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Abstract

In this paper, we develop methods to ‘‘sample’’ a small realistic graph from a large Internet topology. Despite recent
activity, modeling and generation of realistic graphs resembling the Internet is still not a resolved issue. All previous work
has attempted to grow such graphs from scratch. We address the complementary problem of shrinking an existing topol-
ogy. In more detail, this work has three parts. First, we propose a number of reduction methods that can be categorized
into three classes: (a) deletion methods, (b) contraction methods, and (c) exploration methods. We prove that some of them
maintain key properties of the initial graph. We implement our methods and show that we can effectively reduce the nodes
of an Internet graph by as much as 70% while maintaining its important properties. Second, we show that our reduced
graphs compare favorably against construction-based generators. Finally, we successfully validate the effectiveness of
our best methods in an actual performance evaluation study of multicast routing. Apart from its practical applications,
the problem of graph sampling is of independent interest.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Small graphs that resemble the Internet topology
are required in conducting simulations of various
network protocols. Real graphs can have prohibi-
tively large sizes, especially for highly detailed simu-
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lations such as packet level simulations. To produce
high confidence results, one averages the experimen-
tal results over many graphs of a given size. Run-
ning the experiments over a range of sizes allows
researchers to interpolate the results to graph sizes
outside the tested range. In particular, it shows
whether the performance of the tested protocols
scales well with increasing size, leading to more
accurate performance predictions for the Internet
graphs of the future.
.

mailto:michalis@cs.ucr.edu


V. Krishnamurthy et al. / Computer Networks 51 (2007) 4284–4302 4285
Currently, all known models for graph genera-
tion incrementally grow a graph with desired prop-
erties. Our work follows the opposite approach: we
wish to reduce real large Internet instances to pro-
duce small realistic topologies. This task can be
thought of as graph sampling, and it has attracted
attention in other settings [26,27].

Interestingly, among the existing Internet topol-
ogy generators, none has yet been widely accepted
as sufficiently accurate. These generators produce
arguably realistic graphs, but they do not necessar-
ily match all the known topological properties of the
Internet. Most graph generators currently in use
grow a graph incrementally, an approach that we
call constructive. This area has seen unprecedented
activity since the discovery of skewed degree distri-
butions in the Internet topology [17]. The generators
either use ‘‘biased’’ or preferential growth policy
[2,5,8,16,35] or force a power law degree distribu-
tion [1,24]. These constructive method produce syn-
thetic graphs by focusing on matching their degree
distributions with that of real Internet instances,
and they often fail to match other topological prop-
erties, as multiply documented in [8,12,22,24,45].

In this paper, we address the following problem:
we want to ‘‘sample’’ a real topology1 to produce a
smaller graph. We examine the topology at the
inter-domain or Autonomous Systems (AS) level,
as we explain later. The overarching goal of our
approach is very practical: we want the simulations
on the sampled graph and the initial larger graph to
lead to the same conclusions.2 This is a novel
problem in the Internet modeling community,
although some related work in other areas exists
[26,27,32,29]. We call our approach of generating
a graph reductive. Very informally, the intuition is
that our approach should ensure that it does not‘‘-
destroy’’ the existing properties, and it is reasonable
to expect that a suitably refined and statistically fair
1 To make it more specific, the current Internet has more than
18,000 Autonomous Systems. The smallest available Internet
instance (from 1997) has about 3300 nodes, but even this size is
computationally expensive, if not prohibitive, for some types of
simulations such as BGP simulations or flow level simulations
[14,43,21].

2 The outcome of a simulation study is usually: (a) an observed
trend or a relationship between two model parameters, and (b)
the order of protocols according to a performance metric. We
want the simulation on the reduced graph to lead to the same
outcome as the simulation on the larger graph. This provides an
additional indication that the reduced graph will be useful in
simulation studies.
reduction method should be able to accomplish this
task. In contrast, the constructive methods face the
challenge of first identifying and then reproducing
all the right properties.

How do we evaluate the success of our approach?
Establishing criteria for the realism of a generated
graph is an open ended problem. In the case of graph
sampling, the question becomes more involved:
which Internet instance should the reduced graph
try to match? One can distinguish two objectives:
we can either try to match the properties of

• the real Internet instance of the same size (thus
‘‘reversing’’ the evolution of the Internet), or

• the initial instance (thus producing its small
imitation).

If the properties do not change with size, then
both goals are equivalent. However, no obvious time
independent topological metrics seem to exist [23].
Studies [23] suggest that even though every Internet
instance at the AS level has power law characteris-
tics, there exists a variation in the value of the slope.
Thus, we chose the first method above, and we com-
pare the reduced graph with an equal size real Inter-
net instance. We use two types of metrics for
comparing graphs. The first type includes various
graph invariants, for example average degree. The
second type of metrics is based on comparing the rel-
ative performance of two multicast routing proto-
cols in the two graphs. It turns out that for these
metrics the performance results on the large Internet
is comparable with those on the smaller Internet
instance. This simplifies the comparison: the metrics
on the reduced graph should match the performance
of the larger Internet. Note that in our study we con-
sider the metrics that have been suggested, selected
and widely used by research efforts that study the
topology of complex networks as in [8,16,35,1,24,
42,34] and in the related book [39].

The contribution of this paper is three-fold: (i) we
provide efficient graph sampling algorithms, (ii) we
compare our reduction methods against construc-
tive methods, and (iii) we compare our graphs using
network protocol simulation.

1.1. Graph sampling algorithms

As our main contribution, we develop and
quantify the performance of a number of reductive
methods. We group these methods into three main
categories: (a) deletion methods, (b) contraction
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methods and (c) exploration methods. Our work
yields the following results:

• Our best methods reduce the graph size by up to
70% in the number of nodes, while faithfully pre-
serving all desired topological properties. Our
methods seem statistically robust to the initial
topology and the randomization seed.

• We show analytically that some of our methods
will maintain the power law of the degree distri-
bution, if such a distribution exists in the initial
topology.
1.2. Comparison of reductive and constructive

methods

We compare our best reduction methods with
commonly used constructive methods and find that
our methods match more accurately the properties
of the real Internet instances. Among the construc-
tive methods, we find Inet [24] to perform best. Inet
takes as input the available real instances. However,
Inet does not generate graphs with less than 3300
nodes, while our methods can produce arbitrarily
small graphs.

