrastructure, where IP packets are

encapsulated in NDN headers, which get decapsulated when

leaving the NDN domain. These solutions typically assume a

single ICN architecture universally deployed (e.g., NDN [5])

and build IP capabilities on top of it. Also, they deal with

added IP-to-ICN (and back) mapping latencies at certain

routers on the path [23].

2) Hybrid Approach: An approach to enable evolution to

new architectures and interoperation is to add the semantics

of a new architecture into an existing one. This results in a

new hybrid network layer that is backward-compatible with

the native version of the original architecture. CLIP [28] uses

an IPv6 subnet prefix for content to enable ICN in IP. Work

in [29] proposes the combination of HTTP and ICN, arguing

that they both follow a content-centric pattern. Most recently,

hICN [30] proposes to encode NDN-specific components into

IPv6, and allows the coexistence of IP and ICN dual stacks

at hICN-enabled routers (capable of processing both legacy

and ICN-enhanced IP packets), while also making use of

regular IP routers (capable of processing legacy IP packets).

Consumers and data providers, however, still need to have the

same semantic understanding, e.g., in terms of naming and

how “network” names get mapped to “application” names.

3) Translation: Solutions in [31]–[33] perform direct trans-

lation between HTTP and NDN/MF traffic. Translation-based

interoperability solutions bring great advantages, such as not

having to change domain-specific mechanisms. Work in [31]

further optimizes the ability to cache in the network by adding

heuristic rules. Moiseenko et al. [34] modify NDN packets

to better support HTTP-like communication (e.g., uploading

large data using POST). These solutions either support only

2 domains (IP plus either NDN or MF), do not support some

of the key domain capabilities, and/or require heavy changes

to end nodes and routers in existing domains. Our approach

overcomes these shortcomings using translation-based stateful

gateways for interoperating multiple domains with different

architectures, while preserving their key features.

III. MOTIVATION AND OVERVIEW

A. Design Goals and Rationale

COIN provides interoperability between legacy (current)

and future architectures guided by these requirements:

• It should support host-centric (e.g., IP) and information-

centric (e.g., NDN and MF) networks.

• It should add no architecture/protocol change to the existing

individual domains (i.e., no new layer or protocol change).

• Introduce minimal change to end host logic, so clients in

one domain use native mechanisms to seamlessly exchange

information with another domain.

• Support request for both static (e.g., find a movie) and dy-

namic content (e.g., query for current weather information),

potentially across multiple (≥2) domains.

• Preserve domain-specific features (§II-A); i.e., interoperate

between different naming schema, between connection-

oriented and connectionless transport, between stateless and

stateful forwarding, between channel-based security and

content-oriented security, and support in-network caching.

• Each domain’s content namespace should be limited only to

include the objects in that domains.

• Inter-domain message exchanges must be secure (i.e., prove-

nance, confidentiality, and integrity ensured).

To satisfy the above requirements, we use a translation-

based approach primarily to retain each domain independently

(and preserve their key features), without changes to existing

architectures (thus allowing for easier deployability and evo-

lution). This approach overcomes some of the shortcomings

and challenges of alternative approaches:

• Tunneling (overlay/underlay) and hybrid approaches require

both the consumer and content provider to have the same

semantics and formats, including components such as the

naming schema [2], [30]. Translation can achieve the goal

of every end host only having to “speak its own language”.

• Overlays cannot take advantage of all the capabilities in

the underlying domain since the underlay usually does not

understand the semantics of the overlay; e.g., in ICN-over-

IP [24], IP does not provide many of the advantages that

would be obtained from ICN, such as content caching

or stateful forwarding. Hybrid approaches are also limited

in terms of satisfying all key ICN features through their

integrated protocols [23], [30]. With translation, we can

retain domain-specific features as well as essential ICN

features across domains.

• Overlay approaches introduce considerable overhead and

complexity at the overlay-enabled routers, having to perform

the mapping between the different decoupled layers; this

may be encountered at (potentially) many routers on the path

[23]. With translation gateways, routers retain their native

domain-specific designs and implementations.

• The addition of new architectures requires significant

changes to the overlay at tunnel end-points, both in terms of

standardization and deployment. The same is true with hy-

brid approaches, which requires the embedding of domain-

specific components of the new architecture into the in-

tegrated network layer protocol. With translation, we can

add any number of new network types and attach them to

existing domains via gateways supporting them.

• The above challenges become even more severe when deal-

ing with a multitude of interoperating domain types (more

than two). We alleviate this in COIN.

It is sometimes noted that translation-based interoperation is

counter to the end-to-end principle of the Internet, as argued

in [2]. However, we believe that new architectures (mainly

ICNs) already challenge the pure end-to-end principle; e.g.,

in NDN, the procedure for requesting and receiving content

is asynchronous, with routers managing transport on a hop-

by-hop basis, without necessarily having a complete end-to-

end communication [5]. Also, in today’s Internet, middleboxes

such as NATs add additional indirection in the network [35].

We believe a translation-based approach is suitable and prag-

matic for interoperability between current and future networks.

With a focus on content-oriented services, our translation

is performed at the “content name level”, i.e., in the layer

that identifies content names, be it the application layer in

legacy IP domains (e.g., URLs to identify content in HTTP)

or network layer in NDN domains (in form of hierarchical

human-readable names). This provides a significantly higher

abstraction than the address-based design of legacy interoper-

ation and is important since names are “first-class” entities in

information-centric paradigms (§II-A). In such environments,

it is also important for consumers to pick “the right name”

for a content request, and receive that content. Recent works

such as [2], [30] allude to the importance and challenges of

such mechanisms, although they do not provide a solution for

it. We propose a protocol for Object Resolution, to enable the

retrieval of the necessary names (which we explain in §IV-G).

B. Overview of COIN

COIN provides interoperability among any number

of domains, each having a distinct network design and

architecture, including legacy (IP) or future (ICN) Internet

architectures. COIN gateways provide this interoperability

through translation and state maintenance. A client in one

domain can request for content (static or dynamic) multiple

domains away, and receive the corresponding content in the

response. COIN makes no change to existing domain-specific

architectures, and preserves key domain features, including

domain-specific security models and mechanisms. Most

notably, COIN preserves namespace size and structure of

each domain, and does not create a new naming schema.

Content can be universally identified using its domain-specific

(i.e., native) name, plus its domain ID. A client requesting

content from another domain, uses the content’s native name

and its domain ID. To acquire that information, COIN uses

an Object Resolution Service (ORS), which is an application-

layer search engine-like service providing names as response

to keyword queries. The foreign name provided to consumers

are not distinguishable from native ones, thus making the

consumer’s request for content seamless.

