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Abstract—In this work, we study and quantify the effects of
hotspots in wireless cellular networks. Hotspots are caused when
the bandwidth resources available at some location in the network
are not enough to sustain the needs of the users, which are then
blocked or dropped. A deeper understanding of hotspots can help
in conducting more realistic simulations and enable improved
network design.

We identify some causes for the formation of hotspots and
based on them, categorize hotspots into three different types:
a) capacity based, b) delay based, and c) preferential mobility
based. We show how these types have different effects on
network performance. We also consider the effects of hotspots
from various perspectives such as the number of hotspots, the
placement of hotspots, etc.

We also develop a fluid flow model and an analytical model
to study hotspots. The fluid flow model is surprisingly simple yet
effective in helping us understand hotspots and their properties.
We also describe an analytical model in which we consider a cell
as an M/M/B/B queue. We use these models to substantiate some
of the observations from the simulations.

Keywords: Simulations, system design, hotspots, cellular

networks.

I. INTRODUCTION

We study hotspots in wireless cellular networks and quantify
their effects on network performance. Hotspots can occur
whenever there is contention among users for the bandwidth
resources at some location in a network. This could potentially
lead to blocked and dropped users and thus impact the perfor-
mance of the network. Understanding and modeling hotspots
is important for conducting realistic simulations.

Hotspots have not been studied extensively in the past.
There has been some work that considers hotspots with
reference to load balancing and congestion control in wireless
cellular networks ([4], [7], [9], [10], [11]). Most of them focus
on algorithms and techniques to improve the capacity and
performance of the network in the presence of hotspots. There
has been a lack of research that specifically studies properties
of hotspots in detail.

Hotspots have usually been modeled in research by in-
creasing the traffic in the hotspot region ([9], [11]). However,
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modeling hotspots in such a manner hides several subtleties
such as how they are created and how their effect on per-
formance might be different depending on the nature of their
origin. Thus, it is important to have a good understanding of
their properties. Some of the questions that we address in this
work are: a) How are hotspots created? b) How do they affect
network performance? ¢) Do different types of hotspots impact
performance in different ways?

Using simulations, we study the phenomenon of hotspots
in detail and make observations about their characteristics. To
substantiate our experimental observations, we develop a fluid
flow model. We also present an analytical model in this regard
and show how we can model a cell as an M/M/B/B queue to
facilitate our analysis.

To summarize our contributions:

o We identify some causes for the formation of hotspots
and classify hotspots into three different types based on
these causes.

o We show how the different types of hotspots differ in
their impact on network performance. For example, some
hotspots affect the network on a global scale, whereas
other types of hotspots only impact performance locally.

o We show the impact of various factors such as placement
of hotspots, number of hotspots, and distance between
hotspots, on network performance.

¢ We propose a fluid flow model to substantiate some of our
experimental observations. Our fluid flow model is simple
yet effective in explaining the properties of hotspots.

o We develop an analytical model to study hotspots, by
considering a cell as an M/M/B/B queue.

The rest of this paper is organized as follows. Section II
discusses the background of the problem and provides the
motivation. In Section III, we discuss the modeling of hotspots
in simulations. We look at some experimental results in Sec-
tion IV and make some observations about hotspots and their
characteristics. In Section V, we present a fluid flow model to
help us understand and explain some hotspot characteristics.
In Section VI, we discuss an analytical model to do the same.
Finally, we conclude in Section VII.



II. BACKGROUND AND MOTIVATION
A. Background

A wireless cellular network consists of a group of cells
covering a geographical area [8]. Each cell has a base station
which is responsible for bandwidth management amongst
the users in that cell. A new user enters the network in
some random cell if there are sufficient bandwidth resources
available in that cell; otherwise, it is blocked. Once in the
network, the user keeps moving from one cell to another while
spending some time in each cell depending on its mobility
model. The time spent in a cell is referred to as cell latency
or cell residence time. During the course of its movement, if a
user is unable to move to another cell due to lack of resources,
it is dropped from the network.

Hotspots occur when there is contention for bandwidth
resources at some geographical location in a network and the
currently available resources are not enough to sustain the
demand from the users. This could potentially lead to users
being blocked or dropped from the network. We refer to such a
location in the network as a hotspot. Note that this is different
from the notion of Wi F'¢ hotspots which are locations where
wireless connectivity is available [12].

B. Related Work

Hotspots occur due to a difference in the load in different
parts of a network. Most researchers assume homogeneous
traffic which does not lead to an imbalance in the overall
load and no part of the network is overly loaded compared
to other parts and therefore, there is no potential for the
occurrence of hotspots. However, in real networks, traffic is
more heterogeneous than homogeneous and there is a finite
probability of hotspots. This has been recognized by the
research community and there have been some studies that deal
with hotspots in the context of load balancing or congestion
control in wireless cellular networks ([4], [7], [9], [10], [11]).

