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Abstract—1In this paper, we show that the use of dynamic
addressing can enable scalable routing in ad hoc networks. It
is well known that the current ad hoc protocol suites do not
scale to work efficiently in networks of more than a few hundred
nodes. Most current ad hoc routing architectures use flat static
addressing and thus, need to keep track of each node individually,
creating a massive overhead problem as the network grows.
Could dynamic addressing alleviate this problem? To begin to
answer this question, we provide an initial design of a routing
layer based on dynamic addressing, and evaluate its performance.
Each node has a unique permanent identifier and a transient
routing address, which indicates its location in the network at any
given time. The main challenge is dynamic address allocation in
the face of node mobility. We propose mechanisms to implement
dynamic addressing efficiently. Our initial evaluation suggests
that dynamic addressing is a promising approach for achieving
scalable routing in meganode ad hoc networks. !

I. INTRODUCTION

Scalability is a critical requirement in the use and deploy-
ment of ad hoc networks, if we want this technology to reach
its full potential. Ad hoc networking technology is receiving
a lot of interest but it has yet to mature. This is similar
to the early stages of the Internet, where very few could
predict its explosive growth. A difference is that in the Internet,
scalability was, from the very beginning, a design constraint.
Ad hoc networks research seems to have downplayed the
importance of scalability. In fact, current ad hoc architectures
do not scale well beyond a few hundred nodes. How can we
make ad hoc networks scale to thousands, or even millions
of nodes? We find this question fundamental if we want ad
hoc technology to be successful in the consumer marketplace.
Already, non-military technology and applications seem to
point towards future networks with: a) ad hoc pockets of
connectivity [1], b) consumer-owned networks [2] [3] [4],
and c) sensor-net technologies [5]. All of these applications
will place increased scalability demands on ad hoc routing
protocols.

Most current research in ad hoc networks focus more on
performance and power-consumption related issues in rela-
tively small networks, and less on scalability. The current
routing protocols and architectures work well only up to a
few hundred nodes. We believe the main reason behind the
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lack of scalability is that these protocols rely on flat and static
addressing. With scalability as a partial goal, some efforts
have been made in the direction of hierarchical routing and
clustering [6] [7] [8]. These approaches do hold promise,
but they do not seem to be actively pursued. It appears to
us as if these protocols would work well in scenarios with
group mobility [9], which is also a common assumption among
cluster based routing protocols.

Is dynamic addressing a feasible way of achieving scalable
ad hoc routing? This is the question that we address in this
work. Dynamic addressing simplifies routing but introduces
two new problems: address allocation, and address lookup.
Here, we focus on the address allocation part; earlier work
describes a general idea of how address lookup can be ef-
ficiently handled [10]. As a guideline, we identify a set of
properties that a scalable and efficient solution must have:

o Localization of overhead: a local change should affect
only the immediate neighborhood, thus limiting the over-
all overhead incurred due to the change.

o Lightweight, decentralized protocols: we would like to
avoid concentrating responsibility at any individual node,
and we want to keep the necessary state to be maintained
at each node as small as possible.

e Zero-configuration: we want to completely remove the
need for manual configuration beyond what can be done
at the time of manufacture.

In this paper, we evaluate dynamic addressing and show
that it is a promising first step toward achieving scalability
in the order of millions of nodes in ad hoc routing. First,
we develop a dynamic addressing scheme, which has the
necessary properties mentioned above. Our scheme separates
node identity from node address, and uses the address to
indicate the node’s current location in the network. Second,
we study the performance of a new routing protocol, based on
dynamic addressing, through analysis and simulations.

In more detail, our work leads to the following results.

e Our address allocation scheme uses the address space
efficiently on topologies of randomly and uniformly dis-
tributed nodes, empirically resulting in average routing
table sizes of less than 2log, n where n is the number of
nodes in the network.

¢ Our dynamic addressing based routing scheme provides
good network performance. In fact, our results indicate



that we would reliably outperform other routing protocols
based on static addresses, in large and actively used
networks.

Our work in perspective. We describe a new approach to
routing in ad hoc networks, and compare it to the current rout-
ing architectures. However, the goal is to show the potential
of this approach and not to provide an optimized protocol.
We believe that the address equals identity assumption used
in current ad hoc routing protocols is most likely inherited
from the wireline world, which is much more static and
is explicitly managed by specialist system administrators?.
Although much work remains to be done, we believe that the
dynamic addressing approach is a viable strategy for scalable
routing in ad hoc networks.

The rest of the paper is structured as follows. In section II,
we give a high-level overview of all aspects of our proposed
routing protocol. In section III, we go into more detail on
the specifics of our address allocation scheme. Section IV
reports some of our simulation results, and section V gives
a brief analysis of the protocol and the relative overhead of
reactive and proactive routing protocols. In section VI we
discuss optimizations and other issues, section VII has the
related work, and section VIII concludes the paper.

II. OVERVIEW AND DEFINITIONS

In this section, we present our main ideas for dynamic
address allocation and define various terms that we use. We
also sketch a network architecture, which could utilize the
new addressing scheme effectively. In fact, dynamic routing
and addressing form the basis for a novel networking layer,
which we describe in some detail in our earlier work [10].

In our approach, we separate the routing address and the
identity of a node. The routing address of a node is dynamic
and changes with node movement to reflect the node’s location
in the network topology. The identifier is a globally unique
number that stays the same throughout the lifetime of the node.
For ease of presentation, we can assume for now that each
node has a single identifier’.

We distinguish three major functions. First, address allo-
cation maintains one routing address per network interface,
in such a way that the address indicates the node’s relative
network location. Second, routing delivers packets from a
node to a given routing address. Third, node lookup is a
distributed lookup table mapping every node identifier to its
current network address. We defer all details of the address
allocation process to section III.