C. Addressing Challenges for Gateway-based Interoperability

While our solution (overviewed in §III-B) helps achieve our

design goals, there are additional concerns to be addressed.

Most of these challenges exist for other translation-based

approaches as well. We explain how COIN overcomes them.

Evolution flexibility; Too many pair-wise translators? Typ-

ically, in a translation-based interoperability solution, for n

different network architectural designs, one might end up

needing n2 translators [2]. Not only would it be too complex

to design so many translators, it also can make it very

inflexible for adding a new domain architecture: n additional

translators would need to be implemented. COIN overcomes

this by having an internal canonical form at the gateways,

and adapters that convert domain-specific packets to/from this

canonical form (explained in §IV-F). This way, for n different

network designs, we will only have n adapters at the gateway

(rather than n2 individual translators), and one canonical form

that is consistent across all gateways. Note that this canonical

form is not ‘yet another network layer’; it is only an internal

design component inside the gateway.

Too many requests going through gateways? Only the

requests going across a domain to another domain need to go

through a gateway. However, this may still end up resulting in

an excessive number of requests that a gateway has to process.

This can make the gateway un-responsive and be a single

point of failure. This is a general problem of gateway-based

���

��������	��

����

���	��

����

����	��

����

���

�������

�������	��

�����

�������	��

�������

�����	
����
�	�����������	��
����

��������	���	�

������	����	�������������������� �������

�		����� ��
�

����
�!

����	�����������������

"#$%$"#""&$'

�����	�����	
����

�	��$$���(#$

�����	�

)�����*+,-

����������	��	���

���
��	�

.��������
��	�$�*+,-

.��������
��	�"�*+,-

/��	�,-�0��������������
��+�1�

�����	�����	
��� �����	������

*2 *2

Fig. 1. Layered architecture overview

interoperation. To overcome this, COIN leverages in-network

caching, a key domain-specific feature that COIN preserves,

because of its use of the native naming schema of the domain.

Content coming from another domain through a gateway can

still be cached in the consumer domain (§IV-F). Many works

have shown that in-network caching is very beneficial since the

content demand in the Internet follows a Zipfian distribution

[21]. Work in [22] has shown that with a proper caching

scheme, in-network caching for a typical web workload can

achieve up to 70% hit rate even with cache capacities as little

as 2% to 7% percent of the whole content space. With caching

enabled, and assuming Zipfian workload, the majority of the

requests in COIN would be satisfied in the consumer domain,

thus not having to necessarily go to gateway to be processed.

Storage overhead at gateways? Gateways have to keep

a small amount of information as state for every incoming

request. While in-network caching can dramatically reduce

the number of requests the gateway has to process, storing

state associated with each of them may still be a challenge. To

overcome this, gateways in COIN leverage request aggregation

for requests for the same content (typically static content)

(more details in §IV-F). Only the first request is forwarded,

while the subsequent identical ones get aggregated (similar to

NDN PIT [5]). In addition, COIN gateways can cache content

themselves, thus enabling them to respond without having to

issue a new request (and thus store associated state) in the

next domain. These methods, combined, greatly reduce the

amount of memory consumption at the gateways as well as

the number of requests going out of them.

IV. ARCHITECTURE AND DESIGN

A. Preliminaries

COIN’s network environment may be made up of a number

of different domains (e.g., IP, NDN, and MF) with gateways

connecting pairs of domains, in addition to clients, servers,

publishers, and content repositories that can reside in any of

the domains. A high-level, layered architecture view is shown

in Fig. 1. We identify three layers (similar to [36]), each

characterizing an important aspect of COIN’s content-centric

view. The Information layer captures accessible objects and

content items in various applications. A Service layer shows

in what format (hierarchical format, etc.) each object in an

Information layer is named and identified. The Routing layer

takes care of transmitting packets to an appropriate (one or

more) recipient(s) using routing/forwarding protocols within

that domain. It is important to note that we are not adding any

new layers; rather, we are recognizing the logical layers that

represent functionality that is common in the domain-specific

architectures. For example, the service layer is part of the net-

work layer in NDN and MF, and part of the application layer

in IP. The Object Resolution Service (ORS) generates names

understandable by the corresponding domain’s service layer

and the domain-specific Name Resolution Service (e.g., DNS

in IP and GNRS in MF). It helps names to be mapped to lo-

cation information in each domain for routing. The figure also

shows that each domain (and producers and consumers in the

domain) only needs to understand its own naming structures

(whether hierarchical or flat). Gateways facilitate appropriate

translations and bridging between different network architec-

tures, preserving their key features and internal mechanisms.

B. Service Interface

The primary services supported by COIN are static and dy-

namic content retrieval. Both follow a query/response model, a

very popular model in today’s Internet as well as in ICNs [4].

This distinction between static and dynamic content requests

is important, since they need to be treated differently: The

response for a dynamic content request might depend both on

consumer’s input and the current state of the server (such as

a keyword-based search that may depend on time, location,

or server policies). Thus, the response cannot be from a

cache, since the current server-generated response is desired.

Static content requests, on the other hand, have no such

restriction. Cached content, in routers or Content Delivery

Networks (CDNs), can be returned to consumers, as long

as it has the right version. Note that other possible services,

e.g., publish/subscribe [37] are not the focus of COIN’s cur-

rent design. However, with additional modules for processing

those other services, e.g., push-based multicast or repetitive

poll-based request generation component implementation for

publish/subscribe with the capability to translate to/from an

internal canonical format, COIN can support them as well.

C. Common Information Elements

These are common elements on which the translation be-

tween different formats have to be performed and are primary

parts of a COIN gateway’s canonical form. COIN supports all

protocols that have these common elements (e.g., HTTP/IP,

NDN, MF, XIA, NetInf, and even FTP):

• Request type (to distinguish between dynamic and static

content requests; request type can be a pre-existing field in

the packet header or body based on implementation choice);

• Destination domain and content name (generally as “DstDo-

main/ContentName” to identify content and target domain);

• Content version (as content may have different versions);

• Exclude for static content request (to allow consumers to

get the latest version of a content item);

• Input for dynamic data request (to allow a consumer to pass

parameters to a dynamic data provider); and,

• Demultiplexing key (to identify a corresponding request

when the response data comes back to a gateway).

D. Naming

Naming is key to enabling content-oriented interoperability.

