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Abstract—In this paper, we develop methods to “sam-
ple” a large real network into a small realistic graph.
Although topology modeling has received a lot attention
lately, it has not yet been completely resolved. Several
methods create arguably realistic topologies from scratch.
Our approach moves in the exact opposite direction. First,
we observe that many real topologies are available to the
networking community. However, their size makes them
expensive to use in simulations as is. This brings up the
following question: how can we shrink a graph, so that it
still retains its essential properties? We propose an itera-
tive sampling framework and seven different “sampling”
methods. We show that some of our methods can be very
effective: they reduce a graph by 70%, and maintain several
topological properties within 22% of the expected value.
An advantage of this method is that it can potentially
maintain topological properties that we are not yet aware:
all we have to is sample “fairly”. In addition, our methods
are statistically robust and reliable. We find that apart from
its practical applications, the problem of graph sampling
is of interest in its own right.

I. INTRODUCTION

“How can I reduce a large graph to a smaller graph?”
This paper revolves around this question. The reduced
graph must have properties similar to the original
graph. We develop a framework for sampling real
graphs. The motivation for this attempt is twofold.
First, the graph reduction can help us see how topolog-
ical properties “scale” with size. Second, the approach
can help generate small realistic graphs which are use-
ful for simulation purposes. Despite recent significant
activities, a definite appropriate topology which can be
used for all empirical purposes has not been developed.
Although there exist several real instances, they are
quite large for simulation purposes [12] [13], especially
if the details of the simulation are fine as in packet level
simulations.

In [5], Faloutsos et al. showed that the Internet fol-
lowed power-laws with a very high correlation coeffi-
cient. Following these power-law observations, several
new generators create power-law topologies [3] [4] [15]
[16] in contrast to the generators before them [1] [2] [9]
[10]. For example, the popular Barabasi-Albert model
[3] generates a graph by adding nodes preferentially to
the existing nodes: it prefers nodes with high degree.
It is easy to see that the specifics of the preferential
function can give rise to different classes of graphs
[15]. In addition, these methods attempt to match the
degree distribution, but they often miss significant other
properties [15] [4]. In other words, the small changes in
constants, let alone the principles of construction have
significant effects in the resulting topology. We call
these methods of generating a graph, the constructive
approach. The graph partitioning in [24] [25] bears
some similarities to the problem of graph sampling,
but the metrics of the former are different from ours

presented here, and so, the algorithms for graph parti-
tioning cannot be used here.

In contrast to the constructive approach, we sample
real topologies and “shrink” them, naming this the
reductive approach. Our contributions can be summa-
rized in the following points.

o« We suggest an iterative framework to generate
small realistic topologies from an initial topology.

o We propose seven methods to do the reduction at
each step of the framework. These methods dictate
how we select, remove or merge nodes or edges.

o We compare the proposed sampling methods with
respect to some chosen metrics. Some reduction
methods seem to work very well. They can reduce
a graph by as much as 70%, preserving sufficiently
its topological properties (within 22%).

e Our methods seem statistically robust. They show
relatively little sensitivity to both the random
initial seed and the initial topology.

It is worth noting that the reductive approach has
two attractive properties:

1) If the reduction is “statistically fair”, it may
preserve graph properties that we have not yet
identified.

2) The approach can be used to reduce significantly
different types of graphs !.

The rest of the paper is organized as follows: Section
IT presents the topological metrics we have used to
gauge the methods, Section III our iterative reduction
algorithm and proposes seven graph reduction methods.
The performance of each method is studied using
various metrics in Section IV. Section V concludes the
paper with some future work.

II. TOPOLOGICAL PROPERTIES AND METRICS

In this section, we introduce the topology model
and several topological properties of the Internet. In
our study, we focus on the inter-domain topology.
We model the Internet as an undirected graph whose
nodes are domains and whose edges are inter-domain
connections. We select 104 real inter-domain topology
instances from November 1997 to November 1999,
one instance per week. All of these instances are pro-
vided by the National Laboratory for Applied Network
Research. Each instance is named using its date, e.g.
the instance collected on November 8, 1997 is named
971108, this naming convention will be followed in
this paper.

To evaluate our method, we use a subset of the
observed properties [5]. These properties are a neces-
sary condition but may not form a sufficient condition

'One reduction method may not be the best for all types of
topologies, but it may be good for several types of topologies.



for the realism of a graph. The main metrics used to
evaluate the generated graphs are listed below.

Average Degree: The average degree of a graph is
defined as 2m/n, where m is the number of inter-
domain links and n is the number of domains, which
indicates the density of the graph. The average degree
increases over time, growing from 3.42 in November
1997 to 3.93 in November 1999 (15% growth). At
the same time, the size of the Internet approximately
doubled (100% growth). We fit a straight line for the
variation of average degree for a corresponding change
in the size of the graph. From this equation, we found
that if we reduce the 981103 graph by 70%, we expect
a 8% decrease in the average degree.