We now describe some work which, although not directly
related to the specific issue of modeling or implementing
hotspots, could be of interest to the reader. In the papers
described below, the actual implementation of a hotspot is
not very clear. The researchers simply increase the traffic load
in the hotspot cell. It is not always clear as to how this is
done, i.e. whether they increase the arrival rate of users into
the hotspot cell, decrease the departure rate of users from the
hotspot cell, increase the bandwidth demand of the existing
users in the hotspot cell, or use some other method.

Das et al [4] discuss hotspots in the context of load
balancing in cellular networks. They define a hotspot as a
region consisting of multiple adjacent hot cells where a hot
cell is one wherein the tele-traffic demand exceeds a certain
threshold value. They experiment with changing the number
of hot cells in a hotspot.

Hotspots are discussed in the form of asymmetric load
in [7]. Here the authors discuss how load sharing can be
beneficial when the loads in adjacent cells are not the same.
They model a case where a specific cell is assumed to have
twice the load of the surrounding cells.

Wu et al [9] discuss the problem of hotspots in CDMA
cellular networks and propose a tilted antenna method to
increase the capacity. They identify how the location of a
hotspot cell could change depending on the mobile user’s
movements and give the example of overload caused by rush
hour traffic. This is similar to the delay based hotspot which
we discuss later in this paper. To simulate a hotspot, they
increase the traffic in the hotspots by 1.1 to 2.7 times the full
traffic.

Yum et al [11] define a hotspot as a cell that has traffic load
substantially larger than the design load. They study the effect
of relieving congestion at a single hotspot cell by using cell
sectoring and cell overlaying. They also mention that hotspots
could be permanent or temporary. They simulate a hotspot by
assuming that the load in a hotspot cell is 66 Erlangs whereas
the nominal peak load is 47 Erlangs.

C. Motivation

The aforementioned examples show that researchers have
identified the problem of hotspots as being significant. How-
ever, most of the work so far deals with hotspots within the
context of other problems such as load balancing or congestion
control. None of them identify the specific characteristics of
hotspots. Even in simulations, most studies simply assume
that a hotspot cell is more loaded than the normal cells by
some arbitrary factor. Moreover, it is not always clear how
this overloading is achieved.

We believe that it is important to understand hotspots and
their characteristics in more detail. A better knowledge of
hotspots can help in designing realistic simulations, which,
in turn, can facilitate better network design. To this end, we
present a detailed study of various properties of hotspots.

III. MODELING HOTSPOTS

We describe three different types of hotspots that can arise
due to different reasons and show how we can model these
hotspots in simulations. We then describe the simulation setup
and other implementation details.

The three types of hotspots are:

e Delay based: A hotspot based on delay can happen if
there is an accident on some street which is holding
up traffic and delaying all the users in that cell. We
implement this type of a hotspot by increasing the average
time spent by the users in one or more cells that have been
identified as hotspots.

o Capacity based: This type of a hotspot can happen in
a network when the base station of a cell is undergoing
some technical problems and therefore, can only support
a lower number of users. We implement this in our
simulation by choosing a cell as a hotspot cell and
decreasing the capacity in that cell. Here, capacity is the
number of users the cell can support.

e Preferential mobility based: Such a hotspot could occur
when there is an event and people are moving towards
a given location thereby increasing the number of users
in that spot. To implement such a hotspot, we make the



users select the hotspot cell as the preferred destination
with a greater probability than the other cells, i.e., we
skew the destination choice in favor of the hotspot.

A. Simulation setup and network model

Our simulation is implemented in C using the CSIM [13]
package. In our experiments, we use a square cell instead of
the traditionally used hexagon cell [8]. This is for simplicity
in the implementation of the simulation and in the subsequent
analysis. A square cell will have only four neighbors as
compared to six neighbors for a hexagon cell. However, as
we have shown in earlier work [5], the shape of the cell does
not make a difference in the scenarios that we consider. The
typical layout of a network is shown in Figure 1.
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Fig. 1. Layout of a 36 cell network

We use two models for the behavior of the users at the
edge of a network. Edge effects [1] describe the break in the
symmetry of the cells at the edge of the network. The cells
at the edge exhibit a different behavior than the cells towards
the center. This is because the cells at the edge have fewer
neighbors than the cells in the center. Thus, user distribution
in the network becomes skewed and this can affect results. We
experiment with two types of networks:

o Bounce-back network: This network exhibits edge effects.
The users, when they reach the edge of the network, are
not allowed to “leave” the network. Instead, they “bounce
back” into the network.

o Wrap-around network: This network avoids edge effects.
The users, when they reach the edge of the network,
continue on to the other side of the network instead of
bouncing back. The network can be thought of as the
surface of a soccer ball with the hexagon partitions on
the ball representing the cells of a network.

Regions in a bounce-back network:
For placing hotspots in a bounce-back network, we identify
three different regions as shown in Figure 2.

