
BLAS Libraries for the
Raspberry Pi Quad
Processing Unit

By: Kashyap Panda, Nicole Garcia & Emily Romero

- The Raspberry Pi is an embedded
system which consists of a series of
small single-board computers.

- Due to its programmability , it has a
broad number of applications.

What is a Raspberry Pi?

Features of the Pi Zero

● Tiny

● Built in Wifi

● Great for small projects

● Not as much computing power

● cost : $5 - $10

Features of the Pi Four

● Four usb ports

● Ethernet Jack

● 4gb of memory

● Built in wifi

● Quad core processor :
- helps with speed performance

● General Purpose Input/output pins:
- Used to send and receive electrical signals : meaning we can control things that use

electricity to run

● cost : $35+

- Each model has common elements:
- CPU
- GPU (Videocore 4 or 6)
- RAM
- I/O

- The main focus is on the Videocore
GPU

Hardware Overview

- The main part of the Videocore Unit

- Stands for Quad Processing Unit

- 16-way 32-bit SIMD processor
- Single Instruction, Multiple Data
- Simultaneously performs the same operation

on multiple data points
- In this case, on 16 data points

What is a QPU?

- Breaks the 16 points into 4 quads
- 4 sets of 4 points
- Where the Q in QPU comes from

- Processes 1 quad per clock cycle
- Processes everything in 4 clock cycles

What is a QPU?

QPU Architecture

- QPUs are organized into
groups/slices

- 12 QPUs at 250 MHz on
Videocore 4 (Pi Zero)

- 12 QPUs at 300 MHz on
Videocore 4 (Pi 3)

- 8 QPUs at 500 MHz on
Videocore 6 (Pi 4)

QPU Architecture

- Each QPU has access to
other components to
enable functionality

- Registers
- Uniforms
- Texture and Memory

Lookup Unit (TMU)
- Special Functions

Unit (SFU)
- And more!

Theoretical Outputs

- FLOP/S
- Floating-point Operations Per Second
- 1 GFLOP/S = 1000000000 FLOP/S = 10^9 FLOP/S

- Videocore 4 (Pi Zero)
- 250 MHz * 3 slices * 4 QPUs/slice * 4 cycles* 2 ops/cycle = 24 GFLOP/S

- Videocore 4 (Pi 3)
- 300 MHz * 3 slices * 4 QPUs/slice * 4 cycles* 2 ops/cycle = 28.8 GFLOP/S

- Videocore 6
- 500 MHz * 2 slices * 4 QPUs/slice * 4 cycles* 2 ops/cycle = 32 GFLOP/S

Videocore 4 vs 6, General Comparison

Raspberry Pi
Zero

Raspberry Pi 3 Raspberry Pi 4

GPU Videocore 4 Videocore 4 Videocore 6

Clock Speed 250 MHz 300 MHz 500 MHz

of QPUs 12 12 8

of slices 3 3 2

Theoretical
GFLOP/S

24 28.8 32

Current Goals

- While the QPU has processing power, most programs and routines built
for the Raspberry Pi don’t utilize it

- Optimizing code by using the QPU would provide a massive speedup
throughout the entire device

- Use optimized code to compare the cost and energy efficiency of the
different Raspberry Pi GPUs

How to write code for the QPU

- The QPU is programmed
using assembly language

- Contains the typical add,
subtract, or, etc.

- The Videocore 4 and
Videocore 6 have
different instruction sets

How to write code for the QPU

- There are libraries available that implement the QPU assembly
language as part of other languages

- Videocore 4
- py-videocore
- VC4CL

- Videocore 6
- py-videocore6

- Both
- V3DLib

- Each library has its own set of benefits and drawbacks

https://github.com/nineties/py-videocore
https://github.com/doe300/VC4CL
https://github.com/Idein/py-videocore6
https://github.com/wimrijnders/V3DLib

About the Libraries

- py-videocore and py-videocore6

- Python libraries used for programming on raspberry pi boards

- Allow us to communicate with the V3D GPU hardware (a driver used
by the raspberry pi)

- Directly maps QPU Python function to the QPU assembly instructions
- E.g. there is an add function written in Python that directly calls

the QPU add instruction

- We have been using these libraries to run tests and analyze the
performance rate of the GPU vs the QPU on the raspberry pi systems

About the Libraries

- V3DLib
- A C++ library used for creating programs to run on the VideoCore

GPU on all Raspberry Pi boards

- Doesn’t directly map functions to assembly like py-videocore,
creates a high-level C++ API that is converted to QPU assembly

- Runs the program on the CPU and offloads to the QPU at
runtime

- Compiles on both VideoCore IV and VideoCore VI

- We have been using this library to run tests and analyze the
performance rate of one QPU vs eight QPU’s on the raspberry pi
systems

About the Libraries

- VC4CL
- Runs the OpenCL language directly on the Videocore 4 GPU

- Converts OpenCL code to assembly
- Not supported for Videocore 6

- Has the benefit of using OpenCL, which is used for a variety of
GPUs and devices

- Not usable for benchmarks, has significant compatibility issues
when running OpenCL code on the Videocore 4

Benchmarks

- Multiply matrices directly on the QPU

- Measure GFLOP/S
- Calculate the number of operations
- Measure the time to completion
- GFLOP/S = (operations / time) * 10^9

Results - Videocore 4

Matrix Size
12 QPUs
(GFLOP/S) CPU