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The Goal of Internet Modeling

A real Internet instance Power-law: Frequency of degree vs. degree

I Find simple fundamental properties
I Understand why they appear and their effects
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What This Tutorial Is All About

1 What we do and don’t know about the Internet:
* Model the topology
» Analyze traffic and end-to-end behavior
» Examine effect of protocols traffic and topology
I How we can learn more:
« |dentify patterns
* Find clusters and correlations
« Detect irregularities
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Big Picture: Modeling the Internet

Routing, Congestion Control

I Measure and model each component
« Identify simple properties and patterns
1= Modeland:simulate theirinteractions
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Claim: We Need The Right Tools

“This is just not effective...
We need to get some chains”
The Far Side -- G. Larson
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What You Will Learn

I The state-of-the-art of Internet modeling
« Survey of models and literature

1 The current open questions
+ What kind of research is needed

1 Novel data-mining tools
+ Various useful less-known tools

D UNIVERSITYOF CALIFORNA

Rivmsie © M. and C. Faloutsos




Assumptions About The Audience

1 Undergraduate computer networks
I Science/Eng. math background

+ Matrices, linear algebra
I Brief explanations will-be provided

- D UNIVERSITYOF CALIFORNA

Rivmsie © M. and C. Faloutsos

" The Structure of This Tutorial

Part A: What we know and do not know
Topology (60) morning
Traffic (45")

Protocols (45 _ by Michalis

Part B: How to learn more afternoon
Classification and Machine Learning (45))

Time series analysis (45")
Novel data-mining tools  (90?) —by-Christos
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Motivation

1 We don’t know how to model the Internet

I We need realistic assumptions for simulations

I Questions of interest
+ Which topology should | use for my simulations?
+ How should | generate background traffic?
» How can | recreate realistic packet loss?
* How can | detect abnormalities?
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Oversimplified Tutorial Overview

1 We observe a mental switch in modeling
« Distributions: uniform — skewed, power-laws
+ Processes: memoriless Poisson — long memory
» Behavior: smooth — bursty

I We point at data mining tools for analysis
+ Classification trees and clustering
» Wavelets for time series analysis
« Singular Value Decomposition, a powerful tool
» Power-laws and fractals
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Part A: What We Know

General background and basic concepts
Section I: Topology

Section lI: Traffic and performance
Sectionilllz The effect of protocols
Conclusions
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General Background

1 Power-laws

I Fractals and Self-similarity
1 Long Range Dependence
I Burstiness
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What Is a Power-law?

1 Power-law is a formula:

where x,y variables and: a,c constants
1-A-power-law:is:a-line-in-log-log-scale:

logy =loga+clogx
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Example: A Fractal Line

1 4/3

Koch’s showflake (dimension = 1.28)
Repeat for ever:

- Introduce a bump at every straight line
Each:side is.identical-to-the initial line
Infinite detail, infinite length
More detail-in-part B
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The Definition of LRD

Given a signal X;

the autocorrelation function
r(k) is
1K) = E[(X) (X -] /02

If r(k) follows a power-law:
r(k) ~ kB

we say that the signal
exhibits LRD

\ ,.,y,l.‘ time

3
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Self-Similarity and Fractals

1 Objects of infinite detail
1 Self-similar:
A part is identical to the whole

I Scale-free:

Statistical properties are independent of scale of observation
I Infinite detail:

The closer | look, the more | see
I Power-laws are intimately related to fractals
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Long Range Dependence

1 LRD captures the “memory” of the behavior
1 It is quantified by a single scalar number
+ Hurst power-law exponent
1 LRD-appears:-in- many aspects of hetworks
« Traffic load, arrival times, delays, packet loss
I Issues:
+ How can we estimate the LRD
» How can we use LRD
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The Intuition Behind LRD

1 Capturing the “dependency” of the current
measurement to previous values

1 White Noise
1 Brownian Noise

1 Long Range Dependence
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. Fourier Transform . Time vs Frequency Domain

f_o base frequency

Af)=a,+ 2(% cos(QEAfot) +h, sin(Zﬂky’ot)) a_k bk ampliucke

1 Analyze a signal in the frequency domain

I Approximate a signal x(t) by sum of periodic 5 o 1/T
signals ;

1 Intuitively: think of the “equalizer in a stereo” | Frequency
» Decompose signal into frequencies

I More details in part B

I-A sinus-wave-corresponds:to-one-frequency.
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Example: A Fourier Transform Example: The Fourier Transform

300 350 400
Freque !

- A signal with four different frequency 5
components at four different time intervals.. . Eachipeak corresponds to a frequency of a
periodic component...
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 PartAl: Topology Motivation

1 General background and basic concepts |1 What is the topology I'should use in my
I Section I: Topology ©  simulations?

I Section II: Traffic and performance 1 How can I generate a realistic topology?
I Section llI: The effect of; protocols =1 Canl define a hierarchy?