Let us first describe how we want things to work from an
operational point of view. When a node joins the network,
it listens to the periodic routing updates of its neighboring
nodes, and uses these to identify an unoccupied address. We

2Even in the wireline world, mobility has started to challenge this assump-
tion, creating a need for workaround solutions such as mobile IP.

3We currently use IP addresses as identifiers. Thus, the transport and
application layers do not need to change, and the routing address is only
seen at the network layer. There exist situations where we may want to map a
node to more than one identifier, for example in supporting multicasting [10].
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Fig. 1. The address tree of a 3-bit binary address space. Leaves represent
actual addresses, whereas inner nodes represent groups of addresses with a
common prefix.
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Fig. 2. A network topology with node addresses assigned. Dotted enclosures
correspond to subtrees in the address tree.

will describe how this is done later. The joining node registers
its unique identifier and the newly obtained address in the
distributed node lookup table. Due to mobility, the address
may subsequently be changed and then the lookup table needs
to be updated. When a node wants to send packets to a node
known only by its identifier, it will use the lookup table to find
its current address. Once the destination address is known the
routing function takes care of the communication. The routing
function should make use of the topological meaning that our
routing addresses possess.

We start by presenting two views of the network that we
use to describe our approach: a) the address tree, and b) the
network topology.

The Address Tree. In this abstraction, we visualize the
network from the address space point of view. Addresses are
[ bit binary numbers, a;_1,...,ag. The address space can
be thought of as a binary address tree of [ + 1 levels, as
shown in figure 1. The leaves of the address tree represent
actual node addresses; each inner node represents an address
subtree: a range of addresses with a common prefix. For
presentation purposes, nodes are sorted in increasing address
order, from left to right. We stress that the links in the tree do
not correspond to physical links in the network topology. The
actual physical links are represented by dotted lines connecting
leaves in figure 1.

The Network Topology. This view represents the connec-
tivity between nodes. In figure 2, the network from figure 1
is presented as a set of nodes and the physical connections
between them. Each solid line is an actual physical connection,
wired or wireless, and the sets of nodes from each subtree of
the address tree are enclosed with dotted lines.

Note that the set of nodes from any subtree in figure 1
induces a connected subgraph in the network topology in
figure 2. This is not a coincidence, but a crucial property of
our dynamic addressing approach. Intuitively, nodes that are
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Fig. 3. Routing entries corresponding to figure 2. Node 100 has entries for
subtrees 0xx, 11x (null entry) and 101.
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close to each other in the address space should be relatively
close in the network topology. More formally, we can state
the following constraint.

Prefix Subgraph Constraint: The nodes of every subtree
(defined by a prefix) in the address space form a connected
subgraph in the network topology.

This constraint is fundamental to the scalability of our
approach. Intuitively, this constraint helps us map the virtual
hierarchy of the address space onto the network topology.
Based on it, we constrain the allowed allocation of addresses
so that nodes with “similar” addresses are likely to be close
in terms of routing distance.

Routing. In this work, we use a hierarchical form of
proactive distance-vector routing. A distinguishing difference
from previous such schemes is that it makes use of the
prefix subgraph constraint, and the topological meaning that
addresses have here.

Let us define two new terms that will facilitate the discus-
sion.

A Level-k subtree of the address tree is defined by an
address prefix of (I—k) bits, as shown in figure 1. For example,
a Level-0 subtree is a single address or one leaf node in the
address tree. A Level-1 subtree has a (I — 1)-bit prefix and can
contain up to two leaf nodes. In figure 1, [0xx] is a Level-2
subtree containing addresses [000] through [011]. Note that
every Level-k subtree consists of exactly two Level-(k — 1)
subtrees.

We define the term Level-k sibling of a given address to be
the sibling* of the Level-k subtree to which a given address
belongs. By drawing entire sibling subtrees as triangles, we
can create abstracted views of the address tree, as shown in
figure 3. Here, we show the siblings of all levels for the address
[100] as triangles: the Level-O sibling is [101], Level-1 is
[11x], and the Level-2 sibling is [0xx]. Note that each address
has exactly one Level-k sibling, and thus at most | siblings in
total.

In its routing table, a node keeps one entry for each Level-
1 sibling with respect to the node’s address. Intuitively, the
routing entry for a sibling indicates the next hop towards a
node in that subtree. Clearly, the routing table will have at

4We define siblings as subtrees, or leaves, that have the same immediate
parent.

most [ entries, where [ is the length of the address.

In our example shown in figures 1-3, node [100] has routing
entries for sibling subtrees [0xx], [11x] and [101]. To route
a packet to address [000], node [100] first determines the
(sibling) subtree to which the destination address belongs
([0xx]), and then sends the packet to the neighbor closest to
that subtree ([011]). The process is repeated until the packet
has reached the given destination address.

The hierarchical technique of only keeping track of sibling
subtrees rather than complete addresses has three immediate
benefits. One, the amount of routing state kept at each node
is drastically reduced. Two, the size of the routing updates is
similarly reduced, and three, it provides an efficient routing
abstraction such that routing entries for distant nodes can
remain valid despite local topology changes in the vicinity
of these nodes.

Node Lookup. The missing link is: how do we find the
current address of a node, if we know its identifier? We pro-
pose to use a distributed node lookup table, which maps each
identifier to an address, similar to what we proposed in [10].
Here, we assume that all nodes take part in the lookup table,
each storing a few? <identifier, address> entries. However,
this node lookup scheme could potentially be replaced some
other mechanism in the future.

For our proposed distributed lookup table, the question now
becomes: which node stores a given <identifier, address>
entry? The solution is simple yet elegant, and reminiscent of
consistent hashing.

We use a globally, and a priori, known hash function that
takes an identifier as argument and returns an address where
the entry can be found. If there exists a node that occupies this
address, then that node is responsible for storing the entry. If
there is no node with that address, then the node with the
most similar address® is responsible for the entry. To find
this ”most similar” node, we make a minor change to the
routing algorithm for lookup packets: If no route can be found
to a sibling indicated in the address, that bit of the address
is ignored, and the packet is routed to the sibling subtree
indicated by the next (less significant) bit. When the last bit
has been processed, the packet has reached its destination.

