
1

7

1. Introduction: Analysing and Designing Algorithms

• When solving a problem, we are well advised first to construct an
exact model in terms of which we can express allowed solutions.

• Finding such a model is already half the solution. Any branch of
mathematics or science can be called into service to help model the
problem domain, e.g.:
– Simultaneous linear equations (finding currents in electrical

circuits, finding stresses in frames made of concrete beams)
– Differential equations (predicting population growth, predicting

the rate at which chemicals will react)
– Formal grammars (compiling programming languages, database

queries)
– Graphs (transportation problems, optimal scheduling)

• Once we have a suitable mathematical model, we can specify a
solution in terms of that model.

8

Introductory Example

• Suppose we model our problem domain by a sequence of numbers
A = 〈a1, a2, …, an〉 and the solution consists in sorting them.

• Functional specification in terms of an abstract program
(pseudocode):

A ← any A’ such that permutation (A’, A) ∧ ascending (A’)
• Functional specification in terms of a relation:

permutation (A’, A) ∧ ascending (A’)
• Functional specification in terms of pre- and postcondition:

{A=X} sort {permutation (X, A) ∧ ascending (A)}
Note that the “logical variable” X is necessary to express the
input-output relationship.

• Definitions:
permutation: smallest relation satisfying for any x, s, t1,t2

permutation (〈〉, 〈〉)
permutation (〈x〉 • s, t1 • 〈x〉 • t2) ⇔ permutation (s, t1 • t2)

ascending (s) ⇔ (∀ i | 1 ≤ i < length [s] • s[i] ≤ si+1)

2

9

Program Development…

• For our purpose, all three functional specifications are equivalent;
we will switch between them as convenient.

• We have allowed ourselves a simple formulation by abstracting
from the way how the sequence is supposed to be input to and
output from the computer.

• Given this specification, we can develop a solution by stepwise
refinement:

• Insertion-Sort (A)
for j ← 2 to length[A] do

“Insert A[j] in sorted sequence A[1..j-1]”
• “Insert A[j] in sorted sequence A[1..j-1]” specified by:

ascending (A[1..j-1]) ∧
permutation (A[1..j], A’[1..j]) ∧
ascending (A’[1..j])

10

… Program Development

• “Insert A[j] in sorted sequence A[1..j-1]” is refined by:
key ← A[j]
i ← j-1
while i>0 ∧ A[i]>key do

A[i+1] ← A[i]
i ← i-1

A[i+1] ← key
• The final solution is obtained by composing the refined part(s).
• This algorithm can now be implemented in a variety of programming

languages.

3

11

Implementation in Pascal

• type T = array [1..N] of integer;

• procedure insertionsort (var A: T);
var key, j, i: integer;

begin
for j := 2 to N do

begin
key := A[j];
i := j-1;
while (i>0) and (A[i]>key) do

begin
A[i+1] := A[i];
i := i-1

end;
A[i+1] := key

end
end;

12

Computing Resources

• These functional specification do not restrict the resources
needed for by the algorithm, e.g. time and memory.

• Without further non-functional requirements, practically useless
solutions would be allowed.

• What are the resources needed by Insertion-Sort?
– memory: 1 element (key) + 2 integers (i,j)
– time: ?

• In this course, we will focus on methods for determining the
running time of algorithms under various circumstances.

• We shall assume a generic one-processor random-access machine
(RAM) model of computation.

4

13

Analyzing Insertion-Sort…

• Insertion-Sort (A) cost times
1 for j ← 2 to length[A] do c1 n
2 key ← A[j] c2 n-1
3 «insert A[j] in A[1..j-1]» 0 n-1
4 i ← j-1 c4 n-1
5 while i>0 ∧ A[i]>key do c5 (∑ j|2 ≤ j ≤ n • tj)
6 A[i+1] ← A[i] c6 (∑ j|2 ≤ j ≤ n • tj-1)
7 i ← i-1 c7 (∑ j|2 ≤ j ≤ n • tj-1)
8 A[i+1] ← key c8 n-1

• The running time depends on the size of the input: let n = length[A]
• For each basic operation, we model its running time by a cost ci.
• Let tj be the number of times the while condition in line 5 is tested

for that value of j
• The total running time T(n) is:

T(n) =c1 n + c2 (n-1) + c4 (n-1) + c5 (∑ j|2 ≤ j ≤ n • tj) +
c6 (∑ j|2 ≤ j ≤ n • tj -1) + c7 (∑ j|2 ≤ j ≤ n • tj -1) + c8 (n-1)

14

Best Case for Insertion-Sort

• Even for a fixed input size, the running time depends on which input
of that size is given.

