Chapter 25: Single-Source Shortest Paths

The shortest path ... the path with the smallest edge-weight sum

Q1. What is the length of the path $\langle a,b,d,c,f \rangle$

 $\delta(u,v) \stackrel{\text{def}}{=}$ the shortest path length the shortest path problem (SPP) \cdots compute $\delta(u,v)$ for:

1. Single-Source: a fixed u and all v;

2. Single-Destination: a fixed v and all u;

3. Single-Pair: fixed u and v;

4. All-Pair: all u and v.

Negative weight edges can create negative weight cycles, which make the shortest paths undefined

Theorem A

Optimal Substructure Theorem

If $p=\langle v_1,v_2,\cdots,v_k\rangle$ is a shortest path from v_1 to v_k , then for all $i,j,1\leq i\leq j\leq k$, $p_{ij}=\langle v_i,\ldots,v_j\rangle$ is a shortest path from v_i to v_j .

1.
$$\delta(u, v) = \min\{\delta(u, a) + w(a, v) \mid (a, v) \in E\}.$$

2.
$$\delta(u,v) \leq \delta(u,a) + w(a,v)$$
 for any a .

Idea Use variable d[u,v] to compute $\delta(u,v)$

Relaxation with respect to points a, b, c:

$$d[a,c] \leftarrow \min(d[a,c],d[a,b]+w(b,c)).$$

A general strategy

- 1. Set $d[u,v] = \infty$ for all pairs u,v; repeat below until there is *no update*:
- 2. Pick a, b, c and, relax d[a, c] with (b, c):

$$d[a,c] \leftarrow \min(d[a,c],d[a,b] + w(b,c)).$$

- 3. Repeat (2) until done.
- 4. Output d[u, v] as $\delta(u, v)$.

3

1

4

2

Strategy for the single-source case (SSSP)

Fix u to a source node s

- 1. Set $d[v] = \infty$ for all v.
- 2. Pick b, c and, relax d[c] with (b, c):

 $d[c] \leftarrow \min(d[c], d[b] + w(b, c)).$

- 3. Repeat (2) until done.
- 4. Output d[v] as $\delta(s, v)$.

5

With Fibonacci heaps, the total running time is $O(E+V \lg V)$.

Dijkstra's algorithm

all weights are nonnegative

 $S\stackrel{\mathrm{def}}{=}$ the "finished nodes"; i.e., $\delta(s,v)=d[v]$ $Q\stackrel{\mathrm{def}}{=}V-S$, a priority queue with keys =d

- 1. Set $d[v] = \infty$ for all $v \neq s$, d[s] = 0, $S = \emptyset$, and Q to V.
- 2. While $Q \neq \emptyset$, "extract-min" $u \in Q$, then (a) Add u to S.
 - (b) For each v with $(u, v) \in E$,

$$d[v] \leftarrow \min(d[v], d[u] + w(u, v)).$$

- * Each time d[b] is updated, keep u as the **predecessor** of v in $\pi[b]$.
- Q2. How many times is each edge examined?
- Q3. How many calls to Extract-Min?
- Q4. How many calls to Decrease-Key?

6

The Bellman-Ford Algorithm

negative weights are allowed detects existence of negative weight cycles

Repeat V-1 times:

- 1. For each edge (u,v), relax with respect to (u,v)
- 2. If for some (u,v), d[v] > d[u] + w(u,v), then output "negative weight cycles"
- **Q5.** How many times is each edge examined?
- Q6. What is the running time?

The edge ordering: (a,b), (a,x), (b,y), (s,a), (s,x) (x,s), (x,a), (x,b) (y,b), (y,s), (y,x)

The first round.

The second round. The value of x is first relaxed to 1 by (a,x)then to -2 by (y,x).

9

Theorem C If G has a negative weight cycle then after the (V-1)-st round, for some u,v d[v]>d[u]+w(u,v) holds and the algorithm outputs "negative weight cycle."

Proof Suppose G has a negative weight cycle $\langle v_1, v_2, \ldots, v_k, v_1 \rangle$ whose length is L. Then

$$L = w(v_1, v_2) + \cdots + w(v_{k-1}, v_k) + w(v_k, v_1) < 0.$$

Assume, to the contrary, that $d[v] \leq d[u] + w(u,v)$ holds for all u and v after the (V-1)-st round. By our assumption,

$$d[v_i] \le d[v_{i-1}] + w(v_{i-1}, v_i)$$

for all $i, 1 \le i \le k$, where $v_0 = v_k$. Summing these inequialities for all i, we have

$$\sum_{i=1}^{k} d[v_i] \le \sum_{i=1}^{k} d[v_i] + L < \sum_{i=1}^{k} d[v_i],$$

a contradiction.

 $\mu(u)=$ the minimum number of edges in shortest s-u paths; $\mu(u)\leq V-1$ for all u.

Theorem B If G has no negative weight cycle then for every $v,\ d[v]$ becomes $\delta(s,v)$ after the $\mu(v)$ -th round

Proof By induction on $\mu(v)$.

(Base) $\mu(v)=0$: trivial because v=s (Induction) Let $\mu(v)=m+1$ and suppose the claim holds for all u with $\mu(u)\leq m$. Pick an (m+1)-edge shortest s-v path p, and let u be the node preceding v. Then $\mu(u)=m$ and

$$\delta(s, v) = \delta(s, u) + w(u, v).$$

So after the m-th round $d[v] = \delta(s,v)$. Thus, in the (m+1)st round, d[u] becomes at most $\delta(s,u) + w(u,v)$, and this is the smallest it can become.

SSSP for a DAG

- 1. Obtain a topological sort of the nodes.
- 2. For each $u \neq s$, set $d[u] = \infty$. Set d[s] = 0.
- 3. For each node v in the sorted order, and each u with $(u,v) \in E$, set $d[v] = \min(d[v], d[u] + w(u, v))$.

Q7. What is the running time?

12

10

Q8. What is the value of the last node?