For example, using figure 3 for reference, let’s assume a
node with identifier /D, has a current routing address of [010].
This node will periodically send an updated entry to the lookup
table, namely <ID;,010>. To figure out where to send the
entry, the node uses the hash function to calculate an address,
like so: hash(IDy). If the returned address is [100], the packet
will simply be routed to the node with that address. However,
if the returned address was instead [111], the packet could not
be routed to the node with address [111] because there is no
such node. In such a situation, the packet gets automatically
routed to the node with the most similar address, which in this
case would be [101].

SWe expect to see on average O(logN) entries per node assuming a
balanced address tree and uniformly distributed identifiers.

9The metric used here for similarity between addresses is the integer value
of the XOR result of the two addresses.



Improved scalability. We would like to stress that all
node lookup operations use unicast only: no broadcasting
or flooding is required. This maintains the advantage of
proactive and distance vector based protocols over on-demand
protocols: the routing overhead is independent of how many
connections are active. When compared with other distance
vector protocols, our scheme provides improved scalability
by drastically reducing the size of the routing tables, as we
described earlier. In addition, updates due to a topology change
are in most cases contained within a lower level subtree and do
not affect distant nodes. This is efficient in terms of routing
overhead. To further improve the performance of our node
lookup operations, we envision using the locality optimization
technique described in [10]. Here, each lookup entry is stored
in several locations, at increasing distance from the node in
question. By starting with a small, local lookup and gradually
going to further away locations, we can avoid sending lookup
requests across long distances to find a node that is nearby.

Other important characteristics. Our addressing and rout-
ing schemes have several attractive properties. First, they can
work with omnidirectional and directional antennas as well
as wires. Second, we do not need to assume the existence of
central servers or any other infrastructure, nor do we need to
assume any geographical location information, such as GPS
coordinates. However, if infrastructure and wires exist, they
can, and will, be used to improve the performance. Third, we
make no assumptions about mobility patterns, although high
mobility will certainly lead to increased overhead, and de-
creased throughput. Finally, since our approach was designed
primarily for scalability, we do not need to limit the size
of the network; most popular ad hoc routing protocols today
implicitly impose network size restrictions.

Dynamic Address Routing in relation to peer-to-peer
DHT’s. We have received many inquiries as to the relationship
between peer-to-peer distributed hashtables, such as Chord
[11], and our work. First, let us point out that our node lookup
table is in fact a special purpose distributed hashtable, similar
in many ways to what has already been done in peer-to-
peer networks. To clearly demonstrate that Dynamic Address
Routing is, with the exception of the node lookup table, only
superficially related to peer-to-peer DHT’s, we will now point
out a few important differences.

First of all, in peer-to-peer DHT’s, there is an assumption of
any-to-any connectivity. That is, any node can reach any other
node by using an underlying routing mesh. In our work, we
are building the routing mesh and can only rely on immediate
neighbors for communication. In essence, a node in a DHT
can locate itself at any point in the key space and the DHT will
still be consistent, although perhaps somewhat disadvantaged
performance-wise. If a node in our routing protocol does not
pick its address carefully, routing will not work, because there
is no underlying routing layer there to save us.

Second, DHT’s are an application layer overlay network,
with the consequence that a single physical link could be
traversed several times when routing a packet through the
overlay. In our work, we work directly with the physical links,
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Fig. 4. Address tree for a small network topology. The numbers 1-3 show
the order in which nodes were added to the network.

1. B joins via A
2.CjoinsviaB
3. D joins via A

and every packet traverses any given link at most once.
Third, in a DHT, one expects to see packets delivered in
at most O(log N) ”virtual hops”. In network layer routing,
the number of hops depends almost entirely on the underlying
topology, and thus such bounds cannot possibly be stated.

III. DYNAMIC ADDRESS ALLOCATION

To assess the feasibility of dynamic addressing, we develop
a suite of protocols that implement such an approach. Our
work effectively solves the main algorithmic problems, and
forms a stable framework for further dynamic addressing
research. Although the design has not yet been optimized for
maximum throughput, its scalability properties and predictable
performance are very promising (see section IV). In several
places, we briefly mention possible future extensions, which
are further discussed in section VI.

When a node joins an existing network, it uses the peri-
odic routing updates of its neighbors to identify and select
an unoccupied and legitimate address. Naturally, the node
picks an address that is consistent with the prefix subgraph
constraint. In more detail, any null entry in the routing table
of a neighbor indicates a block of free address space, which
corresponds to a subtree at some level. The new node picks
an address in one of possibly many such free blocks. In our
current implementation, we make nodes pick an address in the
largest unoccupied address block. For example, in figure 3, a
joining node connecting to the node with address [100] will
pick an address in the [11x] subtree. There are several ways to
choose among the available addresses, and we have presented
only one such method. However, it has turned out that this
method of address selection works best in our simulations.

This selection leads to a legitimate address allocation: the
new node is the only node in that block, and the resulting
subtree is connected. Any address within this block will by
definition comply with the prefix subgraph constraint. The
above statements are true in steady-state, and we will discuss
concurrency and mobility issues later.

Let us see an example of address allocation. Figure 4
illustrates the address allocation procedure for a 3-bit address
space. Node A starts out alone with address [000]. When node
B joins the network, it observes that A has a null routing
entry corresponding to the subtree [1xx], and picks the address
[100]. Similarly when C joins the network by connecting to
B, C picks the address [110]. Finally, when D joins via A,



A’s [1xx] routing entry is now occupied. However, the entry
corresponding to sibling [01x] is still empty, and so, D takes
the address [010].