1.3. Network protocol simulation

We successfully validate the effectiveness of our
best methods in a real-world performance evalua-
tion of multicast routing. The performance compar-
ison leads to the same conclusions3 using the
reduced graphs as with the real Internet instance.
For example, we see that the behavior of the multi-
cast protocol in the real and the reduced graph (with
our best method) is similar, as we see later in detail.
We consider this to be supplementary evidence for
the validity of our approach.

In carrying out this work, we develop a software
tool with these graph reduction capabilities, which
we provide as an aid towards efficient and realistic
simulations. The tool has already been used success-
fully for research purposes in a few studies in our
institution. Our tool will be publicly available for
research purposes. Finally, note that this work is a
more extended version of our earlier work [28]. This
version has: (a) the complete proof in Section 4,
which was omitted in the earlier version, (b) a more
3 However, we agree with Floyd and Paxson’s opinion that
simulations should be used mainly for qualitative and trend-
related conclusions [18].
extensive set of experiments and plots, namely 12
more plots, and (c) a more comprehensive list of
previous and related efforts.

1.3.1. Our work in perspective

We compare the performance of our reductive
methods with constructive methods and find that
our approach works favorably. It is worth noting
that the reductive approach has two additional
attractive properties:

• A ‘‘statistically fair’’ reduction may preserve
many graph properties, including some that we
have not used for our metrics, or even some
properties that we have not yet identified.

• The reductive method is likely to extend to differ-
ent types of graphs, for example, the policy-based
Internet topology, or the Web graph.

Graph sampling can be used as a tool to provide
insight into the topological properties and structure
of the graph. Finally, sampling can also comple-
ment a visualization effort, when the sizes are too
large for a meaningful graphical representation.

We stress that the reductive approach should not
be thought of as a ‘‘competitor’’ to the constructive
generators. Rather, both approaches complement
each other, and, comprehensive studies may want
to employ both types of generators to produce a
variety of graphs for simulations.

The rest of the paper is organized as follows.
In Section 2, we present the necessary background.
In Section 3, we describe our reduction methods. In
Section 4, we provide analytical arguments for the
preservation of the degree distribution’s power law.
Section 5 discusses the performance of our methods
with respect to various topological metrics. In Sec-
tion 6, we compare our reductive approach to the
constructive methods. In Section 7, we use our best
methods in multicast routing study. Section 8 con-
cludes the paper and proposes some future work.

2. Background and metrics

In this section, we introduce the topology model
and several graph properties, which we use to eval-
uate the realism of our graphs.

2.1. Internet instances

The Internet is divided into autonomously
administered domains or Autonomous Systems
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(AS). In our study, we focus on the AS level topol-
ogy. We model the Internet as an undirected graph
whose nodes are AS’s and whose edges are inter-
domain connections. We note here that there have
been efforts [20,31,6] to model the Internet as a
directed graph by including business relationships.
Whether our reductive methods extend to the direc-
ted model is a topic for further research.

Our real data come from the Oregon Routeviews
project [19]. This is the archival data used frequently
by researchers in this area and the only data archive
that has instances spanning over 5 years. This data
is specifically chosen for our study as we need a wide
range in the size of the Internet topology. This was
the reason why we could not use the [12] archive
which spanned only over three months. Internet
instances are labeled in the format IYYMMDD,
where YYMMDD represents the collection date,
with year, month and day represented by the two
last digits each. For example, the instance collected
on 07 May 2001 is named I010507. We use real
Internet instances [19] from November 1997 to
March 2003 in our experiments.

Note that in our study we use a large number of
Internet instances spanning 6 years of the topologi-
cal evolution namely from 1997 to 2003. Because of
that, we are confident that our results are relevant to
a narrow window of the evolution of the topology.
Here, we mainly work with the evolution over the
time span 1997–2001, but we also examine instances
obtained4 in 2003.
2.2. Graph properties

There are several graph properties that are used
to capture the nature of real graphs. We use most
of the known metrics to compare the realism of
reduced graphs [17,22,40]. These properties are con-
sidered necessary, but may not be sufficient to guar-
antee the realism of the produced graphs.
5 Chen et al. [12] created a more complete Internet graph at the
BGP level, but recent work by Siganos et al. [23] shows that the
power laws hold with 99% correlation coefficient even with the
new graph.

6 We use the reverse cumulative distribution function of power
2.2.1. Average degree and its standard deviation

The average degree of a graph is defined as 2m/n,
where m is the number of links and n is the number
of nodes. We use this as a metric to compare the
density of the reduced graphs with the real Internet
topology. It has been noted that the average degree
4 Note the reviewers: we will be happy to repeat our exper-
iments with more recent instances, but we are confident that the
results will not change in any significant way.
increases over time, as the size of the Internet graph
increases, growing from 3.42 in November 1997 to
3.93 in November 1999 (15% growth). At the same
time, the size of the Internet approximately doubled
(100% growth). To measure how the degrees are dis-
tributed around the average, we also examine the
standard deviation of the degree.

2.2.2. Degree distribution

Power laws have been used to approximate5 the
skewed degree distribution [17], which is empirically
observed. Here, we focus on power law 1, the degree

rank exponent and power law 2, the degree exponent.
Degree rank exponent is defined as the slope of log–
log plot of the nodes’ degrees versus their rank,
where the kth ranked node is the one with the kth
highest degree. Degree exponent6 is the slope of
the log–log plot of the degree frequency versus
degree. Note that the two power laws are theoreti-
cally equivalent, if the distributions are perfect
power laws. In practice, they provide slightly differ-
ent approximate views of the real degree distribu-
tion.7 In this metric, we check the existence of
power laws and then compare the value of the expo-
nent of the power laws [36]. Power laws are approx-
imations whose accuracy is typically quantified by
the correlation coefficient. The correlation coeffi-
cient is a metric of the accuracy of the approxima-
tion and an coefficient of more than 97% is often
considered a reasonable approximation.

2.2.3. Spectral analysis

Gkantsidis et al. [22] characterize the clustering
and spatial properties of a topology using spectral
analysis of the adjacency matrix of a graph. Spectral
analysis captures significant information about the
clustering properties of the topology. It subsumes
the clustering coefficient metric that was used before
[8].

