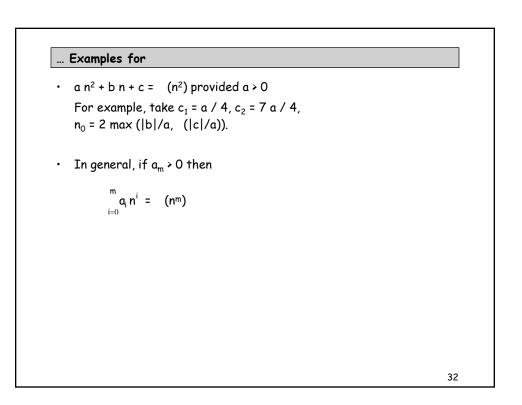


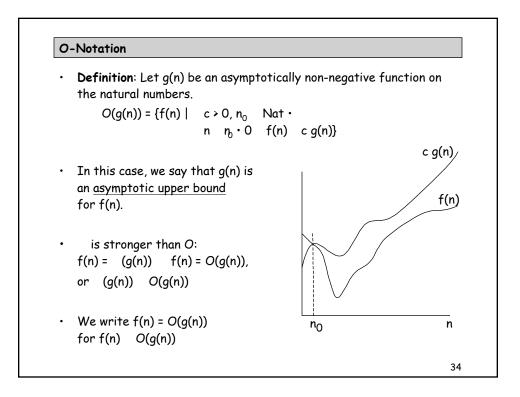
Examples for

....

```
n<sup>2</sup>/2-3n = (n<sup>2</sup>)
We have to determine c<sub>1</sub> > 0, c<sub>2</sub> > 0, n<sub>0</sub> Nat such that:
c<sub>1</sub> n<sup>2</sup> n<sup>2</sup>/2-3n c<sub>2</sub> n<sup>2</sup> for any n n<sub>b</sub>
Dividing by n<sup>2</sup> yields:
c<sub>1</sub> 1/2-3/n c<sub>2</sub>
This is satisfied for c<sub>1</sub> = 1/14, c<sub>2</sub> = 1/2, n<sub>0</sub> = 7.
6 n<sup>3</sup> (n<sup>2</sup>)
We would have to determine c<sub>1</sub> > 0, c<sub>2</sub> > 0, n<sub>0</sub> Nat such that:
c<sub>1</sub> n<sup>2</sup> 6 n<sup>3</sup> c<sub>2</sub> n<sup>2</sup> for any n n<sub>b</sub>
which cannot exist.
```

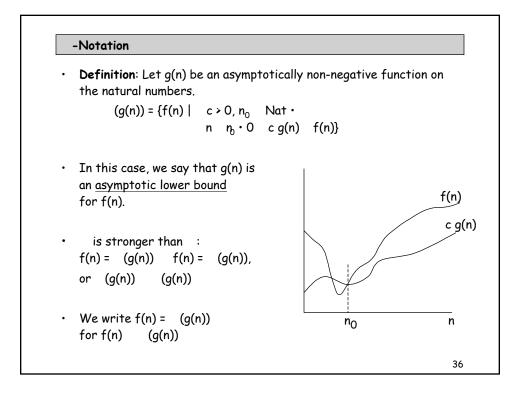


f(n) = (g(n)) $g(n) = (h(n))$ $f(n) = (h(n))$ (Transitivity) $f(n) = (f(n))$ $(Reflexivity)$ $f(n) = (g(n))$ $g(n) = (f(n))$ (Symmetry) $max (f(n), g(n)) = (f(n) + g(n))$ (Maximum)If $f(n)$ and $g(n)$ are the running times of the two branches of an if- statement, then this can be used to get a tight bound on the worst case running time of the whole statement if nothing is known about the condition, e.g. depends on unknown input.	,	opertie: Assum		d g(n) are	e asympto	tically po	ositive:	
$f(n) = (g(n)) g(n) = (f(n)) \qquad (Symmetry)$ $max (f(n), g(n)) = (f(n) + g(n)) \qquad (Maximum)$ If f(n) and g(n) are the running times of the two branches of an if- statement, then this can be used to get a tight bound on the worst case running time of the whole statement if nothing is known about	•	f(n) =	(g(n))	g(n) =	(h(n))	f(n) =	(h(n))	(Transitivity)
$\max (f(n), g(n)) = (f(n) + g(n)) $ (Maximum) If f(n) and g(n) are the running times of the two branches of an if- statement, then this can be used to get a tight bound on the worst case running time of the whole statement if nothing is known about	ı	f(n) =	(f(n))					(Reflexivity)
If $f(n)$ and $g(n)$ are the running times of the two branches of an if- statement, then this can be used to get a tight bound on the worst case running time of the whole statement if nothing is known about	•	f(n) =	(g(n))	g(n) =	(f(n))			(Symmetry)
		If f(n) statem case ru	and g(n) nent, the unning tir	are the n this car ne of the	running ti n be used whole st	to get a atement	tight bou if nothing	anches of an if- nd on the worst