I Conclusions i
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Why Is Topology Important?

“You can't resolve the traffic jam problem of
a city without looking at the street layout.”

I To conduct realistic simulations
I To.interpret measured-data
I To design and finetune protocols
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 Part Al Topology: Roadmap

1 Previous Models

1 Power-laws of the Internet topology

1 Time evolution

I Generating realistic topologies
I-An:Intuitive-model:-jellyfish

I Powerlaws in other communication networks

UNIVERSITYOF CALIFORNA

Rivmsie © M. and C. Faloutsos

~ Previous Topological Models

1 Models assume uniform distributions
+ All nodes have approximately the average degree
I Nodes uniformly distributed on a plane with

edge probability-decreasing:with:distance
[Waxman]

I Hierarchical structure of simple graphs
[Doar] [Zegura et al.]
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Overview of Topology

1 The topology is described by power-laws
 Forget uniform distributions

1 Growth of the network is super-linear

1 It is compact and becomes denser with time

I-The-Internet-looks like-a-jellyfish!
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Real Internet Graphs

1 Autonomous System (AS):
¢ Individually administered network
1 AS Level Topology: Each node is an AS
1 Router level: each node is a router
I We focus-on AS level graphs:
» Routeviews — NLANR: archive
+ More complete data: using multiple data repositories
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The AS Topology exhibits Power-laws

1 I. Degree of nodes vs. rank

1 Il. Frequency of degree (skip)

1 1ll. Eigenvalues-of-adj. matrix

1 1V. Pairs:of nodes within:h-hops

I Accuracy: correlation coeff. > 0.97

1 Recently: power-laws for:
+ Distances
+ Spanning Tree sizes
+ Scaling of multicast trees
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l. Power-law: rank exponent R

B82S @K -
@pl6 16576) {0746 ) —

Exponent = slope

Rank: nodes in decreasing degree order

1 The plot is a line in/log-log| scale
[Faloutsos, Faloutsos and Faloutsos SIGCOMM'99]
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ll.Powerlaw: Degree Exponent D

RouteViews - NLANR Data Newer More Complete AS graph

I Degree distribution-of nodes: CCDF
I It holds even for the more complete graph: 99%
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lll.Power-law: Eigen Exponent E

Eigenvalue

P3 Oragor
expi4.3031) “x™(-0.47734) ——

Exponent = slope

May 2001

Rank of decreasing eigenvalue

1 Find the eigenvalues of the adjacency matrix

I Eigenvalues in . decreasing order:(first 100)
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I. Estimations Using With Rank Exponent R

Lemma:

Given the nodes N, and an estimate for the
rank exponent R, we predict the edges E:

1 1

“2wen TN
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lll. Eigenvalues

"

4

——
Ne

3

I Let A be the adjacency matrix of graph
I The eigenvalue A is real number s.t.:
Av=2 v, wherevsome vector
I Eigenvalues are strongly related to topological
properties
I More details in Part B
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Surprising Resulit!

1 Exponent E is half of exponent D
1 Theorem: Given a graph with relatively large
degrees d; then with-high probability:
- Eigenvalue %; =V d; , where i rank of decreasing
order
I_Thus,.if we.compare the slope of the plot.the
eigenvalues and the degrees:
* logA; = 0.5 log d;
[Fabrikant, Koutsoupias, Papadimiitriou in STOC'01]
[Mihail Papadimitriou Random 02]
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~ Time Evolution of The Topology

1 Powerlaws are here to stay

1 Degree distribution slope is invariant
I Network becomes denser

I The rich get richer phenomenon

Mumber of Nodes

0 200 400 GO0 GO0 1000 1200 1400 1600
1997 time 2002

I The number of AS doubled in two years
I- Growth slows down!
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The Topology Becomes Denser!

T2siope” 5
; Recall six

degrees of
separation

Parcantage of nodas reached

e

800 800 1000 1200 1400 1600
400 600 800 1000 1200 | Day offset since Nov'97

Lol it e Novey I 6 hops reach approximately 98% of the network!
1. Denser: 6 hops:reach more nodes

. D UNIVERSITYOF CALIFORNA . D UNIVERSITYOF CALIFORNA

Rivmsie © M. and C. Faloutsos T . © M. and C. Faloutsos

_ The Rich Get Richer ~ The Origin of Powerlaws

*Evolution |

1 Preferential attachment of hodes [Barabasi Rekka]
1 Self Organizing Criticality [Bak:
+ The “steady state” of complex systems
1 Highly Optimized Tolerance [poyle Carison]:
+ Considering an element of design
I Heuristically Optimized Tolerance [Fabrikant et all:
+ Optimizing with local constraints

I The increase of the degree versus the initial degree
I New connections prefer “highly connected nodes”
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Powerlaw Graph Generators

I Preferential attachment, incremental growth:
+ Add new nodes favoring edges to high-degree nodes
« Linear preferentiality: p, = d;/ Sum, d,  [Barabasietal]
» Variations to linear preferentiality [Bu Towsley]

1 Powerlaw driven
+ Set each node with degree from desired degree

distribution

+ Connect nodes by their non-attached edges
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An Intuitive Model for the Internet

1 Can | develop a simple model of the AS
Internet topology that | can draw by hand?

I Can l'identify-a sense of hierarchy: in the
network?

