
1

29

2. Growth of Function

• Typically, problems become computationally intensive as the input
size grows.

• We look at input sizes large enough to make only the order of the
growth of the running time relevant for the analysis and comparison
of algorithms.

• Hence we are studying the asymptotic efficiency of algorithms.
• So far our analysis showed that:

Merge-Sort has a running time of Θ (n lg n)
Insertion-Sort has a running time of Θ (n2)

• We like to make this notion more precise.

30

Θ-Notation

• Definition: Let g(n) be an asymptotically non-negative function on
the natural numbers.

Θ(g(n)) = {f(n) | ∃ c1 > 0, c2 > 0, n0 ∈ Nat •
 ∀ n ≥ n0 • 0 ≤ c1 g(n) ≤ f(n) ≤ c2 g(n)}

• Function f(n) belongs to Θ(g(n))
if it can be sandwiched between
c1 g(n) and c2 g(n) for some
constants c1, c2, for all n greater
than some n0.

• In this case, we say that g(n) is
an asymptotically tight bound
for f(n).

• We write f(n) = Θ(g(n)) for f(n) ∈ Θ(g(n))

n

c2 g(n)

c1 g(n)

f(n)

n0

2

31

Examples for Θ …

• n2 / 2 - 3 n = Θ(n2)
We have to determine c1 > 0, c2 > 0, n0 ∈ Nat such that:

c1 n2 ≤ n2 / 2 - 3 n ≤ c2 n2 for any n ≥ n0

Dividing by n2 yields:
 c1 ≤ 1 / 2 - 3 / n ≤ c2

This is satisfied for c1 = 1 / 14, c2 = 1 / 2, n0 = 7.

• 6 n3 ≠ Θ(n2)
We would have to determine c1 > 0, c2 > 0, n0 ∈ Nat such that:

c1 n2 ≤ 6 n3 ≤ c2 n2 for any n ≥ n0

which cannot exist.

32

… Examples for Θ

• a n2 + b n + c = Θ(n2) provided a > 0
For example, take c1 = a / 4, c2 = 7 a / 4,
n0 = 2 max (|b|/a, √(|c|/a)).

• In general, if am > 0 then

= Θ(nm)

ai n
i

i=0

m
∑

3

33

Properties of Θ

• Assume f(n) and g(n) are asymptotically positive:

• f(n) = Θ(g(n)) ∧ g(n) = Θ(h(n)) ⇒ f(n) = Θ(h(n)) (Transitivity)

• f(n) = Θ(f(n)) (Reflexivity)

• f(n) = Θ(g(n)) ⇔ g(n) = Θ(f(n)) (Symmetry)

• max (f(n), g(n)) = Θ(f(n) + g(n)) (Maximum)
If f(n) and g(n) are the running times of the two branches of an if-
statement, then this can be used to get a tight bound on the worst
case running time of the whole statement if nothing is known about
the condition, e.g. depends on unknown input.

34

O-Notation

• Definition: Let g(n) be an asymptotically non-negative function on
the natural numbers.

 O(g(n)) = {f(n) | ∃ c > 0, n0 ∈ Nat •
 ∀ n ≥ n0 • 0 ≤ f(n) ≤ c g(n)}

• In this case, we say that g(n) is
an asymptotic upper bound
for f(n).

• Θ is stronger than O:
f(n) = Θ(g(n)) ⇒ f(n) = O(g(n)),
or Θ(g(n)) ⊆ O(g(n))

• We write f(n) = O(g(n))
for f(n) ∈ O(g(n))

n

c g(n)

f(n)

n0

4

35

Examples for O

• a n2 + b n + c = O(n2) provided a > 0
since it is also Θ(n2).

• a n + b = O(n2) provided a > 0

• n lg n + n = O(n2)

• lgk n = O(n) for all k ∈ Nat

• O can be used for an upper bound of the running time for worst-
case input (and hence for any input).

• Note: Some books use O to informally describe tight bounds. Here
we use Θ for tight bounds and O for upper bounds.

36

Ω-Notation

• Definition: Let g(n) be an asymptotically non-negative function on
the natural numbers.

 Ω(g(n)) = {f(n) | ∃ c > 0, n0 ∈ Nat •
 ∀ n ≥ n0 • 0 ≤ c g(n) ≤ f(n)}

• In this case, we say that g(n) is
an asymptotic lower bound
for f(n).