Power Laws 1 and 2: Faloutsos et al [5] have
revealed the existence of power-laws in the Inter-
net topology. The power-laws describe succinctly the
skewed distributions of the graph properties, such as
the degree distribution. Both the existence and the
slope of the power-laws can be used as criteria for the
comparison of graphs [6]. Here, we focus on power-law
1 (Rank Exponent) and 2 (Degree Exponent), as they
seem to be the most effective in distinguishing different
kinds of topologies according to [6]. We can claim that
a reduced graph is very similar to the original graph,
if it has the same slope value as that of the original
graph with a very high correlation coefficient.

Clustering Coefficient: Clustering coefficient [15]
characterizes the connectivity of the neighborhood of
a node. This metric captures the local density of a
graph. For a particular node, it is defined as the ratio
of the number of edges in the neighborhood of that
node to the total number of possible edges in the
neighborhood. The overall clustering coefficient of a
graph is the average of the clustering coefficient of
all the nodes with an outdegree greater than one.
Intutively, it answers the question: are my neighbors
connected among themselves? We calculate the clus-
tering coefficient for the original Internet over a period
of 3 years from 1997 - 2000. We note that there is
a steady increase in the clustering coefficient as the
number of nodes increases over that period of time,
with very few exceptions. Figure 2 shows the best fit
curve for the above with a correlation coefficient of
about 99.2%. We then extrapolate this line to calculate
the clustering coefficient of a graph with about 1250
nodes (i.e. a 70% reduced 981103 graph). This is our
expected value of clustering coefficient which is about
0.303.
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Fig. 1. Clustering Coefficient Vs Number of nodes in the Internet

III. GRAPH REDUCTION

In this section, we present our approach for
reducing a real graph to a small realistic topology. We

develop seven methods of shrinking that proceed by
(a) deleting nodes or edges, (b) merging nodes, (c)
retaining the induced subgraph. The resulting reduced
topology is compared with the expected topology.

A. Iterative Graph Reduction Algorithm

Our framework reduces the graph iteratively by
removing a small percentage, s, of the graph in each
iteration. After each reduction, the set of topological
metrics described in Section II is calculated. The
algorithm stops when the graph reaches the desired
size. In our experiments, we reduce the graph until
the properties diverge too much.

Given a graph G with n nodes and the total
percentage of nodes to be removed as P, the algorithm
uses a reduction method to reduce G to a smaller
graph with n * (P/100) nodes. The metric values are
compared with those of the original graph to evaluate
the realism of the reduced graph.

In some of our reduction methods, the graph can
become disconnected. In such cases, we choose
the largest connected component and discard the
rest. By reducing a small percentage of the graph
in each iteration, we are able to meet the target
size more accurately, thus providing more control.
In practice, a reduction of 3% to 5% of the nodes
at each step seemed to work out very well. Note
that after every reduction step we find the largest
connected component and use it as the beginning
topology for the next reduction step. This process
continues until we reach the total percentage reduction.

B. Graph Reduction Methods

We propose five graph reduction methods for our
iterative graph reduction algorithm.

Random Vertex Deletion (RVD): We randomly pick
one node, and delete all edges between it and its
neighbors, and then delete the node itself from the
graph. The graph might become disconnected after
the deletion. As we already mentioned, we keep the
largest connected component.

True Random Edge Detection (TRED): In this
method, we arrange all the edges and randomly pick
an edge. All the edges have equal probability of being
chosen for deletion.

Random Edge Detection (RED): We randomly
select one vertex, then randomly pick one of its
neighbor vertices and delete the edge between them.
If we pick a isolated vertex, we ignore it.

n-Neighbor Clustering (CLST): We define clustering
as follows: we merge neighbor vertices of a node and
the node itself into one single node. The neighbors of
all the merged nodes become neighbors of the new
node. The n-Neighbor Clustering method aggregates
a node and n of its neighbors into one node. In our
experiments we use n = 2. We tried larger values but
the results were worse and they are not shown here.

Edge Shrinking (SRK): The Edge Shrinking method
is a special case of the n-Neighbor Clustering method
with n = 1. This method is very similar to the random
matching method described in [24] or the edge
coarsening method described in [25].

C. Induced Subgraph Methods

We propose two ways to keep a part of the initial
topology. We pick an initial node randomly and then
explore to choose a part of its neighbourhood which



TABLE I
COMPARISON OF THE SEVEN REDUCTION METHODS FOR A REDUCTION OF ABOUT 68% - 70%

| Metric | RVD | TRED | RED | CLST [ SRK | BFS | DFS | Target |
Average Degree | -15% | -39% 3% | -10% | +11% | +14% | +13% -8%
Rank exponent +5% +8% 4% | +13% | -8% +3% -8% 0%
Degree exponent | -7% -11% | -5% | -20% -1% -12% | +4% 0%

we retain in the final graph.