• Best case occurs if the array is already sorted:
A[i] ≤ key in line 5, and tj=1.

T(n) = c1 n + c2 (n-1) + c4 (n-1) + c5 (n-1) + c8 (n-1)
 = (c1 + c2 + c4 + c5 + c8) n - (c2 + c4 + c5 + c8)

• T(n) is a linear function of n,
T(n) = a n + b for some a, b

5

15

Worst Case for Insertion-Sort

• Worst case occurs if the array is in reverse sorted order:
we must compare A[j] with all A[j-1], …, A[1], so tj = j

• Noting that
 (∑ j|2 ≤ j ≤ n • j) = n (n+1) / 2 -1
 (∑ j|2 ≤ j ≤ n • j-1)= n (n-1) / 2

we get for T(n) in that case:
T(n) = (c5 / 2 + c6 / 2 + c7 / 2) n2 +

(c1 + c2 + c4 + c5 / 2 + c6 / 2 + c7 / 2 + c8) n -
(c2 + c4 + c5 + c8)

• T(n) is a quadratic function of n,
T(n) = a n2 + b n + c for some a, b, c

16

Average Case for Insertion-Sort

• For the average case, we randomly choose n numbers.

• When comparing A[j] with A[1], …, A[j-1], in average half of the
elements are less than A[j]. Hence tj = j / 2.

• The analysis of T(n) in that case is similar to the worst case,
except for the factor 2.

• In the average case, T(n) is also a quadratic function of n.

6

17

Algorithms …

• To summarize, an algorithm is a program for a (possibly abstract)
machine, for which we can ensure the correctness in terms of the
model of the problem domain.

• Besides correctness, we are interested in the worst-case and the
average-case running time with respect to an abstract computer,
the random access machine.

• We mostly consider only the worst-case running time:
– It gives an upper bound on the running time.
– The worst case occurs often, e.g. searching an element which is

not present.
– The average case is often roughly as bad as the worst case.
– It is not clear what the average input is.

• For analyzing the running time and for implementing the algorithm,
it has to be in a sufficiently refined form so that constructs can be
faithfully mapped to the available machine (programming language).

18

… Algorithms

• When comparing the running time of algorithms, we often consider
only the order of T(n), for example quadratic (n2), n lg n, or linear
(n), since for sufficiently large n this is decisive term.

• Other properties are also relevant. For example, Insertion-Sort
behaves naturally in that it is faster if the array is already
partially sorted, in particular if we have a sorted sequences with
just a couple of unsorted elements at the end.

• Insertion-Sort has an average running time in the order of n2,
other sorting algorithms do better. However, other faster sorting
algorithms do not behave as naturally as Insertion-Sort.

• In designing algorithms, we prefer for loops to while loops. They
guarantee termination and make running time easier to analyze:

for i ← a to b do S(i) =
skip if a>b
S(a) ; for i ← a+1 to b do S(i) otherwise

7

19

Order of Growth

• The worst case running time for Insertion-Sort by is
T(n) = a n2 + b n + c

for some constants a, b, c, which depend on the actual costs ci. In
doing so, we have abstracted from the actual costs.

• We further simplify the running time by leaving out b n + c, since
for large values of n, is it insignificant compared to a n2.

• We make a final simplification by leaving out the factor and only
keeping n2. We say that order of growth of T(n) is n2, formally,

T(n) = Θ (n2)
for several reasons:
– Many algorithms can be classified as computationally intensive

simply by considering their order of growth.
– The constant factors can be more precisely determined by

experiments than by analysis.
– The analysis is easier or only possible by considering only the

order of growth.

20

Growth Rate and Constant Factors

8

21

Growth Rates of Common Functions

Suppose each operation takes 1 nanoseconds (10-9 seconds)

n lg n n n lg n n2 2n n!
10 0.003µs 0.01µs 0.033µs 0.1µs 1µs 3.63ms
20 0.004µs 0.02µs 0.086µs 0.4µs 1ms 77.1years
30 0.005µs 0.02µs 0.147µs 0.9µs 1sec >1015years
100 0.007µs 0.1µs 0.644µs 10µs >1013years
10,000 0.013µs 10µs 130µs 100ms
1,000,000 0.020µs 1ms 19.92µs 16.7min

• For n < 10, the difference is insignificant.
• Θ (n!) algorithms are useless well before n = 20.
• Θ (2n) algorithms are practical for n < 40.
• Θ (n2) and Θ (n lg n) are both useful, but Θ (n lg n) is significantly

faster.

