1. Introduction: Analysing and Designing Algorithms

• When solving a problem, we are well advised first to construct an exact model in terms of which we can express allowed solutions.
• Finding such a model is already half the solution. Any branch of mathematics or science can be called into service to help model the problem domain, e.g.:
 - Simultaneous linear equations (finding currents in electrical circuits, finding stresses in frames made of concrete beams)
 - Differential equations (predicting population growth, predicting the rate at which chemicals will react)
 - Formal grammars (compiling programming languages, database queries)
 - Graphs (transportation problems, optimal scheduling)
• Once we have a suitable mathematical model, we can specify a solution in terms of that model.

Introductory Example

• Suppose we model our problem domain by a sequence of numbers \(A = (a_1, a_2, ..., a_n) \) and the solution consists in sorting them.
• Functional specification in terms of an abstract program (pseudocode):
 \[A \leftarrow \text{any } A' \text{ such that permutation } (A', A) \land \text{ascending } (A') \]
• Functional specification in terms of a relation:
 \[\text{permutation } (A', A) \land \text{ascending } (A') \]
• Functional specification in terms of pre- and postcondition:
 \[(A=X) \text{ sort } (\text{permutation } (X, A) \land \text{ascending } (A)) \]
 Note that the "logical variable" \(X \) is necessary to express the input-output relationship.
• Definitions:
 \[\text{permutation}: \text{smallest relation satisfying for any } x, s, t_1, t_2 \]
 \[\text{permutation } ((0, 0)) \]
 \[\text{permutation } ((x) \cdot s, t_1 \cdot (x) \cdot t_2) \iff \text{permutation } (s, t_1 \cdot t_2) \]
 \[\text{ascending } (s) \iff (\forall i \mid 1 \leq i < \text{length } [s] \cdot s[i] \leq s[i+1]) \]
Program Development...

- For our purpose, all three functional specifications are equivalent; we will switch between them as convenient.
- We have allowed ourselves a simple formulation by abstracting from the way how the sequence is supposed to be input to and output from the computer.
- Given this specification, we can develop a solution by stepwise refinement:
 - Insertion-Sort (A)
 for j ← 2 to length[A] do
 "Insert A[j] in sorted sequence A[1..j-1]"
 - "Insert A[j] in sorted sequence A[1..j-1]" specified by:
 ascending (A[1..j-1]) ∧
 permutation (A[1..j], A'[1..j]) ∧
 ascending (A'[1..j])

... Program Development

- "Insert A[j] in sorted sequence A[1..j-1]" is refined by:
 key ← A[j]
 i ← j-1
 while i>0 ∧ A[i]>key do
 A[i+1] ← A[i]
 i ← i-1
 A[i+1] ← key
- The final solution is obtained by composing the refined part(s).
- This algorithm can now be implemented in a variety of programming languages.
Implementation in Pascal

- **type** T = array [1..N] of integer;

- **procedure** insertionsort (var A: T);

 var key, j, i: integer;
 begin
 for j := 2 to N do
 begin
 key := A[j];
 i := j-1;
 while (i>0) and (A[i]>key) do
 begin
 A[i+1] := A[i];
 i := i-1
 end;
 A[i+1] := key
 end;
 end;

Computing Resources

- These functional specification do not restrict the resources needed for by the algorithm, e.g. time and memory.
- Without further non-functional requirements, practically useless solutions would be allowed.
- What are the resources needed by Insertion-Sort?
 - memory: 1 element (key) + 2 integers (i,j)
 - time: ?
- In this course, we will focus on methods for determining the running time of algorithms under various circumstances.
- We shall assume a generic one-processor **random-access machine (RAM)** model of computation.
Analyzing Insertion-Sort...

