Chapter 26: All-Pairs Shortest Path

A trivial solution is to use SSSP algorithms
for APSP

With Dijkstra's algorithm (no negative
weights!) the running time would become

o(V(VIgV 4+ E)) =0(V2IgV + VE)

With the Bellman-Ford algorithm the running
time would become O(V(VE)) = O(V2E)

Three approaches for improvement:

algorithm \ cost
matrix multiplication e(V3igV)
Floyd-Warshall o(v?3)
Johnson | O(V2IgV + VE)

Computing D@+ from D®) and D@ using
matrix multiplication

pt+a) — pb) . pla)

where (min,+4) is used as the computational
basis instead of (4, x)

min(10+8,9+6,
4+12)

> 00

=
N

The complexity is O(V3IgV)

Q1. How can you check the existence of neg-
ative weight cycles?

Matrix Multiplication

Define the V x V matrix D(m) = (dg-n)) by:

dg-") = the length of the shortest path from 3
to j with <m. Then

1 0 if 1 =7,
oo otherwise,
and for all ,3,p,q,

(r+49) _ ; (p) ()
dij ' = 1Smk|2n(dik + dii)-

DV =1) is the matrix (6(i,5)).

D(1)
0 4 0o 2 o
4 0 5 o 1
1 oo 0 o =2
3 oo 1 0 3
oo —1 co 1 O
1 2 -3
5 2 1
0 -1 -2
1 0 -1
2 1 0

D(4),D(8) :

0O 41 -2 -3
4 0 3 2 1
1 30 -1 -2
3 -21 0 -1
3 -12 1 O



Method 2: Floyd-Warshall

Define the V x V matrix w({m) = (fl-(Jm)) by:

fi(;") is the shortest path length from i to j
with only nodes < m in between Compute W* from Wk=1 for k=1,...,V

Q2. How many steps are needed for comput-

Define f.(.o) = w;;. Then for every 4,5 and )
K J ing an entry?

every k> 1,
k . k-1 k—1 k—1 i i ?
£ ) — mm(fi(j ), Z(k ) 4 flgj ). Q3. How many entries are evaluated in total?
k only nodes up to k-1 Q4. So, what is the total cost?
i j

pick the smaller

only nodes up to h -

w) is the matrix (6(i,5)).

F(0) :
0 4 oo 3
-4 0 1 o© .
o -1 0 1 F(3):
2 o 3 0 0O 4 5 3
-4 0 1 -1
-5 -1 0 -2
F(1): —2* 2% 3 0
0 4 o 3
-4 0 1 -—1*
o —1 0 1
*
2 6 3 0 F(4) :
0O 4 5 3
-5 -1 0 -2
0O 4 5 3 -2 2 3 0
-4 0 1 -1

—5* —1 0 —2*
2 6 3 0




Johnson's Algorithm

Define a new weight function w so that

e the shortest paths are preserved and
e (u,v) >0 for all u,v

Then use Dijkstra’s algorithm to compute the
shortest path

1. Add a new node s with no incoming
edges and with a 0-weight outgoing edge
to every other node

2. Use the Bellman-Ford algorithm to com-
pute h(u) = 6(s,u) for all u

3. Let w(u,v) = w(u,v)+h(u) —h(v) and use
Dijkstra’s method to compute §(u,v)

4. Output for each w,v, §(u,v) as d(u,v) +
h(v) — h(u)

The use of Dijkstra’s method is possible be-
cause for every wu,v,

6(s,v) < w(u,v) + (s, u)
w(u,v) = w(u,v) + h(u) —h(v) >0

11

Theorem A Let h be any mapping of V to
R. Define w(u,v) = w(u,v) + h(u) — h(v) and
6(u,v) = the shortest path with respect to @.
If 5(u,v) is defined for all u,v, then

§(u,v) = 8(u,v) + h(v) — h(u);

i.e., the new weight function preserves the
shortest paths.

Proof For any path p = [vy,...,v;] the path
length of p under @ is

k-1

Z (w(vi+1avi) + h(v;) — h(vi—}-l)) .
=1

This is equal to
k—1 k—1
<Z> + > (h(vi) - h(’vi+1))-
i=1 i=1
The right hand-side is h(v1) — h(vg). So for
every u and v, 6(u,v) = §(u,v) + h(u) — h(v).1

10

Modified Weights After Dijkstra

12



5 2
Back to Original Weights

After Dijkstra

13