Examples for O

- a n² + b n + c = O(n²) provided a > 0 since it is also (n²).
- $a n + b = O(n^2)$ provided a > 0
- n lg n + n = $O(n^2)$
- lg^k n = O(n) for all k Nat
- O can be used for an upper bound of the running time for worst-case input (and hence for any input).
- Note: Some books use O to informally describe tight bounds. Here we use for tight bounds and O for upper bounds.



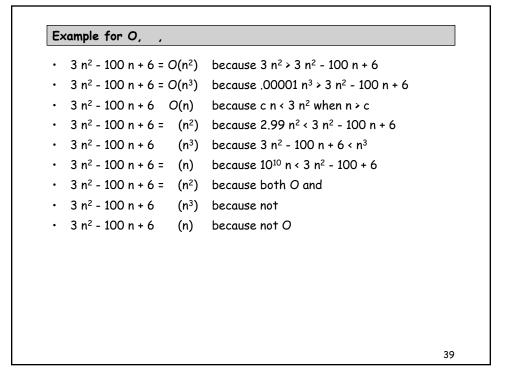
Examples for

```
• a n^2 + b n + c = (n^2) provided a > 0
since it is also (n^2).
```

```
• a n^2 + b n + c = (n) provided a > 0
```

• can be used for a lower bound of the running time for best-case input (and hence for any input). For example, the best-case running time of Insertion-Sort is (n).

•	f(n) is a tight bound if it i f(n) = (n) f(n) = O(n)	• • •		ıd:
•	f(n) = O(g(n)) g(n) = O(h(n))	f(n) = O(h(n))	
	f(n) = (g(n)) g(n) =	(h(n))	f(n) = (h(n))	(Transitivity)
•	f(n) = O(f(n))			
	f(n) = (f(n))			(Reflexivity)
•	f(n) = O(g(n)) g(n) =	(f(n))	(Trans	pose Symmetry)



As	ymptotic Notation in Equations			
•	f(n) = (n) simply means f(n) (1	n)		
•	More generally, (n) stands for an element of (n), e.g. $3 n^2 + 3 n + 1 = 2 n^2 + (n)$ means	n anor	nymous function w	hich is an
	$3 n^2 + 3 n + 1 = 2 n^2 + f(n)$ f((n)	(n) for some f	
•	In recurrences:			
	T(n) = 2 T(n / 2) + (n)			
•	In calculations:			
	$2 n^2 + 3 n + 1 = 2 n^2 + (n)$ = (n ²)			

o-Notation

- The upper bound provided by O may or may not be tight. We use o for an upper bound which is not tight.
- Definition: Let g(n) be an asymptotically non-negative function on the natural numbers.

 $o(g(n)) = \{f(n) \mid c > 0 \cdot n_0 \quad \text{Nat} \cdot n_0 \cdot 0 \quad f(n) \quad c \quad g(n)\}$

The idea of the definition is that f(n) becomes insignificant relative to g(n) as n approaches infinity.

- For example:
 - $-2n = o(n^2)$
 - 2 n² o(n²)
 - 2 n³ o(n²)

•	-Notation					
•	The lower bound provided by may or may not be tight. We use for a lower bound which is not tight.					
	Definition: Let g(n) be an asymptotically non-negative function on the natural numbers.					
	(g(n)) = {f(n) c > 0 ⋅ n ₀ Nat ⋅ n n _b ⋅ 0 c g(n) f(n)}					
	The idea of the definition is that g(n) becomes insignificant relative to f(n) as n approaches infinity.					
,	For example:					
	$- n^2 / 2 = (n)$					
	- n ² / 2 (n ²)					
	- n ² /2 (n ³)					
		42				

Example: Factorial

n! is defined by:
 0! = 1

n! = (n-1)! for n>0

• From Stirling's approximation

$$n! = \sqrt{2 n} \frac{n}{e}^{n} 1 + \frac{1}{n}$$

one can derive:
$$- n! = o(n^{n})$$

$$- n! = (2^{n})$$