- Insertion-Sort (A) cost times
 1 for j ← 2 to length[A] do c_1 n
 2 key ← A[j] c_2 n-1
 3 «insert A[j] in A[1..j-1]» 0 n-1
 4 i ← j-1 c_4 n-1
 5 while i>0 ∧ A[i]>key do c_5 (Σ j|2 ≤ j ≤ n • t_j)
 6 A[i+1] ← A[i] c_6 (Σ j|2 ≤ j ≤ n • t_j-1)
 7 i ← i-1 c_7 (Σ j|2 ≤ j ≤ n • t_j-1)
 8 A[i+1] ← key c_8 n-1

- The running time depends on the size of the input: let n = length[A]
- For each basic operation, we model its running time by a cost c_i.
- Let t_j be the number of times the while condition in line 5 is tested for that value of j.
- The total running time T(n) is:
 \[T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (Σ j|2 ≤ j ≤ n • t_j) + c_6 (Σ j|2 ≤ j ≤ n • t_j-1) + c_7 (Σ j|2 ≤ j ≤ n • t_j-1) + c_8 (n-1) \]

Best Case for Insertion-Sort

- Even for a fixed input size, the running time depends on which input of that size is given.

- **Best case** occurs if the array is already sorted: A[i] ≤ key in line 5, and t_j=1.
 \[T(n) = c_1 n + c_2 (n-1) + c_4 (n-1) + c_5 (n-1) + c_6 (n-1) \]
 \[= (c_1 + c_2 + c_4 + c_5 + c_8) n - (c_2 + c_4 + c_5 + c_8) \]

- T(n) is a linear function of n,
 \[T(n) = a n + b \text{ for some } a, b \]
Worst Case for Insertion-Sort

- Worst case occurs if the array is in reverse sorted order: we must compare \(A[j] \) with all \(A[j-1], ..., A[1] \), so \(t_j = j \).

- Noting that
 \[
 \sum_{j \leq j \leq n} j^2 = \frac{n(n+1)}{2} - 1 \quad \sum_{j \leq j \leq n} j - 1 = \frac{n(n-1)}{2}
 \]
 we get for \(T(n) \) in that case:
 \[
 T(n) = \left(\frac{c_5}{2} + \frac{c_6}{2} + \frac{c_7}{2} \right) n^2 + \left(\frac{c_1}{2} + \frac{c_2}{2} + \frac{c_4}{2} + \frac{c_3}{2} + \frac{c_9}{2} \right) n - \left(\frac{c_2}{2} + \frac{c_4}{2} + \frac{c_5}{2} + \frac{c_8}{2} \right)
 \]
 - \(T(n) \) is a quadratic function of \(n \),
 \(T(n) = a n^2 + b n + c \) for some \(a, b, c \).

Average Case for Insertion-Sort

- For the average case, we randomly choose \(n \) numbers.

- When comparing \(A[j] \) with \(A[1], ..., A[j-1] \), in average half of the elements are less than \(A[j] \). Hence \(t_j = j / 2 \).

- The analysis of \(T(n) \) in that case is similar to the worst case, except for the factor 2.

- In the average case, \(T(n) \) is also a quadratic function of \(n \).
• To summarize, an algorithm is a program for a (possibly abstract) machine, for which we can ensure the correctness in terms of the model of the problem domain.

• Besides correctness, we are interested in the worst-case and the average-case running time with respect to an abstract computer, the random access machine.

• We mostly consider only the worst-case running time:
 - It gives an upper bound on the running time.
 - The worst case occurs often, e.g. searching an element which is not present.
 - The average case is often roughly as bad as the worst case.
 - It is not clear what the average input is.

• For analyzing the running time and for implementing the algorithm, it has to be in a sufficiently refined form so that constructs can be faithfully mapped to the available machine (programming language).

When comparing the running time of algorithms, we often consider only the order of $T(n)$, for example quadratic (n^2), $n \log n$, or linear (n), since for sufficiently large n this is decisive term.

• Other properties are also relevant. For example, Insertion-Sort behaves naturally in that it is faster if the array is already partially sorted, in particular if we have a sorted sequences with just a couple of unsorted elements at the end.