Network and Subtree Identifiers. To handle network
merging and splitting, we need to associate an identifier with
every network, which we call the network identifier. In fact,
we associate an identifier with every subtree, and we call
this identifier the subtree identifier. With this definition, the
network identifier is a special case of the subtree identifier: it is
the subtree identifier that corresponds to the root of the address
tree, or subtree [XxX ... X]. Several different mechanisms can be
used to select and set the subtree identifiers. Here, we choose
the subtree identifier to be the lowest node identifier among all
nodes in the subtree. Note that a node can find the identifier
of a subtree to which it belongs, in a localized and recursive
way: to compute the minimum id of a subtree it needs only
to compute the minimum of its own id and the ids of all its
sibling subtrees inside that subtree. To see why this is true, one
need only realize that any given subtree that a node belongs
to, consists of the node itself and all its sibling subtrees within
the subtree of interest.

With node mobility, subtree identifiers may need to be
updated, but this is done with the periodic routing updates
at little extra cost. When the node with the lowest identifier
within any subtree leaves the subtree, the identifier of that
subtree will have to be recomputed. However, this is generally
a non-disruptive process, since the route updates from the
new lowest identifier node in the subtree will propagate, and
eventually reach all the concerned nodes without forcing any
address changes in the process.

Handling Constraint Violations. Here, we describe how
our protocol deals with situations where the prefix subgraph
constraint has been violated. In fact, most of the issues
that arise in address allocation can be reduced to a prefix
subgraph constraint violation. We develop a localized address
reallocation mechanism to “repair” such violations efficiently.

The key idea is the “rule” that the lower node identifier
wins. First, the mechanism resolves the problem of two nodes
competing for the same address. When a node perceives a
lower-id node with the same address, the higher-id node has
to obtain a new address. The same is true for subtrees: if a
node receives a route to its own address subtree, but with a
lower identifier, it must acquire a new address. Second, at the
routing level, all route advertisements contain the identifier of
the destination subtree. When a node hears two distinct routes
to the same prefix/subtree, it forwards only the route with the
lowest identifier. Subsequently, the information with the lower
identifier will reach the node with the higher identifier, and
the latter will have to find a new address.

Merging Networks Efficiently. Our protocol can handle
the merging of two initially separate networks. In a nutshell,
the nodes in the network with the higher identifier join the

other network one by one’. The lower-id network absorbs the
other network slowly: the nodes at the border will first join the
other network, and then their neighbors join them recursively.

Dealing with Split Networks. Here, we describe how we
deal with network partitioning. Intuitively, each partition can
keep its addresses, but one of the partitions will need to change
its network identifier. In this situation, there are generally
no constraint violations. This reduces to the case where the
node with the lowest identifier leaves the network. Since
the previous lowest identifier node is no longer part of the
network, the routing update from the new lowest identifier
node can propagate through the network until all nodes are
aware of the new network identifier.

Loop-free Routing. We will now discuss how we detect
and effectively avoid routing loops, which are a concern to all
Distance Vector based protocols. Note that traditional schemes
detect loops at the node level [12], but such an approach could
not work here, since the routing table contains prefixes only,
and not actual node addresses. The key idea here is that a
path should not enter the same address subtree twice. In other
words, the loop freedom is resolved at the subtree or prefix
level.

A field in every entry of the routing table keeps track of
the subtrees that that route advertisement has visited so far. A
received route advertisement is discarded if the advertisement
has previously visited, and left, the address subtree of the
receiving node, at any level. Thanks to the prefix subgraph
constraint, we can implement this efficiently by keeping a
travel log of only [ bits for every routing table entry.

In more detail, every time a route advertisement crosses a
border between two Level-k siblings, bit k£ in the travel log
of the advertisement is tested for routing loops. If it is set to
717, the advertisement is discarded. If the bit is set to 707, it is
changed to ”1” and bits (k—1)...0 are set to ”0”. This ensures
that the route cannot be propagated back towards its origin,
and effectively prevents the formation of routing loops®. In
addition, the lives of data packets are limited by a conventional
Time-to-Live field.

Balancing and Optimizing the Address Allocation. In
future versions of our protocol, we will include techniques for
optimizing the address allocation according to certain criteria.
So far, our mechanisms aim only to maintain legitimate
addresses, and they typically only need to respond to link
breakage and link formation events. As described above, we
currently greedily minimize the expected size of the resulting
routing table at each node. However, we may want to reallocate
addresses proactively to improve: a) the balancing of the
address tree, and b) the length of the routed paths. Our current
approach does not consider the path stretch caused by route
aggregation and thus may not provide an optimal choice based

7Ideally, we would like to use the network size as a joining criterion in order
to minimize the number of nodes that need to change addresses. Although
we are investigating this option, the cost of determining the network size may
not be worth the effort.

8In mobile topologies, where addresses change frequently, this technique
cannot completely guard against temporary routing loops.



on the resulting path lengths. It is worth mentioning that even
without such optimizations, our scheme performs well.

IV. SIMULATION RESULTS

We conduct our experiments using two simulators. One is
the well known ns-2 network simulator. The other is a simula-
tor which we built to handle larger topologies, and to provide
a graphical user interface for interactive experimentation. We
initially developed our protocol using our own simulator, and
later wrote a wrapper” to embed it in ns-2. Our own simulator
runs the same address allocation and routing code that we use
in the ns-2 simulator, but replaces the intricacies of the mac
and physical layers with a simple reliable message exchange,
thereby improving simulation times.

In ns-2, we used the standard distribution, version 2.26. We
used the standard values for the Lucent WaveLAN physical
layer, and the IEEE 802.11 MAC layer code, together with a
patch for a retry counter bug recently identified by Dan Berger
at UC Riverside®. For all of the ns-2 simulations, we used
the Random Waypoint mobility model with 400 nodes and a
maximum speed of 10 m/s, a minimum speed of 0.5 m/s, a
maximum pause time of 25 seconds and a warm-up period of
3600 seconds!®. The duration of all the ns-2 simulations was
300 seconds'!, wherein the first 60 seconds are free of data
traffic, allowing the initial address allocation to take place and
for the network to thereby organize itself.