COIN primarily performs translations at name level. This

principle brings important benefits: 1) Each domain keeps

its naming schema (e.g., NDN’s hierarchical naming [5] or

MF’s flat IDs [6]), which helps with evolvability. While

consumers have to use a globally unique expression for each

content as “ContentDomain+ContentName”, they do not have

to understand such a syntax. It will look seamless to users,

as if they are using a native name. This is facilitated by

the ORS, as described in §IV-G. For example, a consumer

in an IP domain requesting for content named “/ICCCN/pa-

pers/COIN.pdf” in an NDN repository, will send an HTTP

request for “http://NDN/ICCCN/papers/COIN.pdf”, which is

just like any other HTTP request. After going through gateway

processing, the NDN repository receives the request as an

NDN Interest with name “/ICCCN/papers/COIN.pdf”, just like

any other NDN Interest. 2) Each domain keeps its namespace

size, which helps with scalability. No domain has to keep

track of, or maintain, another domain’s content namespace

(just needs the IDs of other domains). 3) The name-to-location

mapping in each domain, utilized in order to deliver to/from

gateway, consumer, or producer, is handled by the domain’s

already existing name resolution service (e.g., GNRS in MF).

E. Transport, Routing and Forwarding

Motivated by its design principle, COIN allows the com-

position of connection-oriented and connectionless trans-

port across domains. For example, if a consumer using

HTTP/TCP/IP is requesting content from a producer in NDN,

the gateway acts as the second end of the TCP connection (i.e.,

similar to a proxy server listening on an HTTP port) to the

consumer (establishing sessions, etc.), while acting as a typical

NDN client (sending a content Interest in a connectionless

manner) towards the NDN side. When the data comes back,

the gateway sends the data to the consumer, using the stored

IP address and source port information of the consumer.

Similar to today’s Internet, COIN decouples intra- and inter-

domain routing [2]. Domain-specific routing mechanisms can

be leveraged, and be stitched at gateways. In the case of

multiple gateways between two domains, inter-domain routing

can be used to connect one gateway to the nearest other gate-

way. Existing architectures need not know or implement these

inter-domain algorithms. As for state, gateways connecting the

same domains on either side can exchange and share state

information, so any gateway can process the response.

COIN gateways process requests and responses differently,

with an important distinction being that response forwarding is

stateful (§IV-F). Importantly, gateway forwarding conforms to

domain-specific forwarding policies; e.g., NDN has a reverse

path forwarding (RPF) policy where every node traversed

by the request has to be in the responses path [5]. Other

architectures, such as MF, may not have such a restriction, thus

C.IP:port\GW.IP:port

POST <NAME>

HTTP/1.1

Host: <DstDomain>

<INPUT>

C.GUID\TargetGUID

POST <reqID>/<NAME>

<INPUT>

S
w

it
ch

in
g

 F
a

b
ri

cN
D

N
C

a
n

A
d

a
p

te
r

M
F

C
a

n

A
d

a
p

te
r

H
T

T
P

C
a

n

A
d

a
p

te
r

N
D

N

In
co

m
in

g

M
F

In
co

m
in

g

H
T

T
P

In
co

m
in

g

N
D

N

O
u

tg
o

in
g

M
F

O
u

tg
o

in
g

H
T

T
P

O
u

tg
o

in
g

[/DstDomain]/<NAME>

/<INPUT>/<reqID>

C
a

n
N

D
N

A
d

a
p

te
r

C
a

n
M

F

A
d

a
p

te
r

C
a

n
H

T
T

P

A
d

a
p

te
r

Static | Dynamic
<DstDomain>
<Name>
<Exclude> | <Input>
<Demux>

Static | Dynamic
<DstDomain>
<Name>
<Exclude> | <Input>
<Demux>

Static | Dynamic
<DstDomain>
<Name>
<Exclude> | <Input>
<Demux>

Fig. 2. COIN gateway design: processing requests

allowing secondary gateways to route the response back to-

wards the consumer. Conforming to such forwarding policies,

COIN can provide a seamless interoperation across domains,

without having to change existing infrastructures.

F. COIN Gateways

A COIN gateway translates requests for information re-

ceived from one domain to a request meaningful in the

adjacent domain (and similarly for responses). We design

and implement the interface to each distinct domain as a

“pluggable adapter” on the gateway in each direction. We

choose to translate the incoming request or the headers of

the response to an “internal” canonical form (IV-C).

Incoming request processing involves recognizing whether

the request is for static or dynamic content. For NDN, a

request with a specific version is seen as a request for dynamic

content while a request with just a prefix (and exclude) is for

static content. For HTTP, we use POST and GET methods

as dynamic and static content respectively. It also determines

the destination domain based on the “Host” field in case of

HTTP, the destination GUID in MF, and the domain prefix

in NDN. The opaque string (from the originating domain’s

perspective) that is the name on the destination domain will be

extracted from the request (marked as the field “<Name>” in

Fig.2. For dynamic requests, the incoming request processing

recognizes the body of the POST in MF and HTTP, and the

penultimate component of NDN name, as the request input.

The demultiplexing entity (“<Demux>”) depends on the

different cases. For static content requests, we use the tu-

ple <domainName, contentName, exclude>. For dynamic

content requests, we use client <IPaddress, port> (socket)

for HTTP case, client <GUID, reqID> in MF case and

<clientID, reqID> in NDN case.

The incoming request processing results in an internal

canonical request (orange boxes in Fig. 2). The gateway

can respond to requests for static content from the local

cache, aggregate requests for the same static content (with

same exclude) or consume them. The remaining requests (in

canonical form) are sent to the “switching fabric”, where

inter-domain routing determines the forwarding to the proper

outgoing request processor. The outgoing request processing

forms a domain-specific outgoing request.

When the response returns, the gateway matches it based on

the state information and forwards the content to all the pend-

ing requests waiting on this key (similar to matching a PIT

���

���

���

���� 	
���

��
���

���	
���

�������������

������������

�������������

�����
�����

��

��

��

�����	�����

����	

���	�� �����

!�
��
������

�� �

"

�
���

�������

�

"#

�	
��
��

�	
��
��

��	������

���	���	��

������������

�

�

�

$

Fig. 3. A schematic view of object resolution and content retrieval in COIN

entry in NDN). This enables native multicast, similar to NDN.

We use the “Last-modified” field in HTTP and MF and the ver-

sion field in the NDN name as the version of the response. The

gateway sends the version using the domain-specific format.