In more detail, spectral analysis examines the
eigenvectors corresponding to the largest eigen-
values of the normalised transposed adjacency
law 2, which is more robust than the cumulative distribution
function [23].

7 The correlation coefficient of the power law fit was verified by
the authors of [12], who use more metrics to examine the quality
of the fit.
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matrix of an entire topology. The plot depicts a num-
ber (say, 100) of the largest eigenvalues, which corre-
spond loosely to the eigenvectors of the main clusters
in the topology. It is found that the clustering prop-
erties (the corresponding plot) have not changed sig-
nificantly despite the Internet growth [22].

2.2.4. Neighborhood function and hop-plot

The neighborhood function G(h) is defined as the
number of pairs of nodes within at most h hops
from each other [17]. The neighborhood function
is a measure of the fan-out of the graph. The distri-
bution of distances and hop-plot does not change
over time [23], which makes it a good metric for
comparison. Here we plot the percentage of node
pairs reachable from each other within h hops.

Note that more recently there have been some
other metrics that have been proposed for the com-
parison of graphs [34], and a new approach for gen-
erating graphs [33] based on the correlations of the
degree of neighboring nodes.

2.3. Graph generators

Early graph generators failed to match the
skewed degree distribution [9,15,48,49]. Several
recent generators build topologies with power law
degree distribution in mind [1,5,8,24]. The pioneer-
ing Barabasi–Albert model [5] generates a graph
through preferential attachment: in attaching new
nodes to existing ones, it favors high-degree nodes.
Mitzenmacher provides an overview of current
methods to generate power law distributions [38].

To illustrate the advantages of our methods, we
compare the topology obtained by reducing the
AS level Internet topology using our best reduction
method with similar graphs generated by Inet [24],
Waxman, Barabasi and the modified GLP heuristic
[8].

Note that other generators and studies focus at
the topology of the Internet at the router level,
where each node represents an Internet router [30].
The topologies of interest are different in nature
with the ones we examine, since they model the
Internet at a different level of granularity, where
the nodes (routers) have physical limitations in their
ability to have large degrees.

2.4. Graph reduction

The problem of graph reduction and sampling
appears in other disciplines, although with different
objectives. For example, graph sampling has
been used in graph partitioning in the context of
distributed computing [26,27]. Randomized graph
sampling has been used to solve different graph
problems such as min-cut approximation [25].
Despite some algorithmic similarities, these methods
cannot be applied directly to our graph reduction
problem. More recently, and after the conference
version of our work [28], a datamining study [29]
examines sampling of large graphs of multiple dif-
ferent origins.
2.5. Multicast routing

As an additional test of our reduction methods,
we performed some specific network simulations,
to see whether the experimental results are similar
for the real and synthetic graphs. We first use our
graphs in comparing two different multicast routing
algorithms, namely, source based tree (SBT) and
core based tree (CBT) [3,47]. Then, we compare
the efficiency gain of multicast routing over unicast
routing for reduced and real graphs to evaluate our
graph reduction methods.

We choose to use a performance evaluation
of multicast routing algorithms, which has been
a research topic8 [7,47,11]. The reason is that
multicasting is more sensitive to the topological
properties of the graph compared to point-to-point
connections [9]. In a nutshell, multicast routing
establishes a communication tree between a group
of member nodes. There are two approaches for
supporting many-to-many group communications,
where every member is also a source of data. The
Source Based Tree (SBT) approach creates a
separate tree for each source. The Core Based
Tree (CBT) approach creates a single bidirec-
tional tree which carries the data packets of all
sources.

We compare the two routing protocols using
commonly used metrics. We do not argue that these
are the most important metrics in a multicast simu-
lation. However, these are metrics that have been
used in multicast protocol evaluations [10,47,49]:

Delay ratio: For a distribution tree, we measure
the average delay from a source to a receiver. This
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metric captures the end-to-end delay that each recei-
ver experiences, which is important for real-time
interactive applications. For simplicity, we assume
that the delay of a path is proportional to the path
length. The delay ratio is the average SBT delay
over the average CBT delay.

Tree cost ratio: The tree cost is measured by the
number of links in a multicast distribution tree. It
quantifies the efficiency of the routing scheme. The
tree cost ratio is the average SBT tree cost over
the CBT tree cost.

Finally, we compare our graphs using multicast
efficiency metric, which is normally measured by
the ratio of the total number of multicast links in
the distribution tree to the total number of unicast
hops [11,13]. Chuang and Sirbu [13] proposed a
power law relationship to express multicast effi-
ciency in terms of the number of members (or group
size). It was later proved by a more rigorous study
[41,37] that Chuang–Sirbu power law is a reason-
able approximation for multicast groups of small
to moderate size. We use the multicast efficiency
of SBT-based multicast routing algorithm and its
power law exponent to validate the effectiveness of
our reduction methods.
3. Graph reduction methods

This section presents our approach for sampling
a real AS level Internet topology. Our methods
fall into three categories: (a) deletion methods, that
remove edges or nodes from the graph, one by
one, until a desired size is reached, (b) contraction

methods, that contract adjacent nodes, step by step,
until a desired size is reached, (c) exploration meth-

ods, that traverse a desired number of nodes accord-
ing to a given exploration policy, and retain the
subgraph induced by those nodes. For consistency
of notation, we abbreviate the methods starting with
the letter that indicates the category they belong to:
D for deletion, C for contraction, and E for
exploration.

3.1. Deletion methods

Our deletion methods are embedded in the fol-
lowing framework: we reduce the graph iteratively
by removing a percentage of the graph in each stage.
The input is the initial graph G with n nodes and m

edges, the percentage s of nodes that has to be
removed at every stage, and the total percentage P
of nodes to be deleted from the graph. A stage con-
sists of several steps, in which we remove either one
edge or one vertex selected according to the method.
After each stage, connected components are found
and the largest connected component is retained.
The procedure stops when the graph G reduces to
a graph with approximately n(1 � P/100) nodes.
By reducing a small percentage s of the graph in
each iteration, we are able to meet the target size
more accurately. In practice, a reduction of 3–5%
of the nodes at each stage was sufficient to achieve
the desired reduction. We calculate the size of the
remaining graph only at the end of each stage in
order to speed up the process. The deletion methods
we study are:

Deletion of random vertex (DRV): Remove a ran-
dom vertex, each with the same probability.