We used CBR, UDP sources, and the frequency of connec-
tion establishment was allowed to vary, by means of changing
the connection duration. However, we set the total offered
load to 12,000 packets of 512 bytes per simulation run, not
restricted to any particular source or destination. This works
out to 50 packets per second. The rate of each connection was
set to one packet per second.

This work studies only the address allocation and routing
aspects of our protocol, not including the node lookup layer,
which is replaced by a global lookup table accessible by all
nodes in the simulation. Although node lookup will incur extra
overhead, we do not expect it to have a major influence on
the general trend of the results, as discussed in [10].

A. Address Space Utilization

To evaluate the address space utilization effectiveness of the
heuristic address allocation scheme described in section III, we
used our custom made, high-performance simulator. We set up
a series of experiments in static topologies ranging in size from
12 nodes up to 4,000 nodes, and measured the average size
of the routing tables of all the participating nodes. In these
experiments, we used 64-bit addresses and chose parameters
such that the average node degree was between 6 and 8, which
is commonly used to ensure connectivity.

9 Available for download at http://www.cs.ucr.edu/dberger

10The minimum speed and the warmup period were used to avoid the speed
decay problem identified in [13]

1 lAlthough the de facto standard is 900 second simulations, we were forced
to reduce this to in order to limit execution times and log file sizes.
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stretch of 30-35%.

The routing table size indicates the number of empty sib-
lings, or equivalently, the number of “free” bits in a node’s ad-
dress, and is thus a good metric to determine the effectiveness
of the address allocation scheme. The average routing table
size is also a good indicator of the overhead traffic incurred at
each node, since empty entries can be communicated using a
single bit, and thus incur essentially no extra overhead. Figure
5 shows the results of these experiments. As we can see, the
average routing table size in all of our simulation runs falls
between log, n and 2log, n.

This clearly demonstrates that our current address allocation
heuristic results in an efficient use of the address space, which
results in compact routing tables in the participating nodes.
Due to time and hardware constraints, we were unable to
perform simulations with more than 4,000 nodes, but we
expect larger simulations scenarios to show the same general
trend.

B. Path Stretch due to Aggregation

The use of routing by address prefix is a potential source of
routing inefficiency, since we don’t keep track of the optimal
route for every destination. This effect is called path stretch,
and is defined as routing path length over shortest path length.
We created a set of static random topologies with sizes ranging
from 125 to 1000 nodes. We then sampled the path stretch
between 1000 randomly selected node pairs. Figure 6 shows
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the average path stretch as network size increases. We see a
30-35% increase in the average path length across the board,
due to the extensive route aggregation necessary to achieve
logarithmic routing table sizes. This comes out to 3-4 hops in
a 1,000 node network, or 1-2 hops in a 100 node network.
To put this in perspective, 20% of paths in the Internet see a
stretch of more than 50% due to policy routing [14].

However the path stretch exhibits an interesting asymmetry;
by measuring path stretch in both directions, we determined
that one direction had a path stretch of 50%, whereas the other
direction saw a stretch of 15%. We expect to be able to use this
to our advantage on bi-directional connections, such as TCP,
through the use of loose source routing, to bring down the
average path stretch. In addition, our current work does not
optimize the address allocation with respect to path length.
Such techniques are part of our future work, and outside the
scope of this paper.

C. Routing Performance Scalability

We initially set out to perform large scale simulations with
several thousand nodes in ns-2. However, this quickly turned
out to be infeasible due to scalability issues in the simulator
itself, and we had to find alternative ways of getting our results.

We define frequency of connection establishment (CEF)
as the number of connection establishments that occur in
the entire network, per second. We expect CEF to increase
with the network size: If every node has a small probability
of establishing a connection at any given time, CEF will
clearly grow linearly with network size. One could also argue,
similar to Metcalfe’s Law, that CEF would increase with the
number of node pairs in the network, that is, quadratically.
Therefore, to simulate the performance of our protocol in a
larger network, using limited time and resources, we resorted
to simulating 400 node networks with a varying CEF.

By varying the length of the connections, we were able to
keep the offered load constant while simulating connection
establishment frequencies ranging from once every 2 seconds,
to 50 per second. In the graphs, our results are shown under
the name DART.
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Fig. 8. Overhead vs. Connection Establishment Frequency. Although AODV
achieves higher throughput for low connection establishment frequencies, it
has consistently, and considerably, higher overhead.

While our proactive protocol has essentially no connection
setup cost in terms of packets'?, the overhead of setting up a
connection in AODV and DSR can be high, so we expect the
performance of both AODV and DSR to drop with increased
CEF. As figure 7 clearly shows, our protocol begins to perform
significantly better when CEF>3. This corresponds to every
node establishing a connection once every 2 minutes in a
400 node network, once every hour for 11,000 nodes, or
once per day for a 260,000 node network. Since there is
no connection establishment overhead, CEF has no effect on
the performance or overhead (see fig 8) of our protocol. As
expected, higher frequency causes a high total overhead in
AODYV, but somewhat surprisingly, AODV manages to achieve
comparatively good performance for moderately low (1-2 per
second) frequencies.

The average path stretch of 30-35%, led to lower throughput
for our protocol when compared to AODV in low connec-
tion establishment frequency scenarios, even though AODVs
overhead was consistently higher. Path stretch optimizations
should help bring our throughput close to that of AODV in
lower connection establishment frequency scenarios as well.

V. OVERHEAD AND WORST CASE ANALYSIS

In this section, we analyze the performance of our address
allocation scheme analytically and with qualitative arguments.
The analysis suggests that dynamic addressing seems very
promising for scalability.

First, we examine two types of topologies that pose a
challenge to our address allocation scheme. We provide a
solution to the case of star-like topologies, and argue that string
topologies can be expected not to be a problem in realistic
scenarios.