Subgraph by BFS (BFS): We randomly select
one node, and then do breadth-first search (BFS)
starting from that node, until the desired size has
been achieved. All nodes that have been visited are
retained in the final graph. All other nodes and the
edges between them and their neighbors are deleted.

Subgraph by DFS (DFS): We do a depth-first search
(DFS) on the graph, starting from a random node.
After the desired number of nodes has been visited,
we keep all nodes that have been visited and delete
all other components.

IV. PERFORMANCE ANALYSIS
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Fig. 2. Average degree comparison of the seven methods
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In this section, we examine the performance of our
sampling methods. Our experimental results show that
among the four methods RED, RVD, TRED and CLST,
RED and RVD gives the best overall results, followed
by TRED, while CLST is the worst. We will explain
below why we have considered only these four methods
for a final judgement.

If we consider only the average degree, CLST has
the best performance followed by RED. Figure 2,
3 and 4 show the mean variations of the average
degree, the rank exponent and the degree exponent
respectively, when the seven methods are applied to

Power-Law 2 (Degree Exponent): 981103
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Fig. 4. Degree exponent comparison of the seven methods

instance 981103. As mentioned in section II, we expect
a reduction of roughly -8% in the average degree for a
70% topology reduction. Based on these observations
and the results of Table I, we see that CLST deviates
the least from the expected -8%, followed by RED
and RVD. RED produces a very small decrease in the
average degree. TRED also decreases the average de-
gree but the percentage of reduction is very large. The
last three methods, SRK, BFS, DFS donot fare well
in this metric comparison, since they actually increase
the average degree and are therefore not considered
further.

Considering the power-law metrics, RED and RVD
are the best methods. The slope of the rank exponent
and the degree exponent for these two methods varies
the least from the original value of slope. TRED
deviates more than these two methods, while CLST
fails completely on the power-law metrics. Therefore,
we only consider RVD, TRED and RED; the latter
performs better with regard to power-laws.

Considering clustering coefficient, RVD seems to
outperform TRED but is followed very closely by
RED. We test our methods RED, RVD and TRED
using the clustering coefficient [15]. We compare the
graphs from RED, RVD and TRED with the expected
real topology. Table II shows the summarized results
of the clustering coefficients for the original Internet
expected, RED, RVD and TRED. None of the methods
have a value very close to the expected value. Among
these three methods, the percentage deviation of RVD
from the expected value is about 19% followed closely
by RED with a 22% deviation. Since TRED has an
extremely low value of clustering coefficient, we think
RED and RVD are better than TRED.

It is fair to claim that both RVD and RED performs
well in shrinking an Internet graph. Even though RED
seems to perform the best, the difference in deviation
between its performance and that of RVD is small,
even negligible. RED deviates 3% from the 981103’s
average degree, while the expected deviation is about
8%. RED is followed closely by RVD with a 15%



deviation. RED performs very well in power-laws 1
and 2 and is once again followed very closely by RVD
with nearly the same percentage of deviations. RVD is
better with respect to clustering coefficient, but RED
follows RVD closely in this metric. Since, RVD and
RED seems to perform equivalently with respect to
the four metrics, both seem to be good methods of
shrinking a graph.

TABLE II
COMPARISON OF CLUSTERING COEFFICIENT OF RED, RVD,
TRED WITH THE INTERNET FOR A GRAPH HAVING 1250 NODES

| Expected Value | RED | RVD | TRED |
0303 [ 037 | 036 | 005 |

| Metric
| Clustering Coeff |

V. CONCLUSION

In this paper, we propose a framework for sampling
real network topologies. With our framework, we show
that we can reduce a graph by as much as 70% in size
and maintain several topological properties. This makes
our framework a promising tool for generating graphs
for network simulations. An additional advantage is
that the resulting graphs may preserve some unknown
topological properties of the Internet. Our contributions
can be summarized in the following points.

e We propose a small-decrement iterative frame-
work that offers more control over the reduction
process, so that we can create graphs of desired
size.

« We propose seven reduction methods to reduce the
graphs that we can group in three main categories:
removal of components (nodes or edges), merging
clusters of nodes and retaining an induced sub-
graph.

« The Random Edge Deletion (RED) and Random
Vertex Deletion (RVD) seems to perform better in
comparison to the other five methods.

¢ All methods seem robust to the randomization
seed and the initial topology.

Our experiments lead to the following tips for practi-
tioners.

« RED and RVD methods can be used for graph
reduction in practice for Internet like topologies.

« It is advisable to pick a small incremental step (e.g
3% or 5%), in order to reach desired size more
accurately.

« Reduction of the graph by more than 70% is
not advisable as at that point the graph starts to
diverge from the initial properties significantly.

Note that we have used this method in our lab for
simulations with satisfactory results. The observed
reduction in the simulation time was significant,
especially for computationally intensive multicast
applications.

Future Work We are developing analytical
proofs to examine why some of our methods adhere
to power-laws with such a high correlation coefficient.
Our initial analysis is in agreeement with the
experimental results we get here.
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