1. Introduction: Analysing and Designing Algorithms

When solving a problem, we are well advised first to construct an
exact model in terms of which we can express allowed solutions.
Finding such a model is already half the solution. Any branch of
mathematics or science can be called into service to help model the
problem domain, e.g.:
- Simultaneous linear equations (finding currents in electrical
circuits, finding stresses in frames made of concrete beams)
- Differential equations (predicting population growth, predicting
the rate at which chemicals will react)
- Formal grammars (compiling programming languages, database
queries)
- Graphs (transportation problems, optimal scheduling)

Once we have a suitable mathematical model, we can specify a
solution in terms of that model.

Introductory Example

Suppose we model our problem domain by a sequence of humbers
A = &, a,, ..., a,fiand the solution consists in sorting them.

Functional specification in ferms of an abstract program
(pseudocode):

A - any A’ such that permutation (A’, A) Uascending (A")
Functional specification in ferms of a relation:
permutation (A’, A) Uascending (A")
Functional specification in ferms of pre- and postcondition:
{A=X} sort {permutation (X, A) U ascending (A)}
Note that the “logical variable” X is necessary to express the
input-output relationship.
Definitions:
permutation: smallest relation satisfying for any x, s, t,,t,
permutation (& &)
permutation (&f- s, t; ° &ifi- 1,) U permutation (s, 1; © 1,)
ascending (s) U (" i | 1£i<length [s]- s[i]£s.,)

Program Development...

For our purpose, all three functional specifications are equivalent;
we will switch between them as convenient.
We have allowed ourselves a simple formulation by abstracting
from the way how the sequence is supposed to be input to and
output from the computer.
Given this specification, we can develop a solution by stepwise
refinement:
Insertion-Sort (A)

for j~ 2 to length[A] do

"Insert A[j] in sorted sequence A[1..j-11"

"Insert A[j] in sorted sequence A[1..j-1]" specified by:

ascending (A[1..j-1])) U

permutation (A[1..j], ATL.j) U

ascending (A'[1..j])

.. Program Development

"Insert A[j] in sorted sequence A[1..j-1]" is refined by:
key = A[j]
i~ j-1
while i>0 U A[i]key do
Ali+1]- A[i]
i— -1
Ali+1] = key
The final solution is obtained by composing the refined part(s).
This algorithm can now be implemented in a variety of programming
languages.

10

Implementation in Pascal

type T = array [1..N] of integer;

procedure insertionsort (var A: T);
var key, |, it integer;

begin
for j:=2toNdo
begin
key = A[j]:
i=j-1
while (i>0) and (A[i]>key) do
begin
Ali+1]:= A[i];
i=i-1
end;
A[i+1] := key
end
end;

1

Computing Resources

These functional specification do not restrict the resources
needed for by the algorithm, e.g. time and memory.

Without further non-functional requirements, practically useless
solutions would be allowed.

What are the resources needed by Insertion-Sort?

- memory: 1element (key) + 2 integers (i,j)

- time: ?
In this course, we will focus on methods for determining the
running time of algorithms under various circumstances.

We shall assume a generic one-processor random-access machine
(RAM) model of computation.

12

Analyzing Insertion-Sort..

Insertion-Sort (A) cost times

1 forj- 2tolength[A]do o n

2 key - A[j] c, n-1

3 «insert A[j]in A[1..j-1]» 0 n-1

4 i= J-l Cy n-1

5 while >0 U A[i]>key do Cs @& jI2EJEn 1)
6 Ali+1] ~ A[i] Ce @jl2£jEn- 1)
7 i- -1 cy @& jl2EjEn-1-1)
8 Ali+1] = key Cg n-1

The running time depends on the size of the input: let n = length[A]
For each basic operation, we model its running time by a cost c;

Let 1; be the number of times the while condition in line 5 is tested
for that value of |
The total running time T(n) is:
T(h) =c;n+c, (n-1)+c, (n-1)+c5(@ jI2EjEN-)+
(@ jl2EjEn- t-1)+c; @ jl2 EJEN-1;-1)+ cg(n-1)

13

Best Case for Insertion-Sort

Even for a fixed input size, the running time depends on which input
of that size is given.