Focus: Autonomous Systems topology

| - UNIVERSITY OF CALIFORNLA
B U ©M. and C. Faloutsos

RIVERSIE

Developing An Intuitive Model

1 We need an anchor and a compass
1 Anchor:
+ We need a starting point in the network

1 Compass:
« We want to classify nodes according to importance

- D UNIVERSITYOF CALIFORNA
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Powerlaw Graph Generators Il

I Heuristically Optimized Tolerance:
+ Distribute nodes in Euclidean plane
+ Add edges to minimize: D; + a G;
— D.: Path length from everybody else
— C;: Cost of building edge (f() of Euclidean distance)
+ Intuition: optimize hop-distance subject to local
constraints
« Initial distribution of nodes does not affect result
» [Fabrikant, Koutsoupias, Papadimiitrou in STOC’01]
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Core: High-degree nodes
form a clique

Each Layer: adjacent
nodes of previous layer

Importance decreases as
we moyve away from core
1-degree nodes hanging

[Tauro et al. Global Internet 2001]
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Defining the Importance of a Node

Metrics for topologically importance
Degree: humber of adjacent nodes
Eccentricity: the maximum-distance
of a:node to:any-other node
Effective: distance to 90%

Significance: Significant nodes are near :
= many nodes
» significant nodes

. D UNIVERSITYOF CALIFORNA
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: ~ Observation 1: Significant Nodes are”
- Significance of a Node _in the “Center”

1 The significance of a node is the sum of the Significance
significance of its neighbors
I The iterative procedure converges
At each round, total significance is normalized to 1
I Surprise! This is equivalent to:

+the eigenvector of the max eigenvalue of the adjacency matrix
[Kleinberg]

I Relative Significance: Normalize to-.sum up to'N
« Relative Significance = 1, fair share of significance

1 Significance vs.
Eccentricity
» Correlated

log relative significance

effective eccentricity

Eccentricity

BR[| Chveksimyor Catiioni] ¢ BR[| Chveksimyor Catiioni]
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~ Observation 2: One-Degree Nodes Are"” ~ Observation 3:The Internet “Premise”:”
- Scattered Everywhere - One Robust Connected Network

“data/md_ankD ——Random

#Number P v o | Size of

" Largest —— Highest Degree first
order

: Connected Highest Significance

_ Component first order

“1-degree
_nodes

8
B
H
g
2
H
g
G
2
B

Order of decreasing | #Deleted nodes
degree |

s a power-law
I Robust to random, sensitive to focused failures

| 1 Important node connect with unimportant nodes
- I The network stays as one connected component
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. Observation 4: The Number of :
- Alternate Paths Between Two Nodes . Defining a Hierarchy Recursively

Number of paths

T . | 1 Define the core:
SHPI7 SB213) T x "7 { -3.0087) The Failure of the : = = = - -
Donut Model » Maximal clique of highest

degree node

I Define the Layers: @@

+ All nodes adjacent to previous

layer

I Define the Shells: ©®

Path Length ! = A layer without its one-degree
I Allialternate paths;go through the same direction | nodes

I No shortcutsorloop-arounds

log RCDF destribution of number of paths
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_ The Hierarchy: The Model Respects
| the Node Importance

I The importance of
nodes decreases as we
move away from the
core
The effective
eccentricity decreases

' ' by one in each layer

~ =
| Core Layer- Layer- Layer-~Layer- Layer- )
1 2 3 * 5 (see paper for details)

- Eff Eccentricity
- Log Relative Significance
-+ Log Degree

e,

R

| - UNIVERSITY OF CALIFORNLA
B U ©M. and C. Faloutsos

RIVERSIE

~ Why Is The Jellyfish a Good Model?

It’s cute, in;addition...
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And It Looks Like A Jellyfish...

1 Independent
Observation

1 Router Level
Topology

1 Produced by CAIDA
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@8/11/1997 W4/30/1998  O8/1/1998 O 11/30/1998| I The je“yﬁsh Iives On!