22

The Divide-And-Conquer Approach

• Many algorithms follow the divide-and-conquer approach:
– Divide the problem into a number of subproblems
– Conquer the subproblems by solving them recursively. If the

subproblems are small enough, solve them directly.
– Combine the solutions to the subproblem into the solution for

the original problem
• The algorithms are often more easily expressed as recursive

algorithms.

9

23

Merge-Sort…

• Merge-Sort is a divide-and-conquer algorithm:
– Divide: Divide an n-element sequence into two subsequences of

approximately n/2 elements.
– Conquer: Sort the subsequences recursively.
– Combine: Merge the two sorted subsequences to produce the

sorted sequence.
• For allowing a recursive formulation, we pass the whole sequence

and the bounds of the subsequence which has to be sorted as
parameter.

• Merge-Sort (A, p, r)
if p < r then

q <- (p + r) / 2
Merge-Sort (A, p, q)
Merge-Sort (A, q+1, r)
Merge (A, p, q, r)

24

… Merge-Sort

• The auxiliary procedure Merge (A, p, q, r) merges the sorted
subsequences A[p..q] and A[q+1..r]. It can be specified by:

p ≤ q ∧ q ≤ r ∧
ascending (A[p..q]) ∧ ascending (A[q+1..r]) ∧
permutation (A’[p..r], A[p..r]) ∧
ascending (A’[p..r])

• We assume that it can be implemented in Θ (n), for example by
using an auxiliary sequence.

• The entire sequence A can be sorted by calling
Merge-Sort (A, 1, length[A])

• What is the running time of Merge-Sort?

10

25

Analyzing Divide-And-Conquer Algorithms

• Let T(n) be the running time for a problem of size n.
• If the problem is small, say n ≤ c, we assume that a direct solution

takes constant time:
T(n) = Θ (1) if n ≤ c

• Otherwise, we divide the problem into a subproblems, each of which
is 1/b the size of the original. Suppose it takes D(n) time to divide
the problem and C(n) time to combine the solutions.

T(n) = a T(n/b) + D(n) + C(n) if n > c
• Such equations are called recurrences. They are common in

analyzing the running time of algorithms. We will study solutions of
recurrences later.

26

Analysis of Merge-Sort

• Divide: Just computes the middle of the subsequence, thus takes
constant time:

D(n) = Θ (1)
• Conquer: We solve 2 subproblems of size approximately n/2:

a = 2, b = 2
• Combine: Merge takes Θ (n):

C(n) = Θ (n)
• Noting that Θ (n) + Θ (1) is still Θ (n), we get:

T(n) = Θ (1) if n = 1
 2 T(n/2) + Θ (n) if n > 1

• Later we will see that:
T(n) = Θ (n lg n)

11

27

Remarks on Merge-Sort

• Merge-Sort has a running time of Θ (n lg n)
Insertion-Sort has a running time of Θ (n2)

• This implies that for sufficiently large n, Merge-Sort is superior to
Insertion-Sort. For a certain Pascal implementation, Merge-Sort is
7 times faster than Insertion-Sort for n=256 and 11 times faster
for n=512.

• Merge-Sort takes approximately the same amount of time whether
the sequence is sorted, random, or inversely sorted.

• Procedure Merge requires n elements extra memory. However,
since the sequences are accessed only sequentially, Merge-Sort is
better suited for external sorting. Later we will see that 3 or 4
files are sufficient.

• Versions of Merge exists which do not require extra memory at the
cost of additional moves. However, other internal sorting
algorithms are superior even to the fastest version of Merge-Sort

28

Complexity of Algorithms vs. Problems

• The running time of an algorithm is also referred to as its time
complexity.
The memory required by an algorithm is also referred to as its
space complexity.

• Merge-Sort has a time complexity of Θ (n lg n)
Insertion-Sort has a time complexity of Θ (n2)

QUESTION: What is the time complexity of the fastest sorting
algorithm?

ANSWER: We will see that it is Θ (n lg n), i.e. no algorithm can be
faster than Θ (n lg n), although algorithms may still differ in their
constant factors.

• We therefore can say that the problem of sorting has a time
complexity of Θ (n lg n).