Best case occurs if the array is already sorted:
Ali] £ key in line 5, and t;=1.

T(n) = c¢;n+c, (n-1)+ ¢y (n-1) + c5 (n-1) + 5 (n-1)
= (Cy+ecy+t eyt Cyrcg)n-(Cy+Cy+ Cy+Cg)

T(n) is a linear function of n,
T(n)=an+b for somea, b

14

Worst Case for Insertion-Sort

Worst case occurs if the array is in reverse sorted order:
we must compare A[jlwith all A[j-1], .., A[1],so t; =

Noting that
@jl2EjEn-j) =n(n+1)/2-1
@G jl2EjEn-j-)=n(n1)/2
we get for T(n) in that case:
Tn)=(cs/2+cy/2+c;/2)n2+
(civco+ey+eg/2+c/2+c,;/2+¢g)n-
(ca+ca* 5+ C)

T(n) is a quadratic function of n,
T(n)=an2+bn+cforsomea,b,c

15

Average Case for Insertion-Sort

For the average case, we randomly choose n humbers.

When comparing A[j] with A[1], ..., A[j-1], in average half of the
elements are less than A[j]. Hence t;= j / 2.

The analysis of T(n) in that case is similar to the worst case,
except for the factor 2.

In the average case, T(n) is also a quadratic function of n.

16

Algorithms ... |

To summarize, an algorithm is a program for a (possibly abstract)
machine, for which we can ensure the correctness in terms of the
model of the problem domain.

Besides correctness, we are interested in the worst-case and the
average-case running time with respect to an abstract computer,
the random access machine.

We mostly consider only the worst-case running time:
- It gives an upper bound on the running time.

- The worst case occurs often, e.g. searching an element which is
not present.

- The average case is often roughly as bad as the worst case.
- It is not clear what the average input is.

For analyzing the running time and for implementing the algorithm,
it has to be in a sufficiently refined form so that constructs can be
faithfully mapped to the available machine (programming language).

17

| .. Algorithms

When comparing the running time of algorithms, we often consider
only the order of T(n), for example quadratic (n2), n Ig n, or linear
(n), since for sufficiently large n this is decisive term.

Other properties are also relevant. For example, Insertion-Sort
behaves naturally in that it is faster if the array is already
partially sorted, in particular if we have a sorted sequences with
just a couple of unsorted elements at the end.

Insertion-Sort has an average running time in the order of n?,
other sorting algorithms do better. However, other faster sorting
algorithms do not behave as naturally as Insertion-Sort.
In designing algorithms, we prefer for loops to while loops. They
guarantee termination and make running time easier to analyze:
fori- atobdo S(i)=
skip if @b
S(a) ; fori—= a+l tobdo S(i) otherwise

18

Order of Growth

The worst case running time for Insertion-Sort by is
T(n)=an?+bn+c

for some constants a, b, ¢, which depend on the actual costs c;. In

doing so, we have abstracted from the actual costs.

We further simplify the running time by leaving out b n + ¢, since

for large values of n, is it insignificant compared to a n2.

We make a final simplification by leaving out the factor and only

keeping n2. We say that order of growth of T(n) is n?, formally,
T(n) = Q (n?)

for several reasons:

- Many algorithms can be classified as computationally intensive
simply by considering their order of growth.

- The constant factors can be more precisely determined by
experiments than by analysis.

- The analysis is easier or only possible by considering only the

order of growth. 19

Growth Rate and Constant Factors

20

Growth Rates of Common Functions

Suppose each operation takes 1 nanoseconds (10-° seconds)

n Ig n n nlgn n? 2n nl

10 0.003ys 0.01ys 0.033ws O.1us 1us 3.63ms
20 0.004us 0.02us 0.086us 0.4us Ims 77 lyears
30 0.005us 0.02us 0.147us 09us lsec >10%years
100 0.007us O.1us 0.644us 10us >10'3years

10,000 0.013pys 10ps 130pus 100ms
1,000,000 0.020us 1ms 19.92us 16.7min

For n < 10, the difference is insignificant.

Q (n!) algorithms are useless well before n = 20.