• Θ is stronger than Ω:
f(n) = Θ(g(n)) ⇒ f(n) = Ω(g(n)),
or Θ(g(n)) ⊆ Ω(g(n))

• We write f(n) = Ω(g(n))
for f(n) ∈ Ω(g(n))

n

c g(n)

f(n)

n0

5

37

Examples for Ω

• a n2 + b n + c = Ω(n2) provided a > 0
since it is also Θ(n2).

• a n2 + b n + c = Ω(n) provided a > 0

• Ω can be used for a lower bound of the running time for best-case
input (and hence for any input). For example, the best-case running
time of Insertion-Sort is Ω(n).

38

Properties of Θ, O, Ω

• f(n) is a tight bound if it is an upper and lower bound:
f(n) = Θ(n) ⇔ f(n) = O(n) ∧ f(n) = Ω(n)

• f(n) = O(g(n)) ∧ g(n) = O(h(n)) ⇒ f(n) = O(h(n))
f(n) = Ω(g(n)) ∧ g(n) = Ω(h(n)) ⇒ f(n) = Ω(h(n)) (Transitivity)

• f(n) = O(f(n))
f(n) = Ω(f(n)) (Reflexivity)

• f(n) = O(g(n)) ⇔ g(n) = Ω(f(n)) (Transpose Symmetry)

6

39

Example for O, Ω, Θ

• 3 n2 - 100 n + 6 = O(n2) because 3 n2 > 3 n2 - 100 n + 6
• 3 n2 - 100 n + 6 = O(n3) because .00001 n3 > 3 n2 - 100 n + 6
• 3 n2 - 100 n + 6 ≠ O(n) because c n < 3 n2 when n > c
• 3 n2 - 100 n + 6 = Ω(n2) because 2.99 n2 < 3 n2 - 100 n + 6
• 3 n2 - 100 n + 6 ≠ Ω(n3) because 3 n2 - 100 n + 6 < n3

• 3 n2 - 100 n + 6 = Ω(n) because 1010 n < 3 n2 - 100 + 6
• 3 n2 - 100 n + 6 = Θ(n2) because both O and Ω
• 3 n2 - 100 n + 6 ≠ Θ(n3) because not Ω
• 3 n2 - 100 n + 6 ≠ Θ(n) because not O

40

Asymptotic Notation in Equations

• f(n) = Θ(n) simply means f(n) ∈ Θ(n)

• More generally, Θ(n) stands for an anonymous function which is an
element of Θ(n), e.g.

3 n2 + 3 n + 1 = 2 n2 + Θ(n)
means

3 n2 + 3 n + 1 = 2 n2 + f(n) ∧ f(n) ∈ Θ(n) for some f

• In recurrences:
T(n) = 2 T(n / 2) + Θ(n)

• In calculations:
2 n2 + 3 n + 1 = 2 n2 + Θ(n)

 = Θ(n2)

7

41

o-Notation

• The upper bound provided by O may or may not be tight. We use o
for an upper bound which is not tight.

• Definition: Let g(n) be an asymptotically non-negative function on
the natural numbers.

 o(g(n)) = {f(n) | ∀ c > 0 • ∃ n0 ∈ Nat •
 ∀ n ≥ n0 • 0 ≤ f(n) ≤ c g(n)}

The idea of the definition is that f(n) becomes insignificant
relative to g(n) as n approaches infinity.

• For example:
– 2 n = o(n2)
– 2 n2 ≠ o(n2)
– 2 n3 ≠ o(n2)

42

ω-Notation

• The lower bound provided by Ω may or may not be tight. We use ω
for a lower bound which is not tight.

• Definition: Let g(n) be an asymptotically non-negative function on
the natural numbers.

 ω(g(n)) = {f(n) | ∀ c > 0 • ∃ n0 ∈ Nat •
 ∀ n ≥ n0 • 0 ≤ c g(n) ≤ f(n)}

The idea of the definition is that g(n) becomes insignificant
relative to f(n) as n approaches infinity.

• For example:
– n2 / 2 = ω(n)
– n2 / 2 ≠ ω(n2)
– n2 / 2 ≠ ω(n3)

8

43

Example: Factorial

• n! is defined by:
0! = 1
n! = (n-1)! for n>0

• From Stirling's approximation

one can derive:
– n! = o(nn)
– n! = ω (2n)

n!= 2πn n

e

 


 

n
1 + Θ

1
n


 


 


 


 