Deletion of random edge (DRE): Remove a ran-
dom edge, each with the same probability.

Deletion of random vertex/edge (DRVE): Select a
vertex uniformly at random, and then delete an edge
chosen uniformly at random from the edges incident
on this vertex.

Hybrid of DRVE and DRE (DHYB-b): In this
method, with probability b we execute DRVE
and with probability (1 � b) we execute DRE. In
particular, DHYB-1 is DRVE, and DHYB-0 is
DRE.

The hybrid method was motivated by our initial
studies showing that DRVE and DRE had opposite
performances with respect to our metrics, namely
when one of them underestimated a metric’s target
value then the other overestimated it. We consider
nine values of b in our experiments, ranging from
0 to 1.0 in increments of 0.1. For clarity, we show
only a subset of those here.

3.2. Contraction methods

These methods proceed by contracting adjacent
nodes. The two methods below differ in the manner
their connecting edge is chosen:

Contraction of random edge (CRE): Pick a ran-
dom edge, uniformly, and contract its endpoints.
The neighbors of all the merged nodes become
neighbors of the new node.

This method bears some similarities to the ran-
dom matching method [27] and the edge coarsening
method [26]. We also considered a generalization of
the CRE method, where more neighbors contract all
at once, but the results were not satisfactory and are
not shown here.
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Contraction of random vertex/edge (CRVE): Pick
a random vertex, uniformly, and contract it with a
uniformly-chosen random neighbor.

3.3. Exploration methods

Here, we pick an initial node randomly, traverse
the graph according to a given exploration method,
until a desired number of nodes is visited. We then
retain the subgraph induced by these nodes: all
nodes that have been visited and the edges between
them are retained in the final graph. We study two
ways to explore a graph:

Exploration by breadth-first search (EBFS): Ran-
domly select a start node, and then do breadth-first
search starting from that node, until the desired
number of nodes have been visited.

Exploration by depth-first search (EDFS): Ran-
domly select a start node, and then do a depth-first
search starting from this node (following a random
yet non-traversed edge at each forward step), until
the desired number of nodes have been visited.

4. Analysis and proofs

We now prove that two of our reduction meth-
ods, DRE and DRV, preserve the degree power
law. More specifically, we show that if an original
graph G satisfies the power law, then the reduced
graph G 0 satisfies it too, with the same exponent.

Let G denote the original graph with n vertices
and m edges. By nd we denote the number of nodes
of degree d, and by dave the average degree. These
quantities are related to each other by n ¼

P
dnd ;

m ¼ 1
2

P
ddnd , and dave = 2m/n.

The symbols n 0,m 0, n0d ; d 0ave denote the corre-
sponding values in the reduced graph G 0. Since
our reduction methods are probabilistic, these sym-
bols actually represent expected values of the corre-
sponding random variables.

We assume that the degree sequence of G satisfies
the power law in the following form:

nd ¼ Cnd�a; ð1Þ

where C ¼
Pn

d¼1d�a
� ��1

and a > 1 is the degree
exponent. We wish to show that a similar property
holds in G 0. (Of course, power laws are empirical
and they are true only approximately. In fact, the
value of Cnd�a in (1) may not even be integer. For
convenience, we write (1) as an equation. One can
then think of the nd’s as an approximation to the de-
gree sequence, not the sequence itself.)
4.1. DRE and power law preservation

The DRE method, as implemented in our exper-
iments, removes edges at random, one at a time,
and retains the largest connected component. This
process, in its raw form, is not amenable to analyt-
ical studies, as the degree distribution of the elimi-
nated nodes depends on (unknown) topological
properties of G. To facilitate the analysis, we will
approximate DRE by another process that is easier
to analyze. This approximation will proceed in sev-
eral steps.

First, we ignore the fact that DRE removes the
nodes outside the largest connected component,
and study instead the degree distribution among
all the vertices of G, after the edges are deleted.
Thus, throughout this section, G 0 has the same ver-
tex set as G and n 0 = n. This simplification is justi-
fied by experimental results showing that the
nodes eliminated by DRE have very low degree
(most are, in fact, one-degree nodes), so this simpli-
fication should not affect the asymptotic behavior of
the degree distribution.

Let p = m 0/m. We can think of p as a probability
of an edge being retained in the graph. Thus, in the
second approximation, instead of removing edges
one by one, we will flip a coin for each edge, inde-
pendently, and remove each with probability
q = 1 � p. Although this does not guarantee that
the resulting graph will have exactly m 0 edges, its
expected number of edges is heavily concentrated
around m 0, and the two processes have asymptoti-
cally the same behaviors.

4.1.1. Informal argument

Our goal in this section is to show that in G 0 the
degrees satisfy n0d ¼ C0n0d�a, for some constant C 0.
The general idea of our proof is summarized as fol-
lows. Suppose that n is very large and 1� d� n.
Roughly speaking, nodes in G with degree around
d/p, say between d � 1

2

� �
=p and d þ 1

2

� �
=p, end up

in G 0 with an expected degree of d. This range covers
1/p different degrees, and for degrees c close to d/p
the values nc are close to nd/p. Therefore, for d not
too small, we should get n0d � 1

p nd=p ¼ Cpa�1n0d�a,
preserving the power law with the same exponent.

We now present a more careful argument. Con-
sider a vertex v 2 G with deg(v) = k. Each edge inci-
dent to v is preserved with probability p, and
removed with probability q = 1 � p. This is simply
a Bernoulli process with success probability p, so
the probability that v’s degree in G 0 is d is:
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P ½degG0 ðvÞ ¼ d� ¼
k

d

� �
pdqk�d ¼ 1

p
P dk;

where P dk ¼ k
d

� �
pdþ1qk�d . Therefore, using (1), we

have:

n0d ¼
X
kPd

nk
k

d

� �
pdqk�d ¼ Cn

p

X
kPd

k�aP dk: ð2Þ

From now on, instead of degree distribution, we will
deal with degree frequencies fd = nd/n. This allows us
to do the calculations for the limit case, with
n!1. (This is the third and final approximation.)
We can then formulate the problem as follows: let
the sequence,

fd ¼ Cd�a; ð3Þ
for d > 0, represent the degree frequencies in the ori-
ginal graph, where C ¼

P1
d¼1d�a

� ��1
. By (2), the de-

gree frequencies in the reduced graph are
represented by:

f 0d ¼
C
p

X
kPd

k�aP dk: ð4Þ

The rest of this section is devoted to the proof that
f 0d satisfies a power law f 0d � Cpa�1d�a, where x � y

means that x, y are equal except for small order
terms, that is |x � y| = o(d�a).