S B owen B 1 Percentage of node in
each class in time
I The structure of the
jellyfish has not
changed much:in the
last three years

% of total graph

GRS ISP UL S C RV
F 0010 o P % %
shell’lhang
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~ The Jellyfish Captures Many Properties

1 The network is compact:
+ 99% of pairs of nodes are within 6 hops
I There exists a highly connected center
» Cligue of high degree nodes
I There exists a loose hierarchy:
- Nodes far from the center are less important
I One-degree nodes are scattered everywhere
1 The network has the tendency'to be one
large connected component

. D UNIVERSITYOF CALIFORNA

RIVERSIE © M. and C. Faloutsos

Powerlaws In Other Networks

I Powerlaws appear in several other settings
1 Graph of www pages:
I Peer-to-peer networks:
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The Size of Web Sites

1 CCDF of the web sites

Outdegree: : Indegree: 5 5 A = 5
I I i — Ao
Links leaving } Links pointing - nfoseek according to size
page R | 1 . The page
:5;
- 3 I [Huberman Adamic]
1o° EEEEENRE LB nd.edu domain ¥
1e® 100 108 1 10t 10¢ 10' 167 10F 10t
ket ket 325K pages
1.5m links
1-Distribution-of-in=degree-and-out-degree-of-a-page: E A g i

| 1 Diameter of the web: 19 clicks Numaer of rages
- [Albert, Barabasi, Huberman, Adamic, Lawrence, Giles, Rajagopalan et -
B U E‘:{;‘;‘;:“"C”"M ©M. and C. Faloutsos U gﬁ,?muumu ©M.and C. Faloutsos

The Peer-to-Peer Topology Summary of Topology

1 The topology is described by power-laws
 Forget uniform distributions
1 Growth is slowing down (sigmoid)

. - I ltis compact and becomes denser with time
< I The Internet looks like a jellyfish!

[Jovanovic+]

I w " W
(a) Ginutella snapshot from Dee. 28, 2000 (|r{=0.94)

I CCDF distribution: Frequency versus degree
I-Number-of adjacent peers-follows-a-power-law
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~ What We Still Don’t Know _ Table Overview

1 Need comprehensive set of metrics
 Validate generators
» Assess realism of graphs

1 How topology affects
+ Simulations
« Traffic
* End-to-end Performance

1 How to use new understanding for protocol
design

: © M. and C. Faloutsos
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End of Topology Section
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The Accuracy-Intuition Space Of
Models

1 More tools...
+ Self-similarity
» Power-laws
+ Wavelets
+ Eigenvalues

...less intuition

» Something a human
Clueless can picture

Low Tl 1 Is it a real conflict?
Accuracy
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 Part A. What We Know

1 General background and basic concepts
1 Section I: Topology

1 Section lI: Traffic and performance

I Section lll: The effect of protocols
1-Conclusions
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The World Wide Web is a Bow-Tie

-
Strongly skl
In connected %

I Captures several properties [Tomkins et al]
I The components are of comparable size
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. Why Do We Need an Intuitive Model?
.1 Human mind is simple s“
" 1 Visualizable: creates a mental picture

1 Memorable: captures the main properties

I Maximizes information/effort ratio

I-Makes:you think
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Questions of Interest

I How should'| generate background traffic?
1 How can | recreate realistic packet loss?

1 How can | model end-to-end delay?

I How can | detect abnormalities?
1-What:is:the flow-matrix-like?
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Significance Overview Of This Section

I Need realistic assumptions for traffic 1 Long Range Dependence describes many
I Model the performance an application sees | dynamic phenomena

I Fine-tune end-to-end protocols - + Forget memoriless and Poisson processes
» Link trafficis LRD

+ Packet loss and round-trip delay exhibit LRD
I Estimating/ LRDiis tricky:

+ Common Pitfalls

« Step Towards a systematic approach

- TCP, RTP, playback buffer, real-time applications
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Previous Models For Traffic Statistical Behavior of Link Traffic

Poisson

1 Fundamental assumption: Memoriless i Aggregate behavior:

+ Only your current state affects your next state I Poisson becomes

: - : smooth
1 Poisson arrivals —
| Measured traffic is

I Systems modeled by Markov processes i always bursty
I-Advantage:-easier-to-study-analytically. i - Similar properties
I Problem: nature is not like this
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The Link Load is Self-Similar A Generator of Self-Similar Traffic

Normalized
Variance

005

”ﬂunqb% 1 Many ON-OFF sources

Real I I Times are heavy-tailed
“‘%%D%% : distributed
Poisson qzh%qﬂ ! ~ » Non-zero probability of long

00z 003

intervals
1 Yields:
* Long Range Dependence

Scale

I-Intuition=it-haslarge-variance-in-many:scales:of i fealbinich e s Al e
. Taqqu+, Riedi+]
observation [Lelland et al 93, 94]
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Why Is Traffic Self-Similar?