T1 cells are the corner cells and have the least number of
neighbors. T3 cells are towards the center and have neighbors
on all sides. T2 cells are the remainder which have neighbors
on all but one side. A similar classification can be easily made
with the traditional hexagon cell network.

B. Implementation details

1. Users and cells:
For reasons of simplicity, we assume homogeneous users and

Fig. 2. Regions in a bounce-back network.

homogeneous cells unless specified otherwise. The capacity of
each cell is 50,000 units and the bandwidth requirements of
each user is 500 units, unless specified otherwise. This implies
that each cell could support up to 100 users.

The users spend the same average time (i.e., the cell
latency) in the cells. The cell latency values are exponentially
distributed with a specified mean value. We experiment with
different mean values: 100, 200, 500, 1000, 2500, and 5000
seconds. For the delay based hotspot scenario, the hotspot
cells were chosen to have a mean cell latency which is M
times larger than that in a non-hotspot cell. We experiment
with M = 1.2, 1.5, 2, 5, 10. For the capacity based hotspot
scenario, we decrease the capacity of the hotspot cell to a
lower value. The normal capacity of a cell is 50,000 units.
For hotspot cells, we experiment with capacities of 10,000,
20,000, 30,000, and 40,000 units.

Mobility model:

We use the random walk mobility model for the user
movement except in the case of the preferential mobility
hotspots, where we use a modified version of the random
waypoint mobility model ([3], [6]). In the original mobility
model, the choice of the destination is completely random.
However, in our study, we need to be able to mimic the
movements of users going towards a hotspot. To facilitate
this, we modify the random waypoint model in such a way
that a user can pick a hotspot cell as its destination with a
certain finite probability.

In our experiments, we select one or more cells to be
hotspots and implement the hotspot(s) using one of the three
methods described earlier. As discussed in [5] the size of the
network does not affect the simulation in any significant way
for the purposes of our study. We use a 36 cell network in our
experiments, unless specified otherwise. We do not specify
a size for the cells, instead we use the mean cell latency to
capture the time that a user spends in a cell.

2. Performance measures:

We use utilization as a measure of performance. We define
network utilization as the ratio of the number of users in
the network to the number of users that the network can
support, i.e., its maximum potential capacity. Time is specified
in terms of mean cell latency (MCL) units since it is better



to consider time in relative terms rather than absolute units
such as seconds, as shown in [5]. Recall that cell latency is
the time spent by a user in a cell. On a smaller level, the cell
utilization is defined as the ratio of the number of users in the
cell to the number of users that the cell can support.

We also use the concept of steady state utilization as de-
scribed in [5]. We define steady state utilization of a network as
its maximum utilization without loss. Steady state utilization
corresponds to the following theoretical scenario. Briefly, we
start with a network that has all its cells occupied by the
maximum number of users that can be supported. Users have
infinite lifetime and the only way they can exit the system is
when they get dropped due to lack of bandwidth. We let the
users move around in the system. At first, a large number of
users will get dropped due to lack of bandwidth. Gradually, as
the total number of users in the network decreases, the overall
contention for bandwidth also decreases and consequently,
this will slow down the rate at which users get dropped. In
the graphs that follow, whenever utilization (y-axis) is plotted
against time (x-axis), it is this behavior that is being shown.
Therefore, one will see a high value of utilization which
will drop dramatically in the beginning but will slow down
with time. The reason for adopting this metric is that we no
longer need to be concerned with plotting different values of
utilization, arrival rates, dropping and blocking probabilities.
For instance, in our graphs, we plot steady state utilization
versus the number of hotspots to show how hotspots impact
network performance. Thus, we can focus on how the nature of
utilization is affected by various hotspots, in a simple manner,
which is the goal of this paper.

We note that some of the graphs might show very low
levels of utilization, i.e., 25% or less. This is an artifact of
the parameter values such as cell capacity and user bandwidth
requirement. In most of our simulations, we use 50,000 units
for the cell capacity and 500 units for the user requirement.
Instead, if we were to use 100 or 50 units for the user require-
ment, the overall utilization observed will increase. However,
our study is not concerned with the level of utilization per se.
We are more concerned with how hotspots affect utilization
and our results, even with other combinations of parameter
values, indicate that the nature of the impact of hotspots
remains the same.

IV. EXPERIMENTAL RESULTS

We now experiment with the different types of hotspots and
make some observations about how the types affect network
performance in different ways. Specifically, we study how the
number of hotspots, the placement of hotspots, clustering of
hotspots, etc., affect the network performance.

A. Number of hotspots

First, we consider the delay based hotspot model. Figure 3
shows how the utilization varies with the number of hotspots.
Utilization is plotted on the y-axis and the number of hotspots
in the network is on the x-axis. Each point in the graph

represents a different simulation run, e.g., the point corre-
sponding to nine hotspots means we ran the simulation with
nine hotspots. For each scenario, we decide on the number of
hotspots and then select certain cells to be the hotspots before
we start the simulation. The cells chosen to be hotspots are as
far away from each other as possible. Nevertheless, we also
experimented with completely randomly generated scenarios
and obtained similar results.