We introduce a random variable Yd such that
P[Yd = k] = Pdk for k P d. The expectation of Yd

is E[Yd] = gd = (d + q)/p and variance V[Yd] =
(d + 1)q/p2. (This can be derived by noticing that
Yd = Xd+1 � 1, where Xd+1 is a random variable
with the negative binomial distribution.) By the
Chebyshev’s theorem [44], letting k = (d + 1)3/4, we
get:

P ½jY d � gd jP k� 6 V ½Y d �
k2
6

q

p2
ffiffiffi
d
p : ð5Þ

First, in the lemma below, we estimate the expecta-
tion of Y �a

d , and then we use this lemma to estimate
the values of the f 0d .

Lemma 1. For any constant exponent a > 1 and

probability p 2 (0,1), we have:

E½Y �a
d � ¼

X
kPd

k�aP dk �
d
p

� ��a

:

Proof. Divide the value of E½Y �a
d � into the contribu-

tions of the tails, and the ‘‘middle’’ part, that is
E½Y �a

d � ¼ T þM , where,
T ¼
X

d6k<gd�k

k�aP dk þ
X

k>gdþk

k�aP dk;

M ¼
X

gd�k6k6gdþk

k�aP dk:

Using Yd P d and inequality (5), the tails’ contribu-
tion is:

T 6 d�aP ½jY d � gd j > k� 6 d�a�1=2q=p2 ¼ oðd�aÞ:
Since T = o(d�a), to complete the proof, it is suffi-
cient to show that:

M � ðd=pÞ�a
: ð6Þ

We show the ‘‘6’’ and ‘‘P’’ estimates separately. By
the definitions of M and k, we have:

M 6 ðgd � kÞ�a
X

gd�k6k6gdþk

P dk 6 ðgd � kÞ�a

¼ ðd=pÞ�a � oðd�aÞ;

and, using (5),

M P ðgd þ kÞ�a
X

gd�k6k6gdþk

P dk

P ðgd � kÞ�a 1� q=ðp2
ffiffiffi
d
p
Þ

� �

¼ ðd=pÞ�a þ oðd�aÞ:

This completes the proof of (6) and the lemma. h

To complete the proof of our main result, note
that, from the definition (4) of f 0d , we have
f 0d ¼ C

p

P
kPdP dk ¼ C

p E½Y �a
d �. Using the estimate

for E½Y �a
d � in Lemma 1, we conclude that f 0d �

ðC=pÞðd=pÞ�a ¼ Cpa�1d�a.

Theorem 1. Suppose that in the original graph G the

degree frequencies satisfy fd = Cd�a, for some con-

stant a > 1. Let G 0 be the reduced graph obtained by

removing each edge in G with probability p 2 (0,1).

Then in G 0 the (expected) degree frequencies satisfy

f 0d � Cpa�1d�a.

In other words, Theorem 1 states (modulo the
approximations described earlier in this section)
that the DRE method preserves the power law: if
the degree sequence in G is nd = Cnd�a, then after
the reduction the degree sequence satisfies the power
law with the same exponent a.

4.2. DRV and power law preservation

An analogous argument as for DRE can also be
applied to DRV. We only outline an informal expla-
nation here. (Using analysis similar to that in the



Table 1
Comparison of winners in average degree

Average percent deviation Methods

Within 5% DRVE, DHYB-0.8
Between 5% and 15% DRV, DHYB-0.6, -0.5

Table 2
Comparison of winners in rank exponent

Average percent deviation Methods

Within 3% DHYB-0.1, -0.6, -0.5, -0.8
Between 3% and 5.5% DRV
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previous section, one can turn it into a formal argu-
ment.) Let n 0 = pn. We can think about DRV as
removing each vertex in G, independently, with
probability q = 1 � p. Then, roughly speaking, a
fraction p of the nodes with degree between
d � 1

2

� �
=p and d þ 1

2

� �
=p end up in G 0 with an

expected degree of d. Other nodes are either deleted
or their new degrees are not d. Since this range cov-
ers 1/p different degrees, and for degrees c close to
d/p, the values nc are close to nd/p, we might antici-
pate that for d not too small, n0d � nd=p ¼ Cpa�1n0d�a,
preserving the power law with the same exponent.
Table 3
Comparison of winners in degree exponent

Average percent deviation Methods

Within 3% DHYB-0.1, DRE, DHYB-0.5
Between 3% and 5.5% DHYB-0.6, -0.8, DRV

Table 4
Comparison of winners in hop-plot

Average percent deviation Methods

Within 6% DHYB-0.8
Between 6% and 11% DHYB-0.5, -0.6, DRV
5. Graph reduction evaluation

In this section, we examine the performance of
our sampling methods through empirical study.
The starting point of the reduction in most of the
experiments presented in this paper is the AS level
Internet topology I010507 collected on 07/05/2001.
However, we have experimented with other topolo-
gies with similar results, and we will show the results
from some more recent instances. The I010507
graph has 10,966 nodes and 22,536 edges, thus an
average degree of 4.11.

The ‘‘Internet curve’’ shown in all the graphs rep-
resents the value of actual Internet instances of size
corresponding to the value in the x-axis. For exam-
ple, if we reduce by 70% the I010507 graph, we
would end up with about 3300 nodes which is nearly
the same size as the I980124 graph, which we plot at
x-axis value. Thus, as described in the introduction,
we evaluate the quality of our methods by compar-
ing generated graphs to the real Internet instances of
the same (or comparable) size. Each data point in
our plots represents the average of 50 runs with dif-
ferent randomization seed.

Our results show that among all the methods
DHYB-0.8 seems to have the least deviation from
the Internet’s topological properties. Thus, it is the
best method with respect to topological metrics
described in Section 2. Among the non-hybrid
methods, DRV performs well. Recall that the
DHYB method combines edge deletions DRE and
DRVE. It is interesting to see how well the random
node removal (DRV), worked in practice. In Tables
1–4, we present the top performing methods accord-
ing to some metrics. Variations of DHYB and DRV
are consistently present. We have not shown the
performance of all the DHYB methods here as the
graph becomes very congested. As the value of b
in DHYB is increased, the metric values linearly
increased between DRE and DRVE.