G. Object Resolution

In COIN, an important step in requesting a piece of content

residing in another domain is to acquire the content’s name and

the ID of the domain it is in. This is achieved using an Object

Resolution Service (ORS). ORS is an application-layer search

engine that: 1) returns names for keyword queries, and 2)

leverages a combination of crawling, registration and indexing

methods to gain and store knowledge of content names. This

way, ORS plays the same role that today’s popular search

engines, e.g., Google or Bing do. More specifically, today’s

single-domain search engines could be considered as a special

case of ORS. ORS has to additionally take both the content’s

and consumer’s domain(s) into account: it has to provide the

content domain ID in its query result, presented in a format

understandable in the consumer domain (and thereby by the

consumer). This is an important design choice, as having

ORS servers that understand multiple domain languages avoids

having all data providers/servers in the world learn the other

domains’ languages. There has been prior work on ORS in

ORICE [15], which we use and extend in COIN.

Fig. 3 shows a high-level schematic view of the object

resolution procedure. There are three domains with different

network architectures D1, D2, and D3, with three COIN gate-

ways stitching them together. The consumer, object resolution

server O, and content repository for content C reside in D1,

D2, and D3 respectively. We put the consumer and the ORS

server O in two different domains to show a more complicated

scenario; normally, D1 could have an ORS server too which

the consumer can ask without having to go across domains.

The consumer generates a query for keyword (phrase) K,

asking ORS O in D2. Identifying the ORS’s name and its

domain are important to make sure that the query goes to the

right gateway. Although the figure only shows the information

at a high level, the specific formats depend on what the domain

is. For example, if the consumer is in an IP domain, he will

perform a DNS lookup on “D2”, obtaining the IP address of

GW1. In NDN, the consumer will send a packet with prefix

“/D2/O/”, which will be directed to GW1 (GW1 has already

announced and registered itself as “D2” in D1). The consumer

also specifies that he is in D1; so O generates the result in

a format understandable to a user in D1. With the help of

GW1’s translation and state-maintenance, the query can reach

O and its result sent back to the consumer. Some packet-level

details, such as demultiplexing keys are omitted in the figure.

More on protocol exchange details are in §IV-H (ORS query

is an example of a dynamic content retrieval).

Upon receiving the consumer’s query, O searches for K

in its database of indexed content names and their domains

(including content in D3). The way this database is managed

is similar to today’s search engines’ crawling and registration

methods; more details are provided in [15]. Assume K hits one

entry with a content named N in domain D3 (for presentation

simplicity, we assume only one item in the result, while

in practice there can be many more). O generates a result

combining D3 and N (“D3+N” in Fig. 3), formatted for D1.

What N looks like depends on the naming structure of D3;

but the formatting of the result depends on the semantics of

D1. For example, if both D1 and D3 are in an HTTP/IP

domain (as in today’s Google search), then N would be a URL

(e.g., “abc.com/def”), formatted and presented to the consumer

as “http://abc.com/def” (no indication of D3 is needed for

same-domain pairs). As another example, if D3 is MF, then

N would be a content GUID (e.g., “1234”). If D1 is NDN,

then the result would be the enriched name “/MF/1234”. More

combinations are described in [38].

After gathering the result, the consumer generates a request

for the content itself, using the acquired name N combined

with D3, getting routed to GW2. Note that for this purpose,

the consumer’s own domain ID is not needed, since the

repository returns content C (named N), not knowing (and

not needing to know) where the consumer resides.

While at first glance, it may seem a burdensome task to

acquire names through the ORS for content requests, it follows

the pattern that users use on the Internet today in practice

[15]. For example, most often, retrieving a webpage for the

music video of the 2017 song “Despacito”, is proceeded by

a (Google) search such as for “Despacito music video”. ORS

in COIN plays the same essential role as the search engine. It

is also worth mentioning that ORS is a service which can be

provided by many entities (as we have Google, Bing, etc.) and

each can have many physical servers. We believe ORS is an

important, convenient service to deploy by ISPs or third-party

entities, and provides benefits for interoperability.

H. Protocol Exchange

To illustrate the translation-based exchange for interoperat-

ing across multiple domains, we use a 3-domain setting where

a consumer residing in an NDN domain wishes to receive

content from a server/producer residing in an MF domain,

with an IP domain in the middle (Fig. 4). We examine two

cases: dynamic content retrieval (DCR) using the example of

ORS (Fig. 4(a)); and static content retrieval (SCR, Fig. 4(b)).

The three different architectures take care of content naming

at different domain-specific layers: the HTTP application layer,

Consumer C GW1 GW2 ORS
NDN IP/HTTP MF

INTEREST. /MF/ORS/C.ID/ReqID

Keywords=icn&Domain=NDN

+ (C.ID, ReqID��^�
�sä����

Src: GW1.IP, GW1.Port,

Dst: GW2.IP, GW2.Port

POST /ORS Host: MF

Keywords=icn&Domain=NDN

ª��
�sä��á�
�sä������^�ReqIDï

Src: GW2.GUID, Dst: ORS.GUID

POST /ORS

Host: MF

Keywords=icn&Domain=NDN

&ReqIDï

Generate query results for C

Src: ORS.GUID, Dst: GW2.GUID

HTTP 200 OK

Last-modified: 2019-08-urå

ReqIDï

<ip> ccnx://IP/Con.URL </ip>

<ndn> ccnx://Con.Name </ndn>

<mf> ccnx://MF/Con.GUID </mf>

�����������
�sï�������

Src: GW2.IP, GW2.Port,

Dst: GW1.IP, GW1.Port

HTTP 200 OK

Last-modified: 2019-08-urå

<ip> ccnx://IP/Con.URL </ip>

<ndn> ccnx://Con.Name </ndn>

<mf> ccnx://MF/Con.GUID </mf>

������������ï�������

DATA: /MF/ORS/C.ID/ReqID/=00

<ip> ccnx://IP/Con.URL </ip>

<ndn> ccnx://Con.Name </ndn>

<mf> ccnx://MF/Con.GUID </mf>

(a) Dynamic content retrieval (object resolution example)

Consumer C GW1 GW2 Producer P
NDN IP/HTTP MF

INTEREST: /MF/Con.GUID

Ex (B,=FD0590EB370000,

=FE000000000000,B)