Second, we compare the overhead incurred with proactive
and reactive ad hoc routing protocols. We develop an analytical
framework and find the regime in which proactive protocols
are more efficient than their reactive counterparts in terms of
overhead. We argue that operations in this regime are typical
in practical, large scale, scenarios.

12We expect the lookup operation to have an overhead on the order of a
single return trip packet to the final destination.



A. Topology and Address Allocation

We examine the efficiency of dynamic addressing in terms
of the address space we need for assigning legitimate unique
addresses to n nodes.

Lower bound. How many bits of address do we need
in order to give every node in a size n network a unique
address? The tight lower bound is obviously log, n bits.All
flat addressing schemes can be expected to achieve this lower
bound.

Dynamic addressing needs a larger address space given the
prefix subgraph constraint. The constraint precludes nodes that
are far apart from having nearby addresses in the address
space. Therefore, any arbitrary available addresses is not
necessarily legitimate for any new or re-locating node.

How much larger can the address space become? This
depends on the topology of the network. We study some
typical and extreme topologies to obtain an intuitive feeling.

Uniformly Random Topologies. For the case where the
network can be described as a uniformly random topology,
we refer to the simulation results in section IV. These results,
although clearly representing sub-optimal solutions, neverthe-
less show an average routing table size of less than 2logy n,
or O(log, n).

Star-like Topologies. A star topology presents a differ-
ent challenge for dynamic addressing. A star consists of
one central node in the middle, and a large number of
peripheral nodes connected to the central node without hav-
ing any connectivity between themselves. Due to the prefix
subgraph constraint, the peripheral nodes cannot belong to
the same address subtree, unless the central node is in-
cluded. Assuming that the central node has address [000..0],
its neighbors will be compelled to choose addresses like
[100..01,[010..0],[001..0]...[000..1]. There are only [/ such ad-
dresses, and this is the limit on the number of peripheral nodes
that we can support.

Is this a realistic scenario? We claim that for a high-degree
node with disconnected neighbors to exist, it must have more
than one network interfaces. We then present a solution to this
specific problem. The solution depends to some extent on the
type of network, the related technology, and the environment
of deployment.

Omnidirectional antennas. The star-like topology is not a
concern in a typical ad hoc network with omnidirectional
antennas. In this context, it is unrealistic to have more than
a handful of neighbors that do not hear each other'3. If we
consider natural obstacles and other effects, the number of
such neighbors can increase, but we need a really peculiar
landscape for the number to become large.

Multiple Network Interfaces. Due to the inherent scalability
problems in today’s wireless MAC and physical layers, we are
compelled to consider networks where wires and fixed direc-
tional antennas play a role in providing additional bandwidth.

B3This is easily proven with geometry. In the simple case, one can show
that this number is at most 5.

This could, for example, involve a purely wired router
with several wired interfaces, a wireless base station, or a
wireless node with directional antennas. In these cases, the
node could have an arbitrary number of neighbors that would
be disconnected were it not for this node.

The solution, which solves this problem completely, is
to assign a distinct address to each network interface. The
node with several interfaces can assign valid addresses to
its interfaces according to any criteria it wishes, and, most
importantly, can balance the address space across all the
interfaces. By enforcing a locally balanced address space, it
ensures a locally optimal address allocation, thereby almost
completely eradicating the risk of running out of address
space.

String topologies. A string topology is our worst case
scenario. This is not due to the prefix subtree constraint, but is
specific to the particular order in which we choose to assign
addresses in the current version of our protocol. Consider a
string of nodes ug, uq, ..., u,—1, placed in that order. Assume
that ug initiates the network, and takes address [000..0]. Then
the subsequently joining nodes, will get addresses [100..0],
[110..0],[111..0]...[111..1], for uy to w,_; respectively, ac-
cording to our address allocation scheme.

With [-bit addresses, the address space could potentially be
depleted at the most recently joined node when the network
size is [ + 1. With [ = 128, the routing table can hold strings
of at least 129 nodes, and at most 256 nodes, depending on
the position of the [000...0] node. One might expect that string
topologies of this length will be extremely uncommon.

In section VI, we describe a patch that can enable nodes
to join and communicate without having a unique address, by
sharing an address with a neighbor.

B. The Overhead of Proactive and Reactive Routing

Here, we make a comparative analysis of the communi-
cation overhead of reactive protocols and proactive protocols.
Our dynamic addressing falls in the proactive routing category,
which is often criticized as power inefficient, since they
exchange messages even when there is no traffic. Reactive
routing is widely regarded as the technique of choice for ad
hoc networks, but these protocols all rely on some form of
flooding to identify paths on demand. We will demonstrate that
the use of flooding for route establishment causes scalability
problems in large networks with many active connections.

The focus here is the communication overhead, which we
define as the number of non-data bytes transferred. This is
necessary to account for the size of the control packets, since
in some cases this increases with the size of the network. This
definition also captures the additional overhead of data packets
in source routing.

We start by identifying a key parameter: the arrival rate of
connections, or the connection establishment frequency (CEF).
The overhead of reactive protocols is tightly coupled with the
connection arrival rate. Each new connection requires at least
one route search which in the reactive protocols requires a



flooding of the network!'#, which uses O(n) messages in an n
node network. In a proactive protocol, the number of update
messages is O(n) per update period and it is independent of
the number of connections. Let us define one update period to
be our unit of time. Intuitively, if one flooding route lookup
is performed per unit of time by any node in the network,
reactive routing begins to exhibit higher message overhead
than proactive routing.

Note that the analysis here is qualitative. We attempt to
capture the general trends of the behavior of the two ap-
proaches. Although simplifications are inevitable, the analysis
is representative of the nature of the two approaches.

For simplicity, we do not consider mechanisms that do not
affect the asymptotic performance. For example, we expect
that route caching, path overhearing and local route repairs
can lead to significant, but nevertheless constant factor im-
provements.

