Chapter 25: Single-Source Shortest
Paths

The shortest path --- the path with the small-
est edge-weight sum

%0

Q1. What is the length of the path
(a,b,d,c,f}

Theorem A
Optimal Substructure Theorem

If p = (v1,v9,---,v) IS @ shortest path from
v1 to v, then for all 4,5,1 << j <k, Pij =
(viy..-,vj) is a shortest path from v; to v;.

1. §(u,v) = min{é(u,a) +w(a,v) | (a,v) € E}.
2. 6(u,v) < é(u,a) + w(a,v) for any a.

Idea Use variable d[u,v] to compute §(u,v)

Relaxation with respect to points a,b,c:

d[a, c] + min(d[a, c],d[a, b] + w(b,c)).

&(u,v) 4 the shortest path length

the shortest path problem (SPP)
compute §(u,v) for:

Single-Source: a fixed v and all v;
Single-Destination: a fixed v and all u;

Single-Pair: fixed u and wv;

P wN#

All-Pair: all v and v.

Negative weight edges can create negative
weight cycles, which make the shortest paths
undefined

A general strategy

1. Set d[u,v] = oo for all pairs u,v; repeat
below until there is no update:

2. Pick a,b,c and, relax d[a, c] with (b, c):
dla, c] + min(d]a,c],d[a,b] + w(b,c)).

3. Repeat (2) until done.
4. Output d[u,v] as é(u,v).



Strategy for the single-source case (SSSP)

Fix w to a source node s

1. Set d[v] = oo for all v.

2. Pick b,c and, relax d[c] with (b,c):
d[c] + min(d[c], d[b] + w(b, c)).

3. Repeat (2) until done.
4. Output d[v] as §(s,v).

With Fibonacci heaps, the total running time
is O(E+VIgV).

Dijkstra’s algorithm

all weights are nonnegative

S L' the “finished nodes”: i.e., 6(s,v) = d[v]

Q def V — S, a priority queue with keys = d

1. Set d[v] = oo for all v # s, d[s] =0, S =0,
and Q to V.

2. While Q # 0, “extract-min” u € @Q, then
(a) Add u to S.

(b) For each v with (u,v) € E,
d[v] + min(d[v], d[u] + w(u,v)).

* Each time d[b] is updated, keep u as the
predecessor of v in w[b].

Q2. How many times is each edge examined?
Q3. How many calls to EXTRACT-MIN 7

Q4. How many calls to DECREASE-KEY 7

6

The Bellman-Ford Algorithm
negative weights are allowed
detects existence of negative weight cycles

Repeat V — 1 times:

1. For each edge (u,v), relax with respect to
(u,v)

2. If for some (u,v), d[v] > d[u] + w(u,v),
then output “negative weight cycles”

Q5. How many times is each edge examined?

Q6. What is the running time?



The edge ordering:
(a,b), (a,z), (b,y),
(s,a), (s, )
(z,s),(z,a), (z,b)
(y,0), (y, ), (y, )

The first round.

The second round.

The value of z is first
relaxed to 1 by (a,x)
then to —2 by (y,z).

Theorem C If G has a negative weight cycle
then after the (V — 1)-st round, for some u,v
d[v] > d[u] + w(u,v) holds and the algorithm
outputs “negative weight cycle.”

Proof Suppose G has a negative weight cycle
(v1,v2,...,v,v1) Whose length is L. Then
L =w(v1,v2) + - w(vg_1,v) + wlvg,v1) <O.

Assume, to the contrary, that d[v] < d[u] +
w(u, v) holds for all v and v after the (V —1)-
st round. By our assumption,

d[v;] < d[vi—1] +w(v;—1,v;)

for all 4,1 < i < k, where vg = vg. Summing
these inequialities for all i, we have

k k k
> dlv] < > dlv]l+L <) dvl,

i=1 i=1 i=1
a contradiction. |

11

w(u) = the minimum number of edges in
shortest s-u paths; pu(u) <V —1 for all w.

Theorem B If G has no negative weight cy-
cle then for every v, d[v] becomes 4(s,v) after
the u(v)-th round

Proof By induction on u(v).

(Base) u(v) =0: trivial because v =135
(Induction) Let u(v) =m <+ 1 and suppose
the claim holds for all u with pu(u) < m. Pick
an (m+ 1)-edge shortest s-v path p, and let u
be the node preceding v. Then u(u) =m and

8(s,v) = 6(s,u) + w(u,v).

So after the m-th round d[v] = §(s,v). Thus,
in the (m 4 1)st round, d[u] becomes at most
8(s,u) +w(u,v), and this is the smallest it can
become. |

10

SSSP for a DAG

1. Obtain a topological sort of the nodes.

2. For each u # s, set d[u] = co. Set d[s] =
0.

3. For each node v in the sorted order,
and each u with (u,v) € E, set d[v] =
min(d[v], d[u] + w(u,v)).

Q7. What is the running time?

12



Q8. What is the value of the last node?

13