+ IntName+Exå^�
�sä����

Src: GW1.IP, GW1.Port,

Dst: GW2.IP, GW2.Port

GET /MF/Con.GUID

If-modified-since: 2019-08-30

20:00:00

+ (GW1.IP, GW1.������^�Con.GUID

Src: GW2.GUID, Dst: Con.GUID

GET /ReqID

Host: MF

If-modified-since: 2019-08-30

20:00:00

Generate data response for C

Src: Con.GUID, Dst: GW2.GUID

HTTP 200 OK

Last-modified: 2019-08-30

23:59:00

ID: ReqID

DATA

�����������
�sï���������

Src: GW2.IP, GW2.Port,

Dst: GW1.IP, GW1.Port

HTTP 200 OK

Last-modified: 2019-08-30

23:59:00

DATA

������������ï���������

DATA: /MF/Con.GUID/

±±	�rw{å�±rr

DATA

(b) Static content retrieval

Fig. 4. Protocol exchange across 3 domains

in IP; network layer in NDN; and either HTTP or network

layer in MF. When a client generates an NDN Interest, to

enable correct translation, we use the destination domain ID

in the name. To distinguish between DCR and SCR, we use

POST and GET methods in HTTP respectively; we check the

existence of Exclude or Input in NDN Interests. For DCR

(Fig. 4(a)), the retrieved response should not be from a cache,

since the current server-generated response is desired. This

requires individual requests to be distinguishable (globally

unique), to have the correct response-to-request mapping at

the servers and gateways, including even those made by the

same client. In TCP/IP, client IP and port numbers provide

this demultiplexing capability. For NDN and MF, we introduce

a unique Request ID (ReqID) generated by the consumer or

gateway. The ReqID can be a component of the DCR Interest

name in NDN, and part of the request payload in MF. Gate-

ways create state (marked as ‘+’ in the Fig.) associated with

each outgoing request, and maintain state for demultiplexing.

For example, in Fig. 4(a), the mapping on an NDN-to-IP

gateway is a 3-tuple of <Client ID, Request ID, GW1 port

number>. When the response data is returned, the gateway can

find the corresponding request based on its port number (which

is the source port number that was previously used to connect

to GW2) in the response. As can be seen in Fig .4, using

domain-specific naming, in-network caching can be supported

and provide benefits, in COIN. Although we show 3-domain

examples here, details and protocol exchange scenarios for all

possible 2-domain cases are provided in [38].

I. Security

Securely bridging communication across different network

architectures that have different security models and mecha-

nisms seamlessly, without significant changes to the individual

architectures is challenging. We aim to unify different security

models across the architectures. They may be classified as

being either channel-based (for host-centric networking e.g.,

IP), or content-oriented (for ICNs). The fundamental distinc-

tion between the two security models lies in the relationship

between the “name” layer (content retrieval functionality)

and security layer (ensuring confidentiality, provenance, in-

tegrity, etc.) functionality in the service layer (§IV-A). With

connection-oriented security the security layer (TLS/SSL) op-

erates below the name layer (HTTP). Interoperability gateways

do not have access to information such as keys, as they are

encrypted. For interoperability, the gateways have to decrypt

the information exchanged to get the name and other features

required for content retrieval. In contrast, content-oriented

security may just encrypt the data (payload) and leave the

content-retrieval headers (e.g., NDN/MF headers, including

content names) in the clear. Thus, gateways can reformat the

headers without modifying or having to access the payload.

COIN supports a number of mechanisms to unify access to

information across these two security models. We focus on

two important security use cases of COIN: Encryption (to

ensure confidentiality); and Signatures (to ensure provenance

and integrity). The mechanisms presented here are security-

enhancements to protocol exchange presented in §IV-H.

1) Encryption: Encryption prevents unauthorized network

nodes (including eavesdroppers) from accessing confidential

content. The common approach to achieve this is to encrypt

the data (e.g., RSA and ECC [39]) or encrypt the channel

between the data consumer and producer (e.g., HTTPS). The

producer and a (set of) predefined (authorized) consumer(s)

have to agree on a common encryption mechanism. We focus

on content retrieval across compositions of content-oriented

(ICN) and channel-based (IP) security models, with endpoints

having the same security model, and when they are different.

Case 1: Both endpoints with content-oriented security

model, and intervening domains with channel-based se-

curity. We consider a scenario with a consumer and pro-

ducer in two separate NDN domains using content-oriented

security, and an IP domain in between using channel-based

security. Fig. 5 shows COIN ’s encryption-enhanced protocol

exchange for this case. With both the consumer and producer

using content-oriented encryption, the authorization informa-

tion (authC) and Data would be encrypted when travers-

ing the gateways. The authorization information can be the

consumer’s public key (pubC), following a priori consumer-

producer consensus on the authorization mechanism. The gate-

ways simply translate between NDN names and HTTP/HTTPS

URLs, without needing to decrypt and/or re-encrypt authC or

Data. Thus, COIN ensures end-to-end confidentiality.

Case 2: Either endpoint with channel-based security

When at least one of the two endpoints (consumer and/or

producer) uses channel-based security (e.g., HTTPS) and the

other(s) use content-based security, gateways would then need

to re-encrypt the data retrieved in one domain to provide con-

fidentiality while delivering the content to the other domain.

Consumer C GW1 GW2 Producer P
NDN IP/HTTP(S) NDN

INTEREST:

/<Con.Name>/<authC>
INTEREST: /<Con.Name>/<authC>

200 OK

Enc(Data, authC)

DATA: /<Con.Name>/<authC>

Enc(Data, authC)

DATA: /<Con.Name>/<authC>

Enc(Data, authC)

Verify authC,

and Encrypt Data

Decrypt Data

GET https://<Con.Name>

Authorization=<authC>
1

2

3

4

5

6

7

8

Fig. 5. NDN/IP/NDN encryption

Consumer C GW Producer P
IP NDN

INTEREST:/<Con.Name>/Enc�òID

:abc&Pass:defóá�pubP)/���ïGW

200 OK

TLS(pubC, pubGW)

Enc(Data, authC)

DATA:/<Con.Name>/Enc�òID

:abc&Pass:defóá�pubP)/���ïGW

Enc(Data, ���ïGW)

Decrypt with its private key priP,

And verify ID, Pass

Decrypt Data

GET <Con.Name> HTTP/1.1

Authorization = ID:abc, Pass:def

TLS(pubC, pubGW)

Decrypt with ���ïGW,

and re-encrypt

1

2

3

4

5
6

7

Fig. 6. IP/NDN encryption

COIN’s gateways borrow ideas from the popular state-of-the-

art solution of HTTPS proxies. The gateway has to decrypt the

HTTP header inside a TLS connection, in order to discover

the content name (URL). The gateway acts as a proxy, trusted

by both consumer and producer. We believe this is acceptable,

as it is a well-established practice to trust HTTPS proxies.

Unlike Case 1, COIN ’s mechanism in Case 2 decouples

encryption and authorization, to allow composition of two

different security models of the end points: An HTTP/IP end

point achieves this by using the HTTP header “Authorization”

field, or Web-based authorization (the consumer provides the

username and password, which are carried in the HTTP request

body). The producer can then verify the authorization.