• Insertion-Sort has an average running time in the order of n^2, other sorting algorithms do better. However, other faster sorting algorithms do not behave as naturally as Insertion-Sort.

• In designing algorithms, we prefer for loops to while loops. They guarantee termination and make running time easier to analyze:

  ```
  for i ← a to b do S(i) =
    skip if a>b
    S(a) ; for i ← a+1 to b do S(i) otherwise
  ```
Order of Growth

- The worst case running time for Insertion-Sort by is
 \[T(n) = a \ n^2 + b \ n + c \]
 for some constants a, b, c, which depend on the actual costs c_i. In
doing so, we have abstracted from the actual costs.
- We further simplify the running time by leaving out b \ n + c, since
 for large values of n, is it insignificant compared to a n^2.
- We make a final simplification by leaving out the factor and only
 keeping n^2. We say that order of growth of T(n) is n^2, formally,
 \[T(n) = \Theta(n^2) \]
 for several reasons:
 - Many algorithms can be classified as computationally intensive
 simply by considering their order of growth.
 - The constant factors can be more precisely determined by
 experiments than by analysis.
 - The analysis is easier or only possible by considering only the
 order of growth.

Growth Rate and Constant Factors
Growth Rates of Common Functions

Suppose each operation takes 1 nanoseconds (10^{-9} seconds)

<table>
<thead>
<tr>
<th>n</th>
<th>$\lg n$</th>
<th>n</th>
<th>$n \lg n$</th>
<th>n^2</th>
<th>2^n</th>
<th>$n!$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0.003µs</td>
<td>0.01µs</td>
<td>0.033µs</td>
<td>0.1µs</td>
<td>1µs</td>
<td>3.63ms</td>
</tr>
<tr>
<td>20</td>
<td>0.004µs</td>
<td>0.02µs</td>
<td>0.086µs</td>
<td>0.4µs</td>
<td>1ms</td>
<td>77.1years</td>
</tr>
<tr>
<td>30</td>
<td>0.005µs</td>
<td>0.02µs</td>
<td>0.147µs</td>
<td>0.9µs</td>
<td>1sec</td>
<td>>1015years</td>
</tr>
<tr>
<td>100</td>
<td>0.007µs</td>
<td>0.1µs</td>
<td>0.644µs</td>
<td>10µs</td>
<td>>1013years</td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>0.013µs</td>
<td>10µs</td>
<td>130µs</td>
<td>100ms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000,000</td>
<td>0.020µs</td>
<td>1ms</td>
<td>19.92µs</td>
<td>16.7min</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- For $n < 10$, the difference is insignificant.
- $\Theta(n!)$ algorithms are useless well before $n = 20$.
- $\Theta(2^n)$ algorithms are practical for $n < 40$.
- $\Theta(n^2)$ and $\Theta(n \lg n)$ are both useful, but $\Theta(n \lg n)$ is significantly faster.

The Divide-And-Conquer Approach

- Many algorithms follow the divide-and-conquer approach:
 - Divide the problem into a number of subproblems
 - Conquer the subproblems by solving them recursively. If the subproblems are small enough, solve them directly.
 - Combine the solutions to the subproblem into the solution for the original problem
- The algorithms are often more easily expressed as recursive algorithms.
Merge-Sort...