In the rest of this section, we present our empir-
ical results in more detail.

Test 1: average degree – Figs. 1–4 Fig. 1 shows
how average degree varies for deletion, contraction
and exploration methods. Fig. 2 shows average
degree of hybrid methods with b = 0.1, 0.5, 0.6,
0.8. Even though DRVE follows the evolution of
the average degree closely, when we quantitatively
calculated the average of the percentage deviations
at various points along the graph, we found that
DHYB-0.8 is better with an average percentage
deviation of 4.2% followed by DRVE with 5%. Also
DHYB-0.8 has nearly the same value of average
degree at the 70% reduction point as that of Inter-
net. These methods are followed by DHYB-0.6
and DRV with average percent deviations of 11%
and 12.2%, respectively. We have selected only
methods whose average degree decreased under
graph reduction, mirroring the trend in the real
Internet data observed in Figs. 1 and 2. With the
exception of one data point, the Internet’s average
degree constantly decreased with decreasing size.
All the other methods are farther away from the
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Internet, so we conclude that they do not fare well
in this metric comparison.

Figs. 3 and 4 show the test results for the stan-
dard deviation of the degrees. Note that here the
best performing methods with respect to average
degree also have similar degree distributions. In par-
ticular, DRVE and DHYB-0.8 are doing very well.

Summarizing Test 1, in terms of the approximat-
ing the average degree of the Internet, DHYB-0.8

has the best performance.

Test 2: exponent of rank power law – Figs. 5 and 6.
The hybrid methods follow the variation of the
Internet rank exponent very closely as is evident in
Fig. 6. In fact the average percent deviations was
within 3% for DHYB-0.6, DHYB-0.5 and DHYB-
0.8. DHYB-0.8 and DHYB-0.5 are the second best
methods after DHYB-0.6 which lie above and below
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the Internet line in Fig. 6. DRV was quite close,
with an average percentage deviation of 5.2%.

In addition to having an exponent value closer to
that of the Internet, the methods should also have a
high correlation coefficient, preferably above 97%, as
we mentioned earlier. In our tests, DHYB-0.5, -0.6,
-0.8 and DRV consistently maintained a high corre-
lation coefficient. Even though it looks like EBFS
performs equally well as DHYB-0.6, it turns out it
has a smaller correlation coefficient (below 96%).
A similar trend is seen in CRVE which follows
DRVE very closely. The other methods have corre-
lation coefficient above 96% except CRE whose cor-
relation coefficient drops steadily from 90% (at 25%
reduction) to 61% (at 70% reduction). Even though
we include EBFS, CRVE and CRE in Fig. 5 for
rank exponent comparison, we exclude them from
being viable solutions at this point. The table with
all the correlation coefficients is not reported here
due to lack of space.

Summarizing the results of Test 2, the hybrid
methods match best the exponent of the Internet’s
rank power law, with DHYB-0.6 begin the best

method in this category.
Test 3: exponent of degree power law – Figs. 7 and

8. The degree exponent of DHYB, DRV, and DRE
is within 5.5% from the exponent of the Internet
instance. In Fig. 7, we observe that DRE and
DRV follow fairly closely the exponent of the real
instances. Note that EDFS seems to perform well,
but the correlation coefficient of its exponent is
too low as we will see in the next test. In Fig. 8,
we notice that DHYB-0.1 is very close to the Inter-
net exponent, although for large reduction values it
starts to deviate. As mentioned above, DHYB-0.5,
-0.6 and -0.8 perform adequately in this test having
a value within or close to 5% of the exponent of the
Internet topologies.

We also determined the correlation coefficient of
degree power law. As it turns out, the correlation
coefficient of the best methods, namely DHYB-0.1,
-0.5, -0.6, -0.8, DRE and DRV are above 97% in
all the cases. Note that EDFS closely resembles
DRE in its performance but its correlation coeffi-
cient is below 96% and thus was not considered as
one of the best methods.

Summarizing the results of Test 3, DHYB-0.1,

-0.5, -0.6, -0.8, DRE and DRV all match best the

exponent of the Internet’s degree power law.

We evaluate the methods based on their average
percent deviations from the Internet with respect to
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the four metrics we examined so far. Tables 1–4,
we conclude that DHYB-0.8, -0.6, -0.5 and DRV
are the best methods, and from now on we will
use only those four methods in the remaining
experiments.

In the following two tests we need to generate a
plot for every topology, unlike the previous tests
where we had a single value for each topology.
Thus, we focus now only on the 70% reduction
point; we experimented with the other reduction
points and the results were very similar. For the
hop-plot and spectral analysis test discussed below,
we reduce the I010507 topology by 70% using
DHYB-0.5, -0.6, -0.8 and DRV. The reduced graph
now has about 3290 nodes and its performance is
compared with the I980124 Internet topology hav-
ing 3291 nodes.

Test 4: hop-plot – Fig. 9. DHYB-0.8’s hop-plot

resembles the Internet’s hop-plot well. In Fig. 9, we
see that DHYB-0.8 is the one that resembles the
Internet better than the other methods (not all
methods are shown). In a more detailed examina-
tion, we find that the average percentage difference
was lowest at 6% for DHYB-0.8, whereas the other
methods (even the ones not shown in the figure) had
a value close to 10%, refer Table 4.

Test 5: spectral analysis – Fig. 10. The spectral
analysis of the four best methods, DHYB-0.8,
-0.6, -0.5 and DRV, have been plotted in Fig. 10.
Recall that the spectral behavior of the Internet
topology is consistent over time [22]. So we have
reason to believe that the reduction method whose
spectral behavior matches I980124 is the best
method. As we can see, DHYB-0.8 follows the
0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7 8 9  10P
er

ce
nt

ag
e 

of
 r

ea
ch

ab
le

 n
ei

gh
bo

r 
pa

irs

Number of hops

DRV
DHYB-0.5

DHYB-0.6
DHYB-0.8

I980124

Fig. 9. Percentage of reachable neighbor pairs versus number of
hops of 70% reduced DHYB-0.5, -0.6, -0.8, DRV and Internet
instance I980124.
I980124 topology very closely, and significantly bet-

ter than the other methods.
Considering the results of all tests above, the best

of the methods we tested is DHYB-0.8, as it main-
tains an average percent deviation from the target
values close to or below 6% with respect to the four
topological metrics, and in several tests it outper-
forms all other methods. Among the non-hybrid
methods, DRV seems to the best method, maintain-
ing an average percent deviation close to or below
5% for the power law metrics and within 15% for
average degree.