Fig. 6 shows an example for this case with a gateway

between HTTPS/IP and NDN. The consumer in the IP domain

requests the content as if the gateway is an HTTPS proxy,

by establishing a secure connection to the gateway using the

public key of its own (pubC) and the gateway (pubGW)

(Diffie-Hellman key exchange in TLS). In the HTTP header

(or body) over the TLS connection, the consumer sends the

content name and the authorization information (username

and password in step 1 in the Fig., or alternately the public

key of the consumer). The gateway creates an Interest in the

NDN domain. We make minor modifications to the name

in NDN (to provide the authorization), using the format

“/name/authC /encrypt”, to provide the producer with the

needed information for authorization and encryption. In the

Fig., the gateway encrypts the authorization information with

the public key of the producer (pubP) and uses its own public

key (pub′
GW

). The gateway could use different key pairs (e.g.,

pub′
GW

and pubGW) for the two different domains (step 2).

For MF, the request packet format would include a new field

for the authorization information. When the field is not set,

authorization information is used as encryption information,

as in Case 1. On receiving the request, the producer will

decrypt it using its own private key and verify the authorization

information (step 3). Upon verification, the producer sends

the NDN Data packet (to the gateway) whose payload is

Data, encrypted by pub′
GW

(step 4). The gateway decrypts

the data with its own private key pri′
GW

(step 5) and sends

the data over the TLS connection to the consumer (step 6).

The consumer can then decrypt and access the data (step 7).

The reverse, ICN-IP scenario, would follow a similar pattern.

2) Signatures: In the scenario where the producer allows

the content to be shared with anyone in the network. The

consumers need to verify that: 1) the data is coming from a

trusted producer (provenance) and 2) no one on the path has

tampered with the content (integrity). To ensure the integrity of

the content, a cryptographic hash function (e.g., MD5, SHA-

1, SHA-256) can be applied to the data and announced to the

consumer. Provenance is verified by a digital signature: the

hash encrypted by the private key of the producer (e.g., RSA

signing, ECDSA, EdDSA [40]). The consumer can decrypt the

signature with the public key of the producer, and compare

the result with the hash of the content, possibly followed by

some trust schema [20]. For interoperability across different

domains, it is highly likely that the consumer may not under-

stand the producer’s signature algorithm or the trust schema (or

both). To overcome this, COIN takes advantage of transitive

trust [41] with domain-by-domain signatures: the gateway on

the producer side verifies the provenance and integrity of the

data on behalf of the consumer and re-signs data with its own

private key for the next domain. The consumer verifies (and

trusts) the last hop gateway.

Fig. 7 shows an example of our solution spanning 3 do-

mains. After receiving the request, the producer will sign the

data (D) with its own private key (priP) based on the signature

algorithm in the domain (SAMF). On receiving the content,

GW2 will verify the provenance and integrity using the public

key of the producer (pubP) on behalf of the consumer, since it

understands the signature algorithm and can also utilize local

certificate authorities (CAs) to check its trustworthiness. Once

GW2 confirms that the content is trustworthy, it will re-sign

the data with its own private key (priGW2) using the signature

algorithm in the IP domain. GW1 will thus trust the producer,

since it trusts GW2 (due to transitive trust). Once the signature

is verified using GW2’s public key, GW1 will forward the

data to the NDN domain and sign the content using its own

private key. Since the consumer trusts GW1, it concludes that

the content is trustworthy.

3) Denial of Service (DoS) Attacks: While request aggrega-

tion and content caching alleviate COIN from some negative

impacts of excessive request and response processing load

(that is benign) on gateways, malicious DoS (and DDoS)

attacks can impact gateways’ availability. IP and ICN domains,

with different security models, can be the source of different

DoS attacks, such as bandwidth depletion and reflection at-

tacks in legacy IP domains [42]. With ICN’s content-oriented

security models, DoS attacks manifest themselves mainly as

Interest flooding (too many malicious requests for non-existing

content) and content/cache poisoning (responding with fake

Consumer C GW1 GW2 Producer P
NDN IP/HTTP(S) MF

INTEREST: /MF/<Con.GUID> Src: GW2.GUID, Dst: Con.GUID

200 OK

data: D, sig: Sig(priGW2, D, SAHTTPS)

Src: Con.GUID, dst: GW2,

data: D, sig: Sig(priP, D, SAMF)

DATA: /MF/<Con.GUID>

data: D, sig: Sig(priGW1, D, SANDN)

Sign data D with producer

private key priP using

domain-specific signature

algorithm (SA) of MF

GET /MF/<Con.GUID>

HTTP/1.11

2

3

4

5

7

9

Verify sig on D using

public key of P
6

Verify sig on D using

public key of GW2
8

Verify sig on D using

public key of GW1
10

Fig. 7. NDN/IP/MF signatures

or corrupted content) [43]. In COIN, each domain retains its

own security model and mechanisms, to allow development

of countermeasures for attacks meaningful in its own domain.

Thus, in COIN, DoS attacks in a domain are contained within

that domain. For example, with Interest flooding, excessive

requests will be dropped at or before the ICN-border gateway

(through mechanisms such as statistic-based rate limiting [43],

[44]). Similarly for content poisoning, with the proper use

of content-oriented signature validations, fake or corrupted

content will be detected and discarded at or before the first

gateways it encounters.

V. EVALUATION

For evaluation, we use a representative implementation

for each domain: CCNx v0.8.0 (it contains all the essential

components of NDN needed for our framework); the latest

version of MobilityFirst project [45] for MF domain; and a

basic Linux implementation of IP forwarding. The implemen-

tation of COIN, including all its essential components such as

gateway and adapter modules are available in [16] as proof

of concept. We experimented on various combinations and

settings, and observed COIN’s ability to satisfy its design goals

(§III-A), especially its ability to preserve each domain’s key

features (as explained in more detail in §IV-I3). While there

are a number of aspects to consider including correctness,

user convenience, deployment flexibility etc., we focus on the

performance of COIN here (we have proved the correctness

of the proposed translation procedures in [46]).