Figure 3 shows an interesting phenomenon. Utilization
decreases as the number of hotspots increases from zero until
the point where the number of hotspots is equal to half the
number of cells in the network. Beyond this point, utilization
actually increases as the number of hotspots increases.
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Fig. 3. Delay based hotspot: Utilization vs. the number of hotspots.

Utilization is lowest when half the cells in the network are hotspots.

This result appears to be contrary to one’s expectation
that performance degrades with an increase in the number of
hotspots. Intuitively, this can be explained by considering the
network as consisting of two regions: hotspot regions, and non-
hotspot regions. The users move slower in the hotspot regions.
These two regions can be considered to be complementary to
each other. At the point where the hotspots are exactly half
the total number of cells, these two regions are equal and this
is the worst case phenomenon. After this point, the hotspot
region starts increasing. At the other extreme where all cells
are hotspots, all users will be spending the same amount of
time in the cells, albeit more than in the original case where
there were no hotspots. Hence, the utilization will be the
same as in the case of no hotspots. The point to note is that
heterogeneity is what hurts performance; as long as all users
are homogeneous in that they spend the same amount of time
in a cell, the performance is not affected.

In the case of a capacity based hotspot, the performance
always decreases with an increase in the number of hotspots.
This is because the overall capacity is monotonically decreas-
ing with an increase in the number of hotspots.

For the preferential mobility hotspot, the results are even
more interesting: one hotspot results in the worst performance.
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Figure 4 shows how utilization decreases due to hotspots.
However, as the plot shows, one hotspot is actually worse
than two or four hotspots. The reason for this phenomenon is
the underlying mobility model. When there is only a single
hotspot, all users in the network move towards it. This results
in an increase in the number of users in the hotspot. More
importantly, it also results in an increase in the number of users
in the cells close to the hotspot cell. In fact, the closer a cell is
to the hotspot, the more likely it is to have a larger number of
users. As soon as another hotspot is introduced, some of the
users move towards that one, thereby reducing the load in and
around the original hotspot, thus splitting the load. However,
beyond this, the beneficial effect of load splitting decreases and
the detrimental effect of hotspots dominates and therefore we
see that four hotspots results in worse performance. It should
also be noted that the probability of going to a hotspot is a
major factor in determining the extent to which the network
performance will be affected.

B. Placement of hotspots

Having seen how the number of hotspots affects perfor-
mance, now we try to answer the question: Does it matter
where in the network we place a hotspot? Figure 5 shows the
result of placing a hotspot in three different regions - T1, T2,
and T3. Recall that we identified these regions in a bounce-
back network in Figure 2. The hotspot in this particular case
is a delay based one.

The plots in Figure 5 show how utilization is different
depending on where one places the hotspot. A hotspot in T3
region decreases utilization the most whereas a hotspot in T1
region decreases utilization the least. This can be explained by
the fact that cells in T3 have more neighbors and hence, are
likely to have more users than cells in T1 or T2. Therefore,
choosing a hotspot in T3 region will have the most impact on
utilization since it will affect more users.

In a wrap-around network, all regions are the same and
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Fig. 5. Utilization vs. time in a bounce-back network. The placement of

hotspots affects the performance in different ways. A T3 hotspot is the most
detrimental.
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Fig. 6. Delay based hotspot: Utilization vs. time in a network with two
hotspots. The effect of hotspots on utilization is the same regardless of whether
they are disjoint or in one or more clusters.

therefore the effect of a hotspot is the same wherever it is
placed.

C. Clustering of hotspots

If there is more than one hotspot, the question arises: Does
it matter if the hotspots are all randomly scattered or disjoint
or all in one place? We refer to this as clustering, with a
cluster being a set of adjacent hotspot cells. For example, if we
have four hotspots, we could have two clusters of two hotspots
each or one cluster of four hotspots or we could have all four
disjoint from each other.

Figure 6 shows the effect of clustering of hotspots on
utilization for the delay based hotspot in the case of two
hotspots. Figure 7 is the same for a network with eight
hotspots. The plots show that there is no difference in the
impact on utilization. In other words, hotspots affect utilization
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Fig. 8. Preferential mobility based hotspot: Utilization vs. time in a network
with two hotspots. The effects of hotspots on utilization varies depending on
whether they are disjoint or in one or more clusters. The worst performance
is when all hotspots are in one cluster.

the same regardless of where they are placed in the network
as long as their number remains the same. We obtained
similar results for the capacity based hotspot. Note that this
is applicable to the wrap-around network. We already saw
that in bounce-back networks, it does matter where one places
hotspots.