Nature works non uniformly

1 Applications/users are bursty

1 File sizes and requests are skewed [Crovela et al]
I Effect of topology and: TCP: [Feldman+]

I Not all-flows: are equal‘[sarvotham Riedi'et al]
= A few flows dominate a link (“Alpha flows”)

© M. and C. Faloutsos

Overall traffic connection Residual traffic
I The dominant flows are responsible for bursts

I The other flows exhibit long range dependence

Riedi Baraniuk+, INCITE project, Rice U.
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End-to-end Performance Metrics

1 How the application sees the network
1 End-to-end (e2e) refers to

+ One way.

+ Round trip
1 Metrics

» Packet loss

+ Delay: one way or Round-Trip-Time (RTT)

+ Delay jitter: inter-arrival time

UNIVERSITYOF CALIFORNLA]
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Web Traffic and Distributions

Sy

N\

Babeloa

Logl0(PPx])

Logl0P[X>x])

LR

o

ad

2 3 4 5 6
<45 -1 405 0 05 1 15 2-25 35 e
3 A ; )3 Log10(File Size in Bytes)

ion Tims in

Distr. Of Transmission Time Distribution of file requests by size

I Real Web traces
I Distributions are skewed [Crovelaetal]
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Part A.ll. Traffic: Roadmap

1 Background
1 Link traffic

I End-to-end performance
B Traffic Matrix

Rivmsie © M. and C. Faloutsos

Significance of End-to-End Metrics

I Round-trip-time (RTT):

+ TCP estimates RTT to set time-out for packet

retransmission

I Delay jitter:

+ Multimedia (RTP) uses jitter to tune playback-buffer
1 Packet loss:

+ Direct effect on TCP sending rate

« Define error recovery techniques in multimedia
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Identifying Long Range Dependence

1 Quantified by Hurst powerlaw exponent: H
* When 0.5 < H < 1, we have LRD
I There are several methods to “estimate” it
1 BUT, estimating LRD is not straightforward!
+ Many estimators, which often conflict
* No ultimate generator for calibration
* No systematic approach

- D UNIVERSITYOF CALIFORNA
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~ Our Approach To Understand LRD

Develop a library of behaviors of known data
»  Compare with results of known behavior

Three series of tests for the estimators:
Evaluating the accuracy of the estimators

« Synthetic Fractional Gaussian Noise (FGN)
Deceiving the estimators;with-non--RD:data
— Periodicity, Noise, Trend
Applying-the-estimators-on-real-data

» Characterizing delay and packet loss

[Karagiannis+ Gl 02]
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2. Robustness: Deceiving the
Estimators

I Periodicity fools many estimators

« The Whittle, the Periodogram, the R/S and the Abry-
Veitch falsely report LRD in series constructed by
cosine functions and noise.

1 White noise affects the accuracy
I Trend also deceives estimators
- Whittle and Periodogram falsely report LRD
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LRD: Coping in Unknown Territory

How accurate are the LRD generators?
How accurate are the estimators?
How conclusive are the estimators?

How.can |-look for LRD in real-data?
— Missing data, “noise”, indecision
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Accuracy: Synthetic LRD Data

——ABS * Large difference in
—=—Variance

P values!

Residuals

RS » The Whittle and
oo Periodogram are
—+—Veitch - Abry most accurate
» The rest can be
] significantly
05 06 07 08 09 095 099 inaccurate!

H Value of Generated Data

K
2
2=
=
T
k]
£
o

Fractional Gaussian Noise Paxson’s Generator
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3. Analyzing Real Data

1 Every 50msec send packet 400b
1 From:
+ UCR
» Cable modem, commercial ISP
I To:
 Australia, Un. Of LaTrobe
+ CMU
+ Greece, Aristotelian Un. Of Thessaloniki
I Packet Loss and Round;Trip Time (RTT)
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© timestamp

1 Enable us to control
» Sending rate, packet size and type
+ Four time-stamps (at server too)
I By M. Samidi, UCR
R. Venkataswaran, Tata Consulting Services
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In More Detail...

ZO0Mm;in more Z00m:in-even-more
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Analyzing Delay: RTT

Measured round trip
time: UCR-CMU
Initial signal does not
exhibit LRD

What do we do next?

| - UNIVERSITY OF CALIFORNLA
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UCR-Australia: Loss/sec
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I All estimators detect LRD: 0.5<H < 1
I But not the-same value of Hurst: 0.66.—0.89
1 This is as close as it gets

Rivmsie © M. and C. Faloutsos

A Closer Look at RTT

i Tl

I Is there a pattern?
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The Measured Data Is Periodic

sThere is periodicity throughout the dataset

Short-Time Fourier Transform Frequency Spectrum
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Practical Lessons

Be cautious when you deal LRD
* I LRD estimation and method must be reported

= 1 LRD may exist even:if all-:estimators do not agree

- I There is no “consistent-winner” estimator
| - We need to consult all of them
« If all find Hurst, then most likely LRD
1 Estimation-can be thrown off-by.
| * Noise, trend and periodicity
=1 Look at the plot
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The SELFYS Tool

1 A platform for development and reference

+ Java-based

* Modular

* Free [developed by Thomas Karagiannis, UCR]
1 Given atrace

» Cleans data

« Wavelet and Fourier analysis

* Runs all LRD estimators

http://swww.cs.ucr.edu/~michalis/PROJECTS/NMS/NMS. html
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The Periodicity Hides the LRD!