Reactive protocol overhead. Let us define some parameters
that define the performance of the reactive protocols.

rre(n) The cost of a single route request.
cef(n)The rate of connection establishment.
rrr(n)The rate of repeated route requests.

Here, cef(n) is related to the size of the network, the total
offered load, and the average connection duration. rrr(n) is
primarily related to the size of the network and node movement
and other causes of route failure. Excessive offered load could
also have an effect since it is known to cause false link
failures in wireless networks. With the above definitions, we
can quantify the per-time-unit routing overhead, React(n), of
reactive protocols as follows:

React(n) = O(rre(n) - cef(n) +rre(n) -rrr(n)) (1)

Data Packet Overhead. Reactive protocols with source
routing can have significant data packet overhead. In source
routed protocols, such as DSR, the overhead of sending the
route with every packet dominates this equation when mobility
is low and traffic volume is high. The per-packet overhead
grows linearly with the path length,

PackOver(n) = O(path(n)).

How does the average path length, path(n), grow as a
function of the size? This depends on both the topology
and the distribution of pairs of nodes that communicate. For
asymptotic analysis, it is fair to assume that the average
distance between communicating pairs is a constant fraction
of the diameter of the network.

In a two dimensional ad hoc network with homogenous
omnidirectional nodes, we expect that the path length will be
path(n) = O(y/n) if the nodes are uniformly distributed. In
this environment, strict source routing is probably not feasible
for large networks. For the remainder of this discussion, we
will focus on the routing message overhead only.

14We can deploy caching, expanded ring search or other techniques in an
attempt to limit the extent of a flood, but asymptotically the cost is the same.

Proactive protocol overhead. The overhead of a proactive
protocol, can be described with a single parameter, size(n),
the average size of a single routing update. Hence, we have
the following formulation for the per-time-unit overhead of
proactive protocols,

Proact(n) = O(n - size(n)). (2)

Depending on the approach taken, the average routing table
size can vary significantly.

Flat addressing. Recall that some approaches for proactive
routing, such as DSDV [12], use flat addressing. The size of
the routing table, size(n), increases linearly with the number
of nodes n; size(n) = O(n). Asymptotically, for a really large
n, nodes are so busy transmitting the routing table, that they
cannot transmit anything else.

Dynamic addressing or hierarchical routing. As men-
tioned earlier in this section, the average routing table size
when using dynamic addressing is O(logn).

When do proactive protocols incur less overhead than re-
active protocols? The question is captured in the following
inequality.

Proact(n) < React(n) 3)

We need to assign values to these quantities in order to
identify the regime in which the inequality holds. As explained
above, it is reasonable to assume that the message overhead
of a reactive route lookup is: rrc(n) = O(n). Accordingly,
inequality 3, skipping the O-notation, and dividing by n,
becomes the following:

size(n) < cef(n) + rrr(n) 4)

We already know that for hierarchical routing based on
dynamic addressing, size(n) = O(logyn), so we arrive at
the following!:

logon < cef(n) + rrr(n) (5)

When is this condition satisfied? Clearly, it is true for a
sufficiently high connection establishment rate. We believe that
it is true in any realistic network for sufficiently large n. To
see why, consider a network where all nodes have a small,
constant probability of establishing a connection during a unit
of time. In this network, the connection establishment rate
increases linearly with network size, whereas the size of the
proactive routing updates grows logarithmically with network
size. According to asymptotic analysis, at some point the
cost of establishing connections in the reactive protocol will
surpass the cost of the periodic routing updates in the proactive
protocol. The actual sizes and connection establishment rates
necessary to achieve this depend on the protocols involved and

SHierarchical routing will invariably incur path stretch. However, our
simulation results indicate that path stretch is constant with respect to network
size in our protocol.



can be determined through experimentation. We conclude that
for sufficiently large networks and/or high connection estab-
lishment rates, proactive routing using our dynamic addressing
approach is likely to scale better than any purely reactive
routing protocol.

VI. DISCUSSION

In this section, we briefly discuss several optimization
mechanisms, and implementation issues for our addressing
approach. First, we outline ideas of how we can optimize
the routing update frequency by making it adaptive to the
network needs. Second, we discuss how we can improve the
network stability by assigning node identifiers according to
the expected behavior of the node. Third, we outline our on-
going efforts on security. Finally, we discuss implementation
issues of our approach and discuss its interoperability with the
Internet.

Optimizing Routing Updates. Here, we present two op-
portunities for improving the performance of our dynamic
addressing scheme.

Adaptive Routing Update Frequency. We are currently eval-
vating the merit of a locally adaptive scheme for the routing
update rate. Determining the correct frequency for the routing
updates is important for good performance. A fixed update
frequency will not be suitable for all operational conditions.
A high frequency means good response to highly mobile
scenario, but it could lead to waste of resources in a slower
moving phase.

Triggered Updates for Improved Convergence Time. We
are evaluating mechanisms to improve the convergence speed
of the routing information. Apart from the periodic updates,
we are considering triggered updates in response to routing
changes. Such a mechanism exists in DSDV, which also uses
periodic routing updates [12]. The downside is that triggered
updates increase the overhead of the protocol, and could cause
detrimental ripple effects throughout the network.

Assignment of Node Identifiers and Robustness. The
assignment of node identifiers can have significant impact on
the performance, since the “lower-id” rule is often used to
resolve a conflict. By assigning lower identifier numbers to
more reliable nodes, we can achieve increased performance
and stability. For example, stationary base stations are highly
reliable and less likely to move away. If we have several base
stations with low identifiers and interconnect them by reliable
means, we can ensure that the address space in an entire region
maintains a balanced and stable structure, even as high-speed
mobile nodes move through it.

In contrast, we want to assign high identifiers to “volatile”
devices such as mobile phones and PDAs. These move both
quickly and frequently, and are likely to be turned off. By
assigning higher identifiers to these types of units, their volatile
behavior will not affect the network at large. The assignment
of these identifiers can be done during manufacturing, just like
the MAC address of network interface cards.