A. Forwarding Efficiency

To evaluate the forwarding efficiency of the implementation,

we set up a testbed with five VMs with the topology as

“C↔R1↔GW↔R2↔P ”, in which client C and router R1

are in domain D1, and content provider P and router R2 are in

domain D2. Node GW , an implementation of COIN gateway,

is in between the two domains and performs translation. Each

VM has 1GB memory and runs Ubuntu 14.04. With cases of

domains D1 and D2 being both distinct (i.e., interoperation

scenarios) and same (i.e., native scenarios), we evaluated

all 9 combinations (each being IP, NDN, MF). In native

scenarios, GW is replaced by a regular router, with the same

configuration as R1 and R2. We tested functionality with a

3
6

7
.5

0

3
6

3
.2

5

7
2

.7
5

6
4

.5
0 3

5
6

.5
0

3
5

0
.7

5

8
.2

5

0
.1

0

1
0

.5
0

5
.5

0

2
.5

0

0
.1

8

2
.5

0

1
2

.2
5

1
1

.5
0

9
.7

5

1
0

.2
5

6
.0

0

1
.7

5

2
.0

0 5
.0

0

5
.7

5

9
.5

0

5
.2

5

0.1

1

10

100

1000

NDN-MF MF-NDN IP-MF MF-IP NDN-IP IP-NDN

L
a

te
n

cy
 (

m
s)

Scenarios

Overal Response Provider Service

GW Request Processing GW Response Processing

(a) Interoperation scenarios (different domain types for D1 and D2)

37.00

324.00
155.25

3.75

0.10

22.00

0.1

1

10

100

1000

IP-IP NDN-NDN MF-MF

L
a

te
n

cy
 (

m
s)

Scenarios

Overal Response Provider Service

(b) Native scenarios (same domain types for D1 and D2)

Fig. 8. Latencies (static content retrieval): total response, content provider,
gateway request and response processing (logarithmic axes). Note that there
are no gateways (and thus gateway latencies) in native scenarios (b).

client asking for content residing in a remote domain of a

potentially different architecture, and getting the content back.

Fig. 8 shows the latencies measured for requests for static

content. The overall content retrieval time (response time) at

the consumer, the provider’s service time and gateway process-

ing time for request and response (averaged over several runs,

discarding outliers), are shown. Note the difference in the y-

axes of the different bars in the figure. As shown in Fig. 8(a),

the processing time at the gateway in interoperation scenarios,

including reformatting and maintaining state between the two

domains, while not negligible, is reasonable for an initial

software implementation. The gateway contributes between 4-

19 ms of processing delay, compared to the total response time

of 60-360 ms, in this small-scale topology. The gateway con-

tributes a relatively small portion of the overall response time,

especially in the ICN cases. It should be noted that the higher

response time observed whenever one side is NDN, is not due

to the interoperability gateway, but rather the NDN logic itself:

the client waits for sending a second query to ensure it has

received the latest piece of content. In fact, we observed a

response time of ∼300 ms for NDN→NDN on our testbed.

This is seen in Fig. 8(b) as well, which shows the latencies for

native scenarios, i.e., those with same domain types throughout

the topology, with no COIN gateways. Our results show that

the overhead of COIN’s forwarding is reasonably small.

B. Scalability

We use the ORBIT testbed [47] to evaluate the scalability of

COIN. ORBIT is a network of 400 nodes in a grid topology.

0

5

10

15

0

100

200

300

400

500

0 1 2 M
em

o
ry

 c
o
n
su

m
p
ti

o
n
 (

M
B

)

#
 o

f
re

q
u

es
ts

Time (s)

Req. from Consumer

Req. to Provider

Memory consumption

20 per. Mov. Avg. (Memory consumption)

(a) Dynamic content retrieval

0

5

10

15

0

100

200

300

400

500

0 0.5 1 1.5 2 M
em

o
ry

 c
o
n
su

m
p
ti

o
n
 (

M
B

)

#
 o

f
re

q
u

es
ts

Time (s)

(b) Static content retrieval

Fig. 9. Scalability: memory consumption and number of requests

Each machine has 4GB memory and runs Ubuntu 14.04.

We run each router (forwarding engine), provider, consumer

and gateway on separate physical nodes. In our topology,

we included 50 consumers (in one domain), 1 provider (in

another domain) and 1 gateway. The consumers are connected

to the gateway via a pre-configured access network. Our server

stalls the response to each request for 3 seconds to batch

more requests on the gateway (especially for NDN, and 3 sec.

because the request timeout time in NDN is ∼4 sec.)

We measure the amount of state stored in the gateway

(memory consumption) vs. different numbers of requests from

consumers. The implementation is in Java, which has auto-

mated memory management. We call garbage collection very

frequently during run-time to get a better estimate of memory

consumption. This would make our gateway slightly slower

compared to production use. We evaluate the requests to

static and dynamic content separately. Only the results of the

experiments for IP→NDN is shown in Fig. 9.

Evaluation for dynamic content: We have 50 clients send-

ing 328 dynamic content requests simultaneously. Fig. 9(a)

shows the instantaneous memory consumption (and moving

average over 20 values) vs. the number of incoming and

outgoing requests for this scenario.

Since consumers request dynamic content, we do not see

any aggregation at the gateway – each request from the client

results in a distinct request to the provider. Therefore, the

incoming and outgoing request values are very close to each

other in the Fig. We observe that the memory consumption

grows linearly with the number of incoming requests since

we keep the states for each request.

Evaluation for static content: Clients make 328 requests

spread across 100 static content items simultaneously. The

popularity of the content follows a Zipf distribution with

α=0.81. [48] shows that this is a realistic content demand

model. The server still waits 3 seconds before sending the

response to allow request accumulation. Fig. 9(b) shows the

results. Since we keep the state on the gateway, we can aggre-

gate multiple requests for the same content (name). Therefore,

the number of requests arriving at the provider is smaller than

the number of requests generated by the consumers. The mem-

ory consumption grows sub-linearly relative to the incoming

requests. The memory consumption is also lower, compared

to that of dynamic content for the same number of requests.

We ran the same experiments in other domain combinations

(NDN→IP, MF→NDN, etc.) and saw similar results. Although

keeping per-session state puts additional burden on the gate-

ways (state grows with number of flows), it is analogous (and

no worse than) maintaining PIT state at an NDN router. Since

COIN allows request aggregation and content caching at the

gateways, this interoperability framework scales better.

VI. CONCLUSION

This paper proposes COIN, a content-oriented interoper-

ability solution as a pragmatic approach to manage evolution

towards future Internet architectures. COIN does not change

existing architectures (of IP and different ICNs), preservers

and uses their key features, enables their co-existence, and

is flexible for extensibility and evolvabaility. Through various

scenarios and experiments, COIN was shown to make essential

content-oriented services (static and dynamic content retrieval)

available to consumers across multiple domains, with reason-

able efficiency. While we acknowledge that there are many

other scenarios and services to consider, especially in the Inter-

net context, we believe COIN is a good starting framework for

managing seamless interoperability among multiple domain

types of future Internet architectures.