In the preferential mobility based hotspot scenario, clus-
tering has a different impact. Figure 8 presents results for
two hotspots and Figure 9 for four hotspots. As the plots
show, clustering actually increases the utilization; the more
the clusters, the better the performance. Indeed the best
performance in both plots is when all the hotspots are disjoint.
The reason for this is the underlying mobility model. Since the
users are following a (modified) waypoint mobility model, if
there is only one cluster, all users will try to move towards
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Fig. 9. Preferential mobility based hotspot: Utilization vs. time in a network
with eight hotspots. The effects of hotspots on utilization varies depending on
whether they are disjoint or in one or more clusters. The worst performance
is when all hotspots are in one cluster.

it. With multiple clusters, the load is split and hence the user
contention at any single cluster is reduced, thereby causing
fewer overall drops and hence, higher utilization.

D. Local and global impact

Depending on the type of the hotspot, the impact on the
network performance can either be on a local or a global scale.
One measure of the impact on performance is the number of
drops across the cells. In a wrap-around network without any
hotspots, the number of drops would be uniform across the
cells.
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Fig. 10. Capacity based hotspot: The number of drops vs. the cell number.
Drops occurring in the cells are uniform. Drops in the hotspot cell (cell 21)
are not shown since they are so many that they hide the differences in the
drops in the rest of the cells.

Figure 10 shows the drops in a network with a capacity
based hotspot. The number of drops in a cell is plotted on the



y-axis and the cell number is on the x-axis. The graph shown
represents the average of 100 runs with the 95% confidence
interval being within 4 drops on either side. We choose cell
21 as the hotspot cell (See Figure 1). Due to the large number
of drops in the hotspot cell, we do not plot it in Figure 10.
Instead, we only show the drops in the rest of the cells. The
plot shows that the number of drops across the other cells is
uniform to a large extent. Thus, the impact of the hotspot is
local and is restricted to the hotspot cell only; it does not seem
to affect other cells. To some extent, due to the larger number
of drops in the hotspot cell, the immediate neighbors (cells 15,
20, 22, 27) have fewer users coming into them and hence they
have fewer drops. However, this effect is not very pronounced
and the number of drops across the cells can be considered to
be uniform.
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Fig. 11. Preferential mobility based hotspot: The number of drops vs. the

cell number in a network scenario with 10% probability of going to a hotspot.
Drops occurring in the cells are not uniform; cells closer to the hotspot cells
have more drops than cells further away.

Figure 11 shows the drops in a network where the hotspot
is of the preferential mobility type. Cell 21 is chosen as the
hotspot and the users have a 10% probability of choosing the
hotspot as the destination. (As in the previous case, we do not
show the drops in the hotspot cell since they are too many
and will obscure details of the other cells.) Here, we can see
that the impact is global. The hotspot cell has the maximum
number of drops. The next highest number of drops is seen
in its immediate neighbors. As we move further away from
the hotspot, the number of drops decreases. The preferential
mobility hotspot is based on the waypoint model and therefore,
when users from all over the network move towards a hotspot,
they have to go through its neighboring cells and hence those
cells will also see drops.

Figure 12 shows the same phenomenon but now the prob-
ability of the users choosing the hotspot as their destination
is 100%. The global impact can now be seen more clearly.
The cells closest to the hotspot have the maximum number
of drops. The cells furthest away from the hotspot have the
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Fig. 12. Preferential mobility based hotspot: The number of drops vs. the cell
number in a network scenario with 100% probability of going to a hotspot.
Drops occurring in the cells are not uniform; cells closer to the hotspot cells
have more drops than cells further away.

minimum number of drops; in some cases, there are no drops
at all.
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Fig. 13. Preferential mobility based hotspot: The drops across the cells.
Darker areas mean more drops. Cell 21 is the hotspot and it has the maximum
number of drops.

Figure 13 shows the distribution of drops from a better
perspective. We opted for this representation for the sake of
better visual interpretation. A 3D-plot was difficult to depict
without obscuring all the details. The number of drops are
obtained from the simulations and plotted here so that the
darker areas correspond to more drops. Cell 21 is the hotspot
and it has the maximum number of drops. As can be seen, the
next most number of drops occur in the immediate neighbors
of cell 21, i.e., cells 15, 20, 22, and 27. Thereafter the cells
which share two sides with the immediate neighbors have the
next most drops followed by the cells which share one side
with these immediate neighbors. In other words, these cells
can be thought of as forming rings around the hotspot and the
closest ring has the most number of drops. Note that this is a
wrap-around network.
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Fig. 14.  One dimensional chain network

E. Discussion

We made some observations about hotspots and saw how
different types affect the performance in different ways. To
summarize, the preferential mobility hotspot affects the net-
work globally whereas the other two types of hotspots do
not. The worst case performance in a preferential mobility
hotspot is when the number of hotspots is one whereas for
the delay based hotspot, this happens when the number of
hotspots is half the total number of cells in the network. Note
that we have complete control on where we place the hotspots.
Nevertheless, our results show that even in scenarios where
the hotspots are decided in a completely random manner, the
effect of hotspots on the utilization remains the same.