Test 6: robustness to initial instance – Figs. 11 and

12. We further investigated the stability of each
method with respect to the input Internet instance.
We took the most recent AS level Internet topology
I030313 with 15,026 nodes and 31,200 edges, thus
an average degree of 4.15. We applied the seven
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methods and confirmed that the trends exhibited by
the methods are very similar to the trends obtained
with starting instance I010507. We show only two of
the six graphs here due to space constraints. Fig. 11
shows the average degree comparison of deletion,
contraction and exploration methods, and Fig. 12
shows the degree exponent of the reverse cumulative
distribution for the comparison of hybrid methods.
Similar results were obtained when tested with seven
different topology instances from the year 1999 up
to 2003 but the plots are not shown here due to lack
of space. Summarizing, all the methods are insensi-

tive to the choice of the initial instance.
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6. Reductive versus constructive methods

In this section, we compare our reduction meth-
ods with existing well-known constructive genera-
tors. Using the same metrics as in Section 5, we
have compared the topologies reduced by our best
reduction methods, namely DHYB-0.8 and DRV,
with topologies from other topology generators like
Inet, Waxman, Barabasi and Generalized Linear
Preference (GLP) [8].

We have generated topologies by reducing the
Internet instance I010507 using DHYB-0.8 and
DRV. We have also generated topologies using Inet,
Waxman, GLP, Barabasi method (with heavily
tailed and random node placement options) of sizes
similar to the various reduction points. For brevity,
we show results only for five selected metrics.

Test 7: average degree – Fig. 13. Inet follows clo-
sely the variations in the Internet’s average degree.
The behavior of Inet is not surprising as this gener-
ator predicts the average degree using real Internet
instances from the same data archive [19] that we
use, and forces this degree distribution. DHYB-0.8
is the next best method. DRV does not follow the
variations in the Internet but decreases in value lin-
early, unlike GLP which varies haphazardly with no
specific pattern. Both Barabasi and Waxman gener-
ates topologies with an average degree of four inde-
pendent of the size of the graph. Overall, in terms of
the average degree, Inet and DHYB-0.8 are closest to

the Internet.
Test 8: exponent of rank power law – Fig. 14. The

hybrid method follows the variation of the Internet
rank exponent very closely, as is evident in Fig. 14.
We recall from the previous section that the average
percent deviation of DHYB-0.8 with respect to this
metric was within 3%. Inet maintains a constant
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value for the exponent irrespective of the size of the
graph. DRV has values higher than the Internet and
is the next best method. For Barabasi model, both
the node placement options (random and heavily
tailed) generate topologies with similar values. Sim-
ilar to the previous test, the exponent value is inde-
pendent of the size for both Waxman and Barabasi
topologies. Overall, we determined that, in this cat-

egory, DHYB-0.8 is the best method.
Test 9: exponent of degree power law – Fig. 15. As

we can infer from the plot in Fig. 15, most of the
methods perform well, except for Waxman and Bar-
abasi. In particular, DHYB-0.8 and DRV have val-
ues close to the Internet. They are followed by GLP
and Inet, which fall above and below the Internet,
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respectively. Overall, DYB-0.8 and DRV seem to

be best.
Test 10: spectral analysis – Fig. 16. Synthetic gen-

erators like Barabasi, GLP [8,36] have not only
smaller eigenvalues compared to the Internet but
also a slope value that is very different from the
AS level Internet topology [22]. Gkantsidis et al.
[22] claim that these generators fail to reproduce
the strong clusters that are present in the Internet.
On the other hand, our methods DHYB-0.8 and
DRV have a higher eigenvalue and a distribution
very similar to the Internet. The eigenvalues of Inet
does not decrease gradually unlike the Internet but
instead exhibits sharper trends. Thus, overall, in this
category, DHYB-0.8 seems to be the best.

6.1. Conclusion

We find that DHYB-0.8 is the best method fol-
lowed by Inet and DRV. We note that Inet does
not generate graphs below 3000 nodes. This could
be related to the fact that Inet actually uses all the
available instances from the RouteViews archive
[19] in order to calibrate its intended graph metrics.
The smallest instance (collected on 15 November
1997) in the archive has 3037 nodes.

With this limitation, DHYB-0.8 seems the best
choice for small graphs. We actually create and
use such a small topology with DHYB-0.8, when
compare topologies using performance metrics in
the next section. More specifically, we have reduced
the I980124 graph by about 50%, thus generating a
topology with 1500 nodes. We show that even using
this small graph, we can obtain realistic simulation
conclusions.

7. Simulation of multicast routing

As an ultimate test, we use our reduced AS level
graphs in network simulations, which have been
conducted in actual research studies [47,7,11]. We
choose to use multicast routing for this purpose
since it is more ‘‘sensitive’’ to the topology than,
say unicast connections, and for this reason it has
been used before in topological studies [9]. We
would like to stress again that our purpose is not
to evaluate the multicast algorithms, but to test
the topological properties of the graphs.

We compare the performance of two multicast
algorithms, namely, Source Based Tree (SBT) and
Core Based Tree (CBT), on real and reduced
graphs and evaluate the multicast efficiency metric
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on these graphs. Our results lead to the following
conclusions:

Observation 1: The performance of the large and
small real Internet instances are similar for the
particular experiments and metrics that we use.
Observation 2: Our reduction methods produce
graphs that yield the multicast performance clo-
ser to real Internet instances than most other
topology generators tested.

Recall from Section 2 that we use cost ratio and
delay ratio to compare two approaches for support-
ing one-to-many group communications. SBT cre-
ates a tree for each source, while CBT creates a
single tree for the whole group. In the CBT
approach, we choose as the core one of the member
nodes uniformly. Note that the selection of the core
is a separate research issue, outside the scope of this
paper. In addition, we use the Chuang–Sirbu power
law (described in Section 2) to verify our reduction
methods. For each metric, we conduct two series of
experiments.