- Merge-Sort is a divide-and-conquer algorithm:
 - Divide: Divide an n-element sequence into two subsequences of approximately n/2 elements.
 - Conquer: Sort the subsequences recursively.
 - Combine: Merge the two sorted subsequences to produce the sorted sequence.
- For allowing a recursive formulation, we pass the whole sequence and the bounds of the subsequence which has to be sorted as parameter.
- Merge-Sort \(A, p, r \)
 \[
 \text{if } p < r \text{ then}
 \]
 \[
 q < \lfloor (p + r) / 2 \rfloor
 \]
 \[
 \text{Merge-Sort} \(A, p, q \)
 \]
 \[
 \text{Merge-Sort} \(A, q+1, r \)
 \]
 \[
 \text{Merge} \(A, p, q, r \)
 \]

... Merge-Sort

- The auxiliary procedure Merge \(A, p, q, r \) merges the sorted subsequences \(A[p..q] \) and \(A[q+1..r] \). It can be specified by:
 \[
 p \leq q \wedge q \leq r \wedge
 \]
 \[
 \text{ascending} (A[p..q]) \wedge \text{ascending} (A[q+1..r]) \wedge
 \]
 \[
 \text{permutation} (A'[p..r], A[p..r]) \wedge
 \]
 \[
 \text{ascending} (A'[p..r])
 \]
- We assume that it can be implemented in \(\Theta(n) \), for example by using an auxiliary sequence.
- The entire sequence \(A \) can be sorted by calling
 \[
 \text{Merge-Sort} \(A, 1, \text{length}[A] \)
 \]
- What is the running time of Merge-Sort?
Analyzing Divide-And-Conquer Algorithms

- Let $T(n)$ be the running time for a problem of size n.
- If the problem is small, say $n \leq c$, we assume that a direct solution takes constant time:
 $$T(n) = \Theta(1) \quad \text{if } n \leq c$$
- Otherwise, we divide the problem into subproblems, each of which is $1/b$ the size of the original. Suppose it takes $D(n)$ time to divide the problem and $C(n)$ time to combine the solutions.
 $$T(n) = a T(n/b) + D(n) + C(n) \quad \text{if } n > c$$
- Such equations are called recurrences. They are common in analyzing the running time of algorithms. We will study solutions of recurrences later.

Analysis of Merge-Sort

- Divide: Just computes the middle of the subsequence, thus takes constant time:
 $$D(n) = \Theta(1)$$
- Conquer: We solve 2 subproblems of size approximately $n/2$:
 $$a = 2, \quad b = 2$$
- Combine: Merge takes $\Theta(n)$:
 $$C(n) = \Theta(n)$$
- Noting that $\Theta(n) + \Theta(1)$ is still $\Theta(n)$, we get:
 $$T(n) = \Theta(1) \quad \text{if } n = 1$$
 $$2 T(n/2) + \Theta(n) \quad \text{if } n > 1$$
- Later we will see that:
 $$T(n) = \Theta(n \log n)$$
Remarks on Merge-Sort

- Merge-Sort has a running time of $\Theta(n \lg n)$
 Insertion-Sort has a running time of $\Theta(n^2)$
- This implies that for sufficiently large n, Merge-Sort is superior to Insertion-Sort. For a certain Pascal implementation, Merge-Sort is 7 times faster than Insertion-Sort for $n=256$ and 11 times faster for $n=512$.
- Merge-Sort takes approximately the same amount of time whether the sequence is sorted, random, or inversely sorted.
- Procedure Merge requires n elements extra memory. However, since the sequences are accessed only sequentially, Merge-Sort is better suited for external sorting. Later we will see that 3 or 4 files are sufficient.
- Versions of Merge exists which do not require extra memory at the cost of additional moves. However, other internal sorting algorithms are superior even to the fastest version of Merge-Sort.

Complexity of Algorithms vs. Problems

- The running time of an algorithm is also referred to as its time complexity.
 The memory required by an algorithm is also referred to as its space complexity.
- Merge-Sort has a time complexity of $\Theta(n \lg n)$
 Insertion-Sort has a time complexity of $\Theta(n^2)$

QUESTION: What is the time complexity of the fastest sorting algorithm?

ANSWER: We will see that it is $\Theta(n \lg n)$, i.e. no algorithm can be faster than $\Theta(n \lg n)$, although algorithms may still differ in their constant factors.

- We therefore can say that the problem of sorting has a time complexity of $\Theta(n \lg n)$.