Handling Address Space Exhaustion. We will now pro-
vide a solution to temporarily extend connectivity even when

the address space is locally exhausted. The key idea is that
an existing node can act as a gateway for a joining node
that cannot obtain a legitimate address. This is in many ways
similar to a Network Address Translation (NAT) firewall. As
far as the larger network is concerned, the gateway simply
has many identifiers mapped to its address. In the subnet on
the inside of the gateway node, a separate address space is
used, with plenty of space for new nodes. When a gateway
receives a packet from the larger network, it looks up the
“inner” address of the specified identifier, and forwards it to
this address in the inside network. We omit further details due
to space constraints.

Security. Our focus is to establish the feasibility of dynamic
addressing as a way to achieve scalability in ad hoc routing.
Security is a constraint that needs to be addressed in a practice,
but it extends beyond the scope of this paper. The goal of
our current security work is to provide the routing layer
with “sabotage resistance”. Here, sabotage resistance means
a robustness against false route advertisements, such that an
attacker can only affect a limited portion of the network, over a
limited time span. Recently, several pioneering routing security
approaches have been developed [15] [16] [17] [18] and we
are using their results to guide our effort.

Implementation and Deployment Issues. We intend to
develop and release a prototype implementation of our pro-
tocol for Linux and Mac OS X in the near future. For a
realistic implementation of the protocol, it will be crucial to
be able to: (i) support the use of IP-based applications such as
web browsers and email readers, (ii) provide a way to access
Internet resources, and (iii) connect several of these networks
over the Internet.

We expect to solve (i) by hiding the workings of our
routing protocol to the application layer. Essentially, we let
the node identifiers be IP addresses in the 10.* . * %10
range, and wedge our routing layer between the IP and mac
layers in the protocol stack, thereby hiding the dynamically
allocated routing address from the higher layers and preserving
compatibility. Issue (ii) can be handled by Network Address
Translation on gateway nodes connected to the Internet. Fi-
nally, our plan is to solve (iii) by way of an overlay network of
gateways that tunnel packets through the Internet. All of these
solutions are proven techniques, and this makes the integration
our protocol with the current Internet infrastructure a feasible
goal.

VII. RELATED WORK

In most common IP-based ad hoc routing protocols [19]
[12] [20], addresses are used as pure identifiers. Without
any structure in the address space, there are two choices:
either keep routing entries for every node in the network,
or resort to flooding route requests throughout the network
upon connection setup. Neither of these alternatives scale well.
Other protocols [21] [22] use geographic location information
to assist in the routing, and thereby try to achieve scalability.

16This is range of addresses reserved for local use in IP networks.



However, this approach can be severely limiting as location
information is not always available and can be misleading in,
among others, non-planar networks. For a survey of ad hoc
routing, see [23].

In the Zone Routing Protocol (ZRP) [24] and Fisheye State
Routing (FSR) [25], nodes are treated differently depending
on their distance from the destination. In FSR, link updates
are propagated more slowly the further away they travel from
their origin, with the motivation that changes far away are
unlikely to affect local routing decisions. ZRP is a hybrid reac-
tive/proactive protocol, where a technique called bordercasting
is used to limit the damaging effects of global broadcasts.

Some work has been done on using clustering in ad hoc net-
works. In multilevel-clustering approaches such as Landmark
[26], LANMAR [8], L+ [27], MMWN [6] and Hierarchical
State Routing (HSR) [7], certain nodes are elected as cluster
heads (also called Landmarks). These cluster heads in turn
select higher level cluster heads, up to some desired level.
A node’s address is defined as a sequence of cluster head
identifiers, one per level, allowing the size of routing tables to
be logarithmic in the size of the network, but easily resulting
in long hierarchical addresses. In HSR, for example, the
hierarchical address is a sequence of MAC adresses, each of
which is 6 bytes long.

A problem with having explicit cluster heads is that routing
through cluster heads creates traffic bottlenecks. In Landmark,
LANMAR and L+, this is partially solved by allowing nearby
nodes route packets instead of the cluster head, if they know a
route to the destination. All of the above schemes have explicit
cluster heads, and all addresses are therefore relative to these,
and are likely to have to change if a cluster head moves away.
This reliance on cluster head nodes makes the above schemes
best suited to scenarios involving group mobility, such as troop
movements.

Area Routing, as described by Kleinrock and Kamoun in
[28], is the method most similar to the one used in today’s
Internet. Here, nodes that are close to each other in the network
topology have similar addresses, without any explicit hierarchy
of nodes. Our work is, as far as we know, the first attempt to
use this type of addressing in ad hoc and mesh networks.

VIII. CONCLUSION

In this paper, we propose dynamic addressing as a building
block for scalable ad hoc routing. We outline the novel
challenges involved in a dynamic addressing scheme, and
proceeded to describe efficient algorithmic solutions. We show
how our dynamic addressing cansupport a scalable routing
scheme. We demonstrate, through simulation and analysis, that
our approach has excellent scalability properties and is a viable
alternative to current ad hoc routing protocols.

In more detail, we qualitatively compare proactive and
reactive overhead and determine the regime in which proactive
routing exhibits less overhead that its reactive counterpart.
Large scale simulations show that the average routing table
size grows logarithmically with the size of the network.
Further simulations show a constant average path stretch of

about 30-35%, which is reasonable when compared to what
is observed in the Internet today. Using the ns-2 simulator,
we compare our routing scheme to AODV and DSR, and
observe that our approach achieves superior throughput under
conditions similar to those of large networks. Finally, we
describe a number of proposed optimizations to the current
protocol, which can further improve the performance of our
dynamic addressing approach.

The motivation behind this work was to challenge the status
quo in ad hoc routing. We believe that dynamic addressing has
the potential to bring ad hoc routing to the point where it can
be used in massive ad hoc and mesh networks.
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