Variance Method

Measured

(periudiciiy)

i Without
_periodicity:
Estimated:
0.55 and 0.68
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Towards a Systematic Approach

I Goal: characterize the signal

1 Pre-process: clean data

1 Decompose signal

I Characterize each component separately
1-Useall'estimators

1 Compare results with those of known signals
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Part A.ll. Traffic: Roadmap

I Background

I Link traffic

1 End-to-end performance
I Traffic Matrix

© M. and C. Faloutsos

- D UNIVERSITYOF CALIFORNA
B/ wviwsie




1-104

Question of Interest Why Can’t We Measure Traffic Matrix?

1 Where are the sources and the receivers? I It is an open ended question

I Who communicates with whom? | 1 ltis affected by many parameters
I Can | identify clusters of users? © I ltis application dependent

I How: are the multicast members distributed? 1 Caching obscures things more
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~ Location of Web-Server Clients Network-Aware Clustering

I A success story [Krishnamurthy Wang 00] | N Cluster requests using routing data

I Question: Where are my clients? + Get BGP routing tables
» Look up client IP address

1 Motivation: i - Find longest match between address and database
- Install caches appropriately i « Cluster together clients with same match
« |dentify customer base and target advertising . [Krishnamurthy Wang 00]
- - | Routing Database
I Complication:

— 101.23.54.9 /8
+ Using first 3 bytes of IP addresses does not work!
101.112.1.1/16

101.112.21.16 /28

i © M. and C. Faloutsos RIVERSIDE
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Experiments The Clustering Data

1 The method works well
1 Experiments on wide range of Web servers
I Results

+ > 99% clients can be grouped into clusters

+ ~ 90% sampled clusters passed the validation

tests Olympic

Game

Millions of requests, tens of thousands of clients,

| 1:2 to 1:6 clustering
| Gnasmor | Gnasmor
- U m\;ﬁ?m ALIORL e R D m\;‘;‘f‘?o‘ LR ©M. and C. Faloutsos
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Distributions of Web Clients Are Skewed! The Inter-Domain Traffic Matrix

N .i":‘“ I Inter-AS communication [Fang Peterson Globecom 00]
ot TRep—— 1 Collected data Jan 1999:

small number of hosts;
959 of clusters contains| small number of requests:
90% of clusters issued 100K

Horieshost 90 o s i - vBNS: educational institutions
* MCI: Mae-West

Cumulative distribution of clients
Cumnulative distribution of requests

o001
g it Tooo —To000 T 10" 100 1000 10000 100000 o068 1e+07 Iov08

Number of clients in a client cluster Number of requests izhsl)xed by a client cluster
@
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_ Distribution of Data Flow Experience Suggests Skewness

1 Skewed distributions of senders and
destinations
Grouped by host pair | S
il Grouped by network pair i ¢ In space and in time
plal Crouped by AS pair ¢ 1 Skewed distributions of traffic intensity
. I Correlations: Groups of common interest
L R T * Le. gnutella destinations are probably sources of
%, of total flaws i quake video games and likely to be active in the night
1 9% of-AS:pairs is responsible for 86.7% of: i
packets

2
2
3
H
b
]
&
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~ Some Open Questions Table Overview

1 Traffic Matrix:

« Distribution of traffic among sources and receivers

» Models to generate realistic traffic matrices i

» Temporal and spatial properties of traffic i LRD, ON/OFF
I Multicast members: souress

* Location of members

+ Join and leave behavior

+ Is multicast state aggregatable? - Traffic Skewness | Comprehensive
Matrix of location | model,
- troubleshoot
YOFCA

| | Uviksiryor Cattrorais) arnei . I ALIFORYLA
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" Part A: What We Know

General background and basic concepts
Section I: Topology

Section lI: Traffic and performance
Section llI: The effect of protocols
Conclusions
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" Part A. lll: The Effect of Protocols

1 Some background

1 BGP and topology

1 BGP and routing

I BGP and routing robustness
+ The attack of the worms

I BGP and scalability:
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 What Is BGP?

