Chapter 26: All-Pairs Shortest Path

A trivial solution is to use SSSP algorithms for APSP

With Dijkstra's algorithm (no negative weights!) the running time would become $O(V(V \lg V + E)) = O(V^2 \lg V + VE)$

With the Bellman-Ford algorithm the running time would become $O(V(VE)) = O(V^2E)$

Three approaches for improvement:

algorithm	cost
matrix multiplication	$\Theta(V^3 \lg V)$
Floyd-Warshall	$\Theta(V^3)$
Johnson	$O(V^2 \lg V + VE)$

1

Computing $D^{(p+q)}$ from $D^{(p)}$ and $D^{(q)}$ using matrix multiplication

$$D^{(p+q)} = D^{(p)} \cdot D^{(q)}$$

where (min, +) is used as the computational basis instead of $(+, \times)$

The complexity is $O(V^3 \lg V)$

Q1. How can you check the existence of negative weight cycles?

Matrix Multiplication

Define the $V \times V$ matrix $D^{(m)} = (d_{ij}^{(m)})$ by:

 $d_{ij}^{(m)} =$ the length of the shortest path from i to j with < m. Then

$$d_{ij}^{(1)} = \begin{cases} 0 & \text{if } i = j, \\ w_{ij} & \text{if } i \neq j, (i, j) \in E, \\ \infty & \text{otherwise,} \end{cases}$$

and for all i, j, p, q,

$$d_{ij}^{(p+q)} = \min_{1 \leq k \leq n} (d_{ik}^{(p)} + d_{kj}^{(q)}).$$

 $D^{(V-1)}$ is the matrix $(\delta(i,j))$.

2

D(1):

$$\left(\begin{array}{ccccc}
0 & -4 & \infty & 2 & \infty \\
4 & 0 & 5 & \infty & 1 \\
1 & \infty & 0 & \infty & -2 \\
3 & \infty & 1 & 0 & 3 \\
\infty & -1 & \infty & 1 & 0
\end{array}\right)$$

 $D(\mathsf{2})$:

$$\begin{pmatrix}
0 & -4 & 1 & 2 & -3 \\
4 & 0 & 5 & 2 & 1 \\
1 & -3 & 0 & -1 & -2 \\
3 & -1 & 1 & 0 & -1 \\
3 & -1 & 2 & 1 & 0
\end{pmatrix}$$

D(4), D(8):

$$\begin{pmatrix}
0 & -4 & 1 & -2 & -3 \\
4 & 0 & 3 & 2 & 1 \\
1 & -3 & 0 & -1 & -2 \\
3 & -2 & 1 & 0 & -1 \\
3 & -1 & 2 & 1 & 0
\end{pmatrix}$$

3

Method 2: Floyd-Warshall

Define the $V \times V$ matrix $W^{(m)} = (f_{ij}^{(m)})$ by:

 $f_{ij}^{(m)}$ is the shortest path length from i to j with only nodes $\leq m$ in between

Define $f_{ij}^{(0)}=w_{ij}$. Then for every i,j and every $k\geq 1$,

$$f_{ij}^{(k)} = \min(f_{ij}^{(k-1)}, f_{ik}^{(k-1)} + f_{kj}^{(k-1)}).$$

 $W^{(V)}$ is the matrix $(\delta(i,j))$.

Compute W^k from W^{k-1} for k = 1, ..., V

Q2. How many steps are needed for computing an entry?

Q3. How many entries are evaluated in total?

Q4. So, what is the total cost?

6

5

Johnson's Algorithm

Define a new weight function \hat{w} so that

- the shortest paths are preserved and
- $\widehat{(u,v)} \ge 0$ for all u,v

Then use Dijkstra's algorithm to compute the shortest path

- 1. Add a **new node** s with no incoming edges and with a 0-weight outgoing edge to every other node
- 2. Use the Bellman-Ford algorithm to compute $h(u) = \delta(s,u)$ for all u
- 3. Let $\widehat{w}(u,v) = w(u,v) + h(u) h(v)$ and use Dijkstra's method to compute $\widehat{\delta}(u,v)$
- 4. Output for each $u,v,\ \delta(u,v)$ as $\widehat{\delta}(u,v)+h(v)-h(u)$

The use of Dijkstra's method is possible because for every $u,v,\,$

$$\delta(s,v) \le w(u,v) + \delta(s,u)$$

$$\widehat{w}(u,v) = w(u,v) + h(u) - h(v) \ge 0$$

Theorem A Let h be any mapping of V to \mathbf{R} . Define $\widehat{w}(u,v)=w(u,v)+h(u)-h(v)$ and $\widehat{\delta}(u,v)=$ the shortest path with respect to \widehat{w} . If $\widehat{\delta}(u,v)$ is defined for all u,v, then

$$\delta(u,v) = \widehat{\delta}(u,v) + h(v) - h(u);$$

i.e., the new weight function preserves the shortest paths.

Proof For any path $p = [v_1, \ldots, v_k]$ the path length of p under \hat{w} is

$$\sum_{i=1}^{k-1} \left(w(v_{i+1}, v_i) + h(v_i) - h(v_{i+1}) \right).$$

This is equal to

$$\left(\sum_{i=1}^{k-1}\right) + \sum_{i=1}^{k-1} \left(h(v_i) - h(v_{i+1})\right).$$

The right hand-side is $h(v_1) - h(v_k)$. So for every u and v, $\hat{\delta}(u,v) = \delta(u,v) + h(u) - h(v)$.

11

10

After Dijkstra

Back to Original Weights