Series A: In this series, we vary the group size of
a multicast group. Since the size of the multicast
group is an important parameter in multicast
studies, we first compare the performance of
reduced graphs with the performance of a real
instance I980124 of the same size (of approxi-
mately 3200 nodes), as the multicast group size
increases. The initial graph for the reduction is
I010507 with 10,966 nodes and it is reduced by
70% using our best methods DHYB-0.8 and
DRV. As a reference, we also conduct the same
experiments for synthetic graphs with compara-
ble size, which are generated by several com-
monly used topology models (i.e., INET,
Barabasi, GLP, and Waxman). We mention ear-
lier that we want to generate graphs of sizes smal-
ler than the real Internet size available in any
data archive. For this purpose, in this series we
reduce the I980124 by 50% using DHYB-0.8
(contains about 1600 nodes) and compare its per-
formance with other topologies. For this series,
we vary the group size from 0.125% to 32% of
the graph size, or from about 4 to about 1000
nodes. For each group size, we repeat the exper-
iment 100 times.
Series B: In this series, we fix the group size to 16
members, the size of a large teleconference, and
change the percentage of graph reduction from
10% to 70%. We select a series of Internet
instances at regular time intervals of increasing
size from I980124 to I010507, and produce a set
of graphs with the same size from each of the
topology generators mentioned above. Then, we
compare the trends of the metric variation on
real graphs and generated graphs. Thus, in Figs.
18 and 19, the Internet line consists of multiple
real instances.

The delay ratio of DHYB-0.8 and DRV is very

close to the delay ratio of the Internet instances. In
Fig. 17, we plot the average end-to-end delay ratio
versus the size of the multicast group. We observe
that the delay ratio of the graphs generated by
DHYB-0.8, DRV and GLP have average percent
deviations within 5% of the delay ratio of Internet
I980124, whereas the remaining graphs deviate from
this real graph by more than 10%. To study how
well our reduction methods preserve the properties
of the original graph, we also plot the delay ratio
of the Internet instance I010507. In this case,
DHYB-0.8 performs better with an average percent-
age deviation of 1.8% followed by DRV with 8.8%.
The 95% confidence intervals for all data points are
less than 0.01.

Furthermore, we plot the average end-to-end
delay ratio versus the percentage of graph reduc-
tion in Fig. 18. This graph leads to similar conclu-
sions as Fig. 17: DHYB-0.8, DRV and GLP are
consistently closer to the real graphs than the other
methods.

The multicast efficiency of DHYB-0.8 and DRV

matches the efficiency of Internet instance I980124
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very well. We present the efficiency exponents and
correlation coefficients of Chuang–Sirbu power
law in Table 5. From this table, we observe again
that DRV, DHYB-0.8 and GLP are the best meth-
ods, since their exponent matches better the expo-
nent of a real instance of the same size (I980124).
INET and Barabasi topologies also follow I980124
closely with average percent deviations of approxi-
mately 6–8%.

In [37], it is shown that the efficiency exponent
is not constant, but slowly increases with the graph
size. We calculate the efficiency exponents for
reduced graphs with different sizes and plot the
results in Fig. 19. The result is consistent with pre-
vious observations, in that DHYB-0.8, DRV and
GLP have the closest multicast performance as
the real Internet instances. We also found that
DHYB-0.8 and Internet have a steady decrease in
Table 5
Series A: Multicast efficiency comparison for reduction and
constructive methods, with I980124

Methods Exponent Correlation
coefficient

I010507 �0.138 0.994
I980124 �0.150 0.995
DHYB-0.8 �0.158 0.997
DRV �0.149 0.995
INET �0.118 0.991
DHYB-0.8 (50% red. I980124) �0.174 0.997
GLP �0.145 0.999
Barabasi random �0.176 0.999
Barabasi heavily railed �0.169 0.998
Waxman �0.204 0.993
efficiency exponent as the graphs are further
reduced, whereas DRV does not exhibit this
trend. Therefore, we conclude that DHYB-0.8
reduced graphs follow Internet more closely than
DRV.
7.1. Tree cost ratio

Our experiments with the tree cost ratio also
show similar results as the other two metrics, that
is, DHYB-0.8 and DRV work well. The plots are
not shown due to space limitations.
7.2. Conclusion

Graphs from our best methods can be used in
simulation studies and the results will be similar to
that of more computationally intensive simulations
on the initial real graph.

Since the methods chosen by the graph metrics
perform well according to the performance metrics,
we are left to believe that the graph metrics manage
to capture key topological properties.

8. Conclusion

The goal of this paper has been to propose and
study methods for sampling Internet-like graphs.
We propose and evaluate the performance of three
types of reduction methods with multiple methods
of each type. Our work leads to the following
conclusions.
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How can I sample a real network? We conclude
from our experiments that DHYB-0.8 is the best
among our methods for the Internet sampling, and
that it also compares favorably to graph generation
methods proposed previously in the literature. DRV
is nearly as good, which, given DRV’s simplicty, is
an interesting result in its own right.

How much can I reduce a real network? We are
able to reduce a graph successfully by approxi-
mately 70% in terms of the number of nodes.
Beyond 70% we often find that the statistical confi-
dence coefficient is low.

Provable reduction performance. We show analyt-
ically that DRV and DRE respect an initial power
law degree distribution.

The reduced graphs produce realistic simulation

conclusions. We show that for DHYB-0.8 and
DRV, the reduced graphs and the initial graph pro-
duce very similar results in our experiment.

Simulation speedup. The speedup depends on the
complexity of simulations. Given a 70% reduction
in size, an O(n2) or O(n3) simulation will accelerate
by a factor of about 11 or 37, respectively. Further-
more, smaller graphs will require less memory which
can decrease the simulation time further.

We have used our method in our lab for simula-
tions with satisfactory results. The observed reduc-
tion in the simulation time was significant,
especially for computationally intensive multicast
applications.
8.1. Future work

First, we have made only a first step in proving
bounds on the performance of our reductive methods.
We believe that more analysis can pose many interest-
ing theoretical problems and lead to results that can
provide novel intuition about the topology. Second,
we would like to experiment with a wider range of real
simulation studies to validate our confidence in the
realism of simulations on the reduced graphs. Finally,
the proposed sampling methods are based on primar-
ily random selection of nodes or edges. One could
envision a more involved selection process that will
take into consideration node properties.
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