Solutions to AS.1

Part I:
From textbook: Intro to Algorithms, Cormen, Rivest et al.

1. Ex. 5.4-1

1. Method: Induction on the number of edges

 Base: For a graph of \(n \) edges it holds: \(\sum d(u) = 2|E| \)

 1. Base: for \(n = 0 \), it holds trivially

 2. Hypothesis: It holds for \(n = k \), for \(G_k(V_k,E_k) \).

 3. Prove for: \(n = k+1 \), \(G_{k+1}(V_{k+1},E_{k+1}) \).

 Argument: 1 edge will increase by one the degree of two nodes.

 \[
 \sum_{G_{k+1}} d(u) = \sum_{G_k} d(u) + 2
 \]

 \(E_{k+1} = k+1 \), \(E_k = k \).

2. Method: with just the argument that 1 edge \(\rightarrow \) is counted twice in the degree of the nodes.

DISCLAIMER:
This is provided for your convenience.

Keep a critical mind, as some (hopefully minor) errors may exist.

Also, there are usually more than one way to solve these