1 Border Gateway Protocol, BGP version 4
I The de-facto inter-domain routing protocol
+ Uses TCP to communicate
+ Distance Vector style: neighbor exchanges
1 BGP'was developed to achieve:
* Flexible policy implementation
+ Scalability via route aggregation given CIDR
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Motivation

1 We want to know how protocols affect
* Traffic
» Performance
- Stability
I Dominant protocols:
« BGP: routing protocol (our focus)
» TCP: end-to-end flow control
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~ Questions of Interest

I How does BGP affect routing?
1 Will BGP scale?

1 How does the BGP table grow?
I How robustis BGP?
1-How:does:errors:-propagate?
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~ BGP Modeling Brings New Issues

1 Business policy is introduced in routing
1 Manual'and configurations errors
1 Routing: paths are “inflated due to policy

I Topology is;modeled;by a directed graph
- Provider — Customer
I Convergence and stability become aniissue

BGP is a hot research topic

- D UNIVERSITYOF CALIFORNA
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How A BGP Network Looks Like

AS 2 AS5 1 Each AS has
designated BGP
routers

BGP routers of an
AS communicate
internally with
another protocol
(IGP)

Recall: Autonomous System =
Independent:network

© M. and C. Faloutsos

IP Addresses and Prefixes

I IPv4 addresses have 32 bits: 4 octets of bits
© . 128.32.101.5 is an IP address (32 bits)
: 1 An IP prefix is a group of IP addresses
+ 128.32.0.0/16 is a prefix of the first 16 bits
+ =128.32.0.0 — 128.32.255.255 (216 addresses)
+ 128.32.4.0/24 is a longer prefix 24 bits
i1 Routing: find the longest match:
« P prefix in table that matches most bits of the address
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Part A. Ill: The Effect of Protocols

1 Some background
1 BGP and topology
1 BGP and routing

I BGP and routing robustness
+ The attack of the worms

I BGP and scalability:
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Routing Updates

1 BGP routers advertise to each other:
« IP prefixes and the related path
1 Three steps:
* Receive and filter an advertisement
» Change your table, if necessary
+ Forward change selectively
I If a neighbor does not respond:
« |nvalidate all related paths (remember this)

Rivmsie © M. and C. Faloutsos

I-124

What Does a Routing Table Look Like?

Origin S Path
AS

14 56 123

34101 203 123

I Origin AS “owns” the address
I Routing tables can have peculiarities and errors

Rivmsie © M. and C. Faloutsos

Basic AS Relationships

. 01 Customer — Provider: customer pays and is always right
. I Peer to Peer: Exchange traffic only between their customers
1 Sibling-Sibling: Exchange traffic at will

Rivmsie © M. and C. Faloutsos




I A directed jellyfish! [Ge et al ITCom 01]
+ Peers within a layer
+ Higher layer are providers of lower layer
» More layers than the undirected jellyfish

© M. and C. Faloutsos

Two Inference Algorithms

1 Inference algorithm [Gaoo0]
» Exploit the up-down path property
» in a path, assume highest degree node as peak
1 Inference using multiple observation points
[Subramanian et al 02]
» Use multiple points of observation to improve results
I Accuracy:
» Fairly good but needs further investigation
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Provider

Peer

I Routing rules: 1. Path Properties:
= Provider accept everything » Up then down

» Peeronly if it is for its » No up-down-up, at most 1
customers peer-peer steps
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Determining The Logical Graph

1 The business relationships are critical

I How can I'find the relationships?
+ Infer relationships from routing tables
* IRR database: manually maintained — error prone

UNIVERSITYOF CALIFORNLA]
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Part A. Ill: The Effect of Protocols

1 Some background

1 BGP and topology

1 BGP and routing

I BGP and routing robustness
+ The attack of the worms

I BGP and scalability:
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1 25-20% of paths
are inflated by at
least one hop
» Compared to the

path on the

undirected graph
[Siganos et al 02]

percentage of paths.

25 3 35 4 45 5 55
relativa inflation
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Its Money That Matters... Policies And Routing Asymmetry

1 Sender pays up path @ Customerl 1 A Provider exports

1 Receiver pays down path i ISP1 traffic as soon as
possible

I Based on static and - \ = =
statistical agreements | = 1 But a Provider will carry
- traffic for its customer
Receiver : I Did anyone say traffic is
| ‘ asymmetric?

1SP2
Customer2 @

- UNIVERSITYOF CALIFORNLA]
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Part A. Ill: The Effect of Protocols

1 Some background
1 BGP and topology
1 BGP and routing

I BGP and routing robustness
+ The attack of the worms

I BGP and scalability:

Frequency
=
5
g

Oifference of hops

I Consider only: AS path-length

I Asymmetry: 46% of pairs differ by at least one AS
hop! [Siganos 01]
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~ Robustness: Path Updates Frequency ~ Analyzing Update Messages

5 Number of prefix announcements in 30 sec intervals
1 Send updates for path no sooner than 30 sec | - ke 1 o o
1 Why? For stability and overhead reduction |
1 Side-effects: Convergence takes longer
. . . Py

I: Whatis;the right interval? SRR e

+ Recent studies say that 30s is too long - y exponential growth
| returning back to
1 Path Dampening: | . baseline after 4 days!