We also saw how clustering of hotspots does not affect
the first two types whereas in a preferential mobility hotspot,
a single cluster is the worst in terms of performance. In a
bounce-back network, a hotspot in a T3 region is the most
detrimental.

Simulations are not always convenient. In the next two
sections, we describe a fluid flow model and an analytical
model to explain some of the characteristics of hotspots that
we observed from the simulations.

V. A FLUID FLOW MODEL FOR MODELING CELLULAR
NETWORKS

In this section, we present an approximate analytical model.
Our model uses concepts from fluid flow theories to model
hotspots. In our fluid flow model, we treat the movement of
users between cells as fluid moving between cells. We study
the state of the system at a point where it is operating at its
maximum utilization without loss, a state that we refer to as
steady state utilization. (For details, see [S].) When the system
is at its steady state, the fluid flow between cells is balanced.

In the steady state, the flow coming into a cell equals the flow
going out of the cell.

First, we develop the fluid flow model for a homogeneous
network in steady state, without any hotspots. Thereafter, we
introduce hotspots into the network.

We consider three scenarios: 1) One dimensional chain
network, 2) two dimensional bounce-back network, and 3) two
dimensional wrap-around network.

A. One dimensional chain network

Figure 14 shows a one dimensional network which consists
of a chain of cells. All cells have two neighbors except the
ones at either end which have only one neighbor. The users
are homogeneous and they spend the same time (exponentially
distributed) in the cells on an average. In steady state, the flow
between each pair of cells is the same. This can be denoted
by:

Fia = Fy
F23 - F32
F(nfl)n = Fn(nfl) (D)

where Fj; is the flow from cell ¢ to cell j.

Let m; be the expected number of users in cell ¢ at steady
state, and «; be the amount of time a user spends in cell 4.
Note that «; depends on the cell latency of the cell (i.e., size of
the cell) and is a property of the cell. We assume that the flow
from each cell will be equally distributed among its neighbors.

Therefore, we get:

1
micy = §m2042
1 1
—Mog = —TM3x
2 2062 2 3C3
1
§m(n71)a(n71) = MnQn (2)

We assume that the network is homogeneous and the users
spend the same amount of average time in each cell. Therefore,
«; is the same for all cells. Hence, from Eq.(2), we get:

1
my; = §m2
1 1
—Mgo = —Ms3
1
— ) =mp 3
zm(" 1) m ( )

Solving Eq.(3), we find that the ratio of users in the edge
cells to users in the non-edge cells is 1:2. We ran simulations
to verify this and our results show that the ratio is indeed 1:2,
thereby showing the efficacy of the fluid flow model.
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Fig. 15. Two dimensional bounce-back network

B. Two dimensional bounce-back network

This approach can be extended to the case of a two-
dimensional network. We first consider a bounce-back net-
work. Figure 15 shows the connections between the cells in
such a network. We can categorize the cells in such a network
into three types - T1, T2, and T3 as shown in Figure 2.

All cells are one of these three types. Solving the fluid flow
equations for this network, we get:

1 1

—Mmia] = =M

B 101 3 202

1 1

§m20¢2 = Zm50é5 €]

where m; is the expected number of users in cell ¢, and «;
is the time the users spend in cell 7. Cell 1, cell 2, and cell 5
are representative of types T1, T2, and T3 respectively.

We assume a homogeneous network. Therefore, the average
time spent by a user is the same in all cells, i.e., all ;’s are
equal. Substituting these in Eq.(4), we get:

%WM = %mz ; %WQ = im5 (%)
Therefore, we get:
my = gmz ; me = §m5 (6)
Solving Eq.(6) we get:
2 1
my = Mg = oiMa (7N

Finally, solving Eq.(7) for the ratios, we get:
mi:mg:m3=2:3:4 (8)

Recall that my, ms, and mg correspond to cells 1, 2, and 5
respectively, which in turn correspond to the regions T1, T2,
and T3. So, Eq.(8) indicates that the ratio of users in regions
T1, T2, T3 is 2:3:4.
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Fig. 16. Two dimensional bounce-back network: User distribution in T1, T2,
and T3 regions.

Simulations validate our model:

We ran simulations to verify this and the result is shown in
Figure 16. The plot shows that there are three distinct classes
of users and the number of users in these classes are 33,49,
and 65 which is in the ratio 2:3:4. This is the same as that
obtained in Eq.(8). This implies that the fluid flow model does
indeed capture the effects of the user movements in such
a network and can predict the distribution in the different
regions. Knowing the proportion of users in the different
regions, we can say that a hotspot in T3 region will reduce the
utilization of the network the most since T3 cells have more
users than any other type. This is the same conclusion that
we arrived at using our simulation experiments. This suggests
that the fluid flow model describes well the user distribution
in the various regions and can be used to explain the effect of
placing hotspots in different regions of the network.

C. Two dimensional wrap-around network

For a two dimensional wrap-around network, all flows are
symmetric and will have the same value. Hence the users will
be uniformly distributed among the cells. There will be no
regions like T1, T2, T3 and thus, the placement of a hotspot
will not impact the network performance.