VII. ACKNOWLEDGEMENTS.

This work was supported by the US Department of Com-

merce, National Institute of Standards and Technology (award

70NANB17H188) and US National Science Foundation grants

CNS-1455815 and CNS-1818971.

REFERENCES

[1] M. Ammar, “Ex uno pluria: The service-infrastructure cycle, ossification,
and the fragmentation of the internet,” SIGCOMM CCR, 2018.

[2] J. McCauley et al., “Enabling a permanent revolution in internet archi-
tecture,” in SIGCOMM, 2019.

[3] “NSF Future Internet Architecture Project,” http://www.nets-fia.net/.
[4] V. Jacobson et al., “Networking Named Content,” in CoNEXT, 2009.
[5] L. Zhang et al., “Named data networking,” ACM SIGCOMM CCR,

vol. 44, no. 3, 2014.
[6] D. Raychaudhuri et al., “Mobilityfirst: A robust and trustworthy

mobility-centric architecture for the future internet,” SIGMOBILE, 2012.
[7] T. Koponen et al., “A data-oriented (and beyond) network architecture,”

in SIGCOMM, 2007.
[8] D. Naylor et al., “XIA: Architecting A More Trustworthy and Evolvable

Internet,” SIGCOMM CCR, 2014.
[9] C. Dannewitz et al., “Network of information (netinf)–an information-

centric networking architecture,” Computer Communications, vol. 36,
no. 7, 2013.

[10] N. Fotiou et al., “Developing Information Networking Further: from
PSIRP to PURSUIT,” in BROADNETS, 2012.

[11] R. Ravindran et al., “5g-icn: Delivering icn services over 5g using
network slicing,” IEEE Communications Magazine, vol. 55, no. 5, 2017.

[12] S. O. Amin et al., “Leveraging icn for secure content distribution in ip
networks,” in MM, 2016.

[13] R. Tourani et al., “Security, privacy, and access control in information-
centric networking: A survey,” IEEE communications surveys & tutori-

als, vol. 20, no. 1, 2017.
[14] G. Zhang et al., “Caching in information centric networking: A survey,”

Computer Networks, vol. 57, no. 16, 2013.
[15] S. S. Adhatarao et al., “ORICE: An Architecture for Object Resolution

Services in Information-Centric Environment,” in LANMAN, 2015.
[16] “COIN,” https://github.com/SAIDProtocol/ICNInteroperability.
[17] S. S. Adhatarao et al., “Comparison of Naming Schema in ICN,” in

LANMAN, 2016.
[18] I. Moiseenko and D. Oran, “TCP/ICN: Carrying TCP over Content

Centric and Named Data Networks,” in ICN, 2016.
[19] K. Su et al., “Mftp: A clean-slate transport protocol for the information

centric mobilityfirst network,” in ICN, 2015.
[20] Y. Yu et al., “Schematizing trust in named data networking,” in ICN,

2015.
[21] S. K. Fayazbakhsh et al., “Less pain, most of the gain: Incrementally

deployable icn,” ACM SIGCOMM CCR, vol. 43, no. 4, 2013.
[22] S. Li et al., “Popularity-driven content caching,” in INFOCOM, 2016.
[23] M. Conti et al., “The road ahead for networking: A survey on icn-ip

coexistence solutions,” arXiv preprint arXiv:1903.07446, 2019.
[24] W. Shang et al., “NDN.JS: A JavaScript Client Library for Named Data

Networking,” in NOMEN, 2013.
[25] J. Chen et al., “Coexist: Integrating Content Oriented Publish/Subscribe

Systems with IP,” in ANCS, 2012.
[26] D. Trossen et al., “IP over ICN – The better IP?” in EuCNC, 2015.
[27] S. Shannigrahi et al., “Bridging the icn deployment gap with ipoc: An

ip-over-icn protocol for 5g networks,” in NEAT, 2018.
[28] L. Heath et al., “Clip: Content labeling in ipv6, a layer 3 protocol for

information centric networking,” in ICC, 2013.
[29] L. Popa et al., “Http as the narrow waist of the future internet,” in

Hotnets, 2010.
[30] G. Carofiglio et al., “Enabling icn in the internet protocol: Analysis and

evaluation of the hybrid-icn architecture,” in ICN, 2019.
[31] S. Wang et al., “On Adapting HTTP Protocol to Content Centric

Networking,” in CFI, 2012.
[32] F. Bronzino et al., “In-Network Compute Extensions for Rate-Adaptive

Content Delivery in Mobile Networks,” in ICNP, 2014.
[33] S. Luo et al., “Ip/ndn: A multi-level translation and migration mecha-

nism,” in NOMS, 2018.
[34] I. Moiseenko et al., “Communication Patterns for Web Interaction in

Named Data Networking,” in ICN, 2014.
[35] J. Crowcroft et al., “Plutarch: an argument for network pluralism,” ACM

SIGCOMM CCR, vol. 33, no. 4, 2003.
[36] M. Jahanian et al., “Graph-based namespaces and load sharing for

efficient information dissemination in disasters,” in ICNP, 2019.
[37] J. Chen et al., “COPSS: An Efficient Content Oriented Pub/Sub System,”

in ANCS, 2011.
[38] M. Jahanian et al., “Interoperability of ICNs and IP,” 2020, https://www.

cs.ucr.edu/∼mjaha001/ICI-TR.pdf.
[39] V. S. Miller, “Use of elliptic curves in cryptography,” in CRYPTO, 1985.
[40] R. van Rijswijk-Deij et al., “On the adoption of the elliptic curve digital

signature algorithm (ecdsa) in dnssec,” in CNSM, 2016.
[41] P. Resnick and R. Sami, “Sybilproof transitive trust protocols,” in EC,

2009.
[42] C. Douligeris and A. Mitrokotsa, “Ddos attacks and defense mecha-

nisms: a classification,” in ISSPIT, 2003.
[43] P. Gasti et al., “DoS and DDoS in named data networking,” in ICCCN,

2013.
[44] A. Compagno et al., “Poseidon: Mitigating interest flooding ddos attacks

in named data networking,” in LCS, 2013.
[45] “MF Software Release,” http://mobilityfirst.orbit-lab.org/wiki/Proto.
[46] M. Jahanian et al., “Formal verification of interoperability between

future network architectures using alloy,” in ABZ, 2020.
[47] “ORBIT,” http://www.orbit-lab.org/.
[48] S. Li et al., “Mf-iot: A mobilityfirst-based internet of things architecture

with global reach-ability and communication diversity,” in IoTDI, 2016.