* lgnore frequently changing paths | ! ] ]

a0 iatan

September 18:

lon i WIS 0B 08 WG Tan Zam o0 Znd anme
LN Gm 00 0 Wm0l W W LW Dm0 oo

[Nicol, Premore, Griffin, Cowie, Oglieski, Feldman+] E By Renesys

1 # prefix-announcements.per30-seconds.

o W —~ - [Cowie Oglieski 01]
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_Initial Observations Sep 18: BGP Updates Correlations

Prefix announcements by peer

I Updates show daily and weekly periodicity
1 There is no evidence of BGP disturbance on:

+ The Baltimore tunnel train 18 July that destroyed - Long-tall wave of routing
Internet lines . ; instabilities

E in BGP message streams

- The Sept 11 terrorist attack 7 i bt
I There are some spikesiat: ' !

+ 19 July 2001

+ 18-22 September 2001

RIPE NCC, September 10 - 22, 15-min intervals

September 18:

By Renesys
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~ The NIMDA Worm _ The Attack of The Worm

September 18 BGP event correlates in time
September 18 Nimda worm attack I with Nimda worm attack

i sz X 0,578 Smaller events: leakage of reserved AS numbers

iR e —
exponential . BGP Witdrawale 1115 b nues {Bue)
spread - X.¥0.018 HTTP Frobes Per Mirue |ied)
i SANS HTTP Probes Per irue (blue Inef
port 80 SYNs ! DO 84842 Lok (black mp Uses)

unique
attacker IPs

B e T
By Renesys I e L Sy e a e By Renesys
) Y AT 0 Tws oans  bakn gans / Y

But, how could the worm affect the routers?
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Another Opinion

Nimda probes burn
routers’ CPU cycles...

Observed correlation may have been an
Inset plot shows

Dy e oot i artifact of the measurement infrastructure
router cpu utilization - [Wang et al IMW02]

o Monitoring links where multi-hop =
more vulnerable than real BGP links

By Renesys

I The Worm “Ate” the Router CPU Time!
1. Busy = non;responsive
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The Scope of AS Instability

October 20 rrc00 AS 1103

By Renesys

I Instability isicontained locally (Good News)

UNIVERSITYOF CALIFORNA

RIVRSIIE © M. and C. Faloutsos

Part A. Ill: The Effect of Protocols

1 Some background

1 BGP and topology

1 BGP and routing

I BGP and routing robustness
+ The attack of the worms

I BGP and scalability:
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The BGP Table Growth: The Truth

1 Growth flattened
out in 2001
Why?

» Better
management

= More aggregation
of IP prefixes

* Dot-com crash?

INEREEEEREE

Tim ) -
UAVERSTYOF CALEORYL € By G. Huston
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N

N

i

BGP Table Size

Summary of BGP Instability

1 Globally correlated BGP instability is not
uncommon

1 Some causes are well understood
(misconfiguration, bad path-announcements)

I Some others are less well understood, and
more worrisome:
» Worms, indirectly attack router CPU
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BGP Table Growth: The Prediction

Worst Case
Continued
Exponential
Growth

150,000 entries by
January 2002

Best Case
Elimination of all
extraneous routing
entries

75,000 entries by
January 2002

By G. Huston

(0]0) (0]
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Routing-Table Size Variation

- By G. Huston
Active BGP entries vs Time
Larger-ASes-have:signhificantly-larger tables
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Some Open Questions

I Is there a pattern in BGP updates?

1 How do floods of updates propagate?
+ Correlations and cascading phenomena

1 How secure and robust is BGP?
« Cyber-terrorism

I Can | predict BGP scaling and growth?
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Conclusions

" 1 We have seen major steps in Internet modeling
- + Self-similarity and LRD to describe traffic and performance
| » Power-laws to describe the topology
+ I But still, we can not model a lot of things
» Spatio-temporal correlations
« Interest and group behavior
: = Anomaly detection
1 Challenges:
i - Massive mutlidimensional data
» Time — space correlations
« Case dependent phenomena
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At Last, The End Of Part A

1 For list of bibliography and good sites:
www.cs.ucr.edu/~michalis/tutorial/tutorial.html
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Practical BGP-Related Questions

1 How can we handle massive data (100 Gb)?

1 How can l'identify correlations between BGP
tables?

I Can.we detect automatically-pathologies?
« Periodicities or unexpected bursts
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Can Data-Mining Help?

1 Capture patterns and invariants

1 Compare and cluster behaviors

I Detect: Identify irregular patterns

I Troubleshoot: correlate problem with cause
1-Predict-behavior
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