D. Modeling Hotspots Using an Enhanced Fluid Flow Model

The basic fluid flow model shows how the location of a
cell in specific regions, i.e., T1, T2, T3, affects the utilization.
Now, we develop an enhanced version of our fluid flow model
to describe the hotspot related phenomenon. We consider three
factors 1) number of hotspots, 2) clustering of hotspots, and
3) local/global impact of hotspots.

We start with a simple two node network. Let m; denote
the expected number of users at node ¢ at steady state, and «;
the average time spent by a user in node i. The actual user
capacity of node 7 is denoted by n;. For all nodes ¢,



At steady state, the flow between the two nodes are the
same. Therefore,

mipg = MmaQg (10)
Therefore,
my = %Tfh (11)
(&%)

But from Eq.(9), m; < n; and mg < ng. Therefore, from
Eq.(11) we get:

my < iy (12)
Q2
Combining Eq.(9) and Eq.(11), we get mo as:
Mo = min (ng, ﬂnl) (13)
(&%)
Similarly, it can be shown that
mi = min (nl, %TQ) (14)
(€51

So, at steady state the total number of users in the system
is:

« «
mi + me < min (nl, —2n2) + min (ng, —1n1) (15)
aq (&)

Now, consider the case where oy < as. Eq.(15) can be
solved for three cases:

Case I: nl =n2=n

m1+m2§%n+n<ﬂ+l>n (16)
(%) (&5]
Therefore:
m1 4+ meo < 2n (17)
Case 2: ng > g—;nl
«@
my +ma < —ng +m (18)
[€%)
Case 3: ng < z—;nl
Q
my 4 my < ng + —ny (19)

851
Validating the model: We conducted simulation experiments
to test the validity of these equations. The results are shown
in Figure 17.

The plot shows the number of users in a two cell network for
different values of o;; and a. The x-axis is the ratio of the o;’s
and the y-axis is the number of users in the system. The plot
shows both the value obtained from the above analytical model
and the value from the simulations. The graph indicates that
these numbers are very close, thereby indicating the potential
of the fluid flow model.
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Fig. 17. Number of users in a 2-cell network: upper bound (fluid flow) and
experimental (simulation) values; cell capacity = 500 users

Now we consider a 16 cell two dimensional wrap-around
network as shown in Figure 18. Note that, as mentioned earlier,
the size of the network does not impact the scenarios that
we consider. We use 16 cells for reasons of simplicity in the
analysis.

13 (14| 15| 16

Fig. 18. Layout of a 16 cell network.

The expected number of users in the network can be given
by:

M =3x8 m; (20)

Each cell receives flows from four other neighboring cells
and its outflow goes into those four cells. In steady state, these
flows will be equal, and so we can calculate the flow equation
for each cell. For instance, consider cell 10 which has the cells
6,9, 11, and 14 as neighbors. The fluid flow equation can be
given as:

1 1 1 1
Mmipgiio = —Meas + —Mog + —Mmi1aq1 + —miaaqs (21)

4 4 4 4
Solving for myy, we get:

1 ag 1 a1  ann 1 apy

mig = —Me—— + —My + oMy —— A+ Mg ——
4 "oarp 4 Tap 4 a4 Q1o

From Eq.(9), m; < n; for all <. Combining this information
with Eq.(22), the upper bound on the expected number of users

in cell 10 can be given by:

(22)



. 1 ag
mig < man| nig, —ng— + —-n
4 10 4

(23)

Similarly, we can find the bounds on the expected number
of users in all the other cells.

Now, we select a cell as a hotspot. For example, if we
choose cell 10 as a hotspot, we increase the cell latency in
cell 10.

Let ay, be the cell latency in a hotspot cell and a.,; be the
cell latency in a non-hotspot cell. The ratio of cell latencies
is given by R, = ap /oy Re can be easily calculated since
we know the values for oy, and o,,,.

Using this information in Eq.(23), we can solve Eq.(20) to
obtain the upper bounds on the expected number of users in
the entire network. We solve Eq.(20) while varying the number
of hotspots from 1 to 16 for the 16 cell network and we also
vary the ratio R.;. Figure 19 shows the results.
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Fig. 19. Expected number of users calculated using the fluid flow model. The
three different plots are for three different ratios of cell latencies in hotspot
cell to non-hotspot cell.

Figure 19 shows three different plots corresponding to
different values of R (2,5,10). The worst performance is
when the number of hotspots in the network is half the total
number of cells. This agrees with what we would expect
from our experimental results. Indeed, consider the simulation
results shown in Figure 3. Notice that the nature of the plot
is the same as in Figure 19. Thus, the simulation results
(Figure 3) agree with the predictions of the fluid flow model
(Figure 19). Both figures indicate that the worst performance
occurs when half the cells in a network are hotspots. This
implies that the fluid flow model can effectively predict what
the simulations show.