Q (2") algorithms are practical for n < 40.

Q (n®) and Q (n Ig n) are both useful, but Q (n Ig n) is significantly

faster.
21

The Divide-And-Conquer Approach

Many algorithms follow the divide-and-conquer approach:
- Divide the problem into a number of subproblems

- Conguer the subproblems by solving them recursively. If the
subproblems are small enough, solve them directly.

- Combine the solutions to the subproblem into the solution for
the original problem

The algorithms are often more easily expressed as recursive
algorithms.

22

Merge-Sort...

Merge-Sort is a divide-and-conquer algorithm:
- Divide: Divide an n-element sequence into two subsequences of
approximately n/2 elements.
- Conquer: Sort the subsequences recursively.
- Combine: Merge the two sorted subsequences to produce the
sorted sequence.
For allowing a recursive formulation, we pass the whole sequence
and the bounds of the subsequence which has to be sorted as
parameter.
Merge-Sort (A, p, 1)
if p<rthen
q<«-gp+r)/20
Merge-Sort (A, p, q)
Merge-Sort (A, g+1,r)
Merge (A, p,q,r)

23

... Merge-Sort

The auxiliary procedure Merge (A, p, q, r) merges the sorted
subsequences A[p..q] and A[q+1..r]. It can be specified by:
pE£qUq£ru
ascending (A[p..q]) U ascending (A[g+1..r]) U
permutation (A'[p..r], A[p.r) U
ascending (A'[p..r])
We assume that it can be implemented in Q (n), for example by
using an auxiliary sequence.
The entire sequence A can be sorted by calling
Merge-Sort (A, 1, length[A])
What is the running time of Merge-Sort?

24

| Analyzing Divide- And-Conquer Algorithms

Let T(n) be the running time for a problem of size n.
If the problem is small, say n £ ¢, we assume that a direct solution
takes constant time:

Tn)=Q@) ifnfc
Otherwise, we divide the problem into a subproblems, each of which
is 1/b the size of the original. Suppose it takes D(n) time to divide
the problem and C(n) time to combine the solutions.

T(n)=a T(n/b)+D(n)+C(n) ifn>c
Such equations are called recurrences. They are common in
analyzing the running time of algorithms. We will study solutions of
recurrences later.

25

Analysis of Merge-Sort

Divide: Just computes the middle of the subsequence, thus takes
constant time:

D(n) = Q (1)
Conquer: We solve 2 subproblems of size approximately n/2:
a=2, b=2
Combine: Merge takes Q (n):
C(n)=Q (n)
Noting that Q (n) + Q (1) is still Q (n), we get:
T(n) =Q () ifn=1
2 T(n/2)+ Q (n) ifn>1
Later we will see that:

T(n)=Q(nlgn)

26

10

Remarks on Merge-Sort

Merge-Sort has a running time of Q (nlg n)
Insertion-Sort has a running time of Q (n?)

This implies that for sufficiently large n, Merge-Sort is superior to
Insertion-Sort. For a certain Pascal implementation, Merge-Sort is
7 times faster than Insertion-Sort for n=256 and 11 times faster
for n=512.

Merge-Sort takes approximately the same amount of time whether
the sequence is sorted, random, or inversely sorted.

Procedure Merge requires n elements extra memory. However,
since the sequences are accessed only sequentially, Merge-Sort is
better suited for external sorting. Later we will see that 3 or 4
files are sufficient.

Versions of Merge exists which do not require extra memory at the
cost of additional moves. However, other internal sorting
algorithms are superior even to the fastest version of Merge-Sort

27

| Complexity of Algorithms vs. Problems

The running time of an algorithm is also referred fo as its time

complexity.
The memory required by an algorithm is also referred to as its

space complexity.
Merge-Sort has a time complexity of Q (nlg n)
Insertion-Sort has a time complexity of Q (n?)

QUESTION: What is the fime complexity of the fastest sorting
algorithm?

ANSWER: We will see that it is Q (n Ig n), i.e. no algorithm can be
faster than Q (n Ig n), although algorithms may still differ in their
constant factors.

We therefore can say that the problem of sorting has a time
complexity of Q (nIg n).

28

11