Using the fluid flow model, we can also calculate the
expected number of users with and without clustering of
hotspots. We get results similar to what we obtained in the

simulations, i.e., clusters do not make a difference in the delay
based and capacity based hotspots. For these two types of
hotspots, the fluid flow model can also predict that their impact
on the system is local. The only cells that are affected are the
hotspots themselves and to some extent, their immediate cells.

E. Discussion

We saw how the fluid flow model can help to model and
analyze hotspot characteristics. We considered the effects of
a) number of hotspots, b) placement of hotspots, c¢) clustering,
and d) global/local impact, on the performance in a system
with delay based and capacity based hotspots. The results
obtained agree with those obtained from simulations, thus
pointing to the usefulness of the fluid flow model. At this
stage, we are still in the process of extending the fluid flow
model to capture the preferential mobility based hotspots.

VI. ANALYTICAL MODELING OF HOTSPOTS

We now develop an analytical model to explain some of
the observations that we made about hotspots. We consider
the network to be a closed network of M/M/B/B queues. Each
queue in the analytical model corresponds to a cell in the
cellular network. A node (or queue) has service stations with
service buffers which corresponds to a cell having channels
available to the mobile users. The jobs at a node correspond
to the users in a cell. Thus, the phenomenon of a job coming
to a node, getting serviced, and then moving to another node
is equivalent to that of a user coming to a cell, using the
bandwidth in that cell, and then moving on to another cell.
We use network utilization and the number of users dropped
as measures of performance.

We start with estimating the number of jobs at a node in
such a network and then find the probability of drops. We use
the formula given in [2] to find the marginal probability that
there are exactly k; = k jobs at the ith node in such a closed
network.

€; k 1 €;
mi(k) = (u—l) .%.(G(K —k)— EG(K — k- 1)))
(24)
where G(K) is a constant, e; is the visit ratio, p; is the
service rate, and K is the total number of jobs in the network.
The details of how to calculate these terms are given in [2].
As discussed in [2], the assumption is that the service
stations have infinite buffers. This is because we do not have
a closed formula for the case of a closed network of queues
if the queues are of M/M/B/B type. However, in the cellular
network, buffers are finite in number. To approximate this, we
use Eq.(24) to calculate the probability that there are more than
x users at each node in the network where « is the capacity of
each cell in the cellular network. In other words, we can find
the probability of drops in the network by using this simple
technique.
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Fig. 20. The probability of more than x users at a node using the analytical
model.

A. Applying the analytical model

We now use the analytical model to study the effect of
placement of hotspots in a bounce-back network. We consider
a 16 node network with a node capacity of 16 users each.

Figure 20 shows the probability of having more than 16
users for each of the three regions - T1, T2, T3. The plot
shows that the probability of having more than 16 users is the
most for T3 and the least for T1. The probability of having
more than 16 users is the probability of having drops and the
plot shows that the probability of having drops is maximum in
the T3 region. Therefore, a hotspot in T3 region would have
a larger detrimental effect on utilization as compared to one
in T1 or T2 regions. This analysis agrees with our simulation
results. We also obtained results for the number of hotspots
which are in line with those from simulations. However, we
are still working on making this analytical model applicable to
the preferential mobility hotspot. But as far as the other types
of hotspots are concerned, this model is another way to study
the properties of hotspots but without as much overhead as in
simulations.

VII. CONCLUSION

In this work, we presented a detailed study of hotspots
in wireless cellular networks. We identified three types of
hotspots based on different causes and using simulations, we
studied their different properties. To substantiate our simula-
tion results, we developed a fluid flow model and an analytical
model. We showed how these two models do indeed explain
some of experimental observations.

To summarize the main results:

« Hotspots can be of different types and their impact on
the system performance varies with the type.

o More hotspots lead to lower utilization in the delay based
hotspot case. This is until the point where exactly half
the cells are hotspots; after that utilization rises. The
worst case is where exactly half the cells are hotspots.

In the capacity based type, worst case is when all cells
are hotspots.

e In the preferential mobility hotspot, the worst perfor-
mance is when there is a single hotspot.

o Clustering of hotspots does not make a difference in the
delay based or capacity based hotspots. However, in the
preferential mobility based hotspot, fewer clusters lead to
lower utilization; indeed, the worst case is when there is
only a single cluster.

o The delay based and capacity based hotspots affect only
the users in the hotspots whereas the preferential mobility
model impacts the network on a global scale with cells
closer to the hotspot being affected more.

In our work, we develop two analytical models to study
hotspots and explain some of the observations from simulation
experiments. The first one relies on fluid flow concepts and
is suited for approximating the utilization in steady state. The
second one is based on M/M/B/B queues and the analysis
reduces to solving for a system of M/M/B/B queues.

As future work, we plan to further develop our fluid flow
model and M/M/B/B based model so as to be able to use them
to explain more characteristics of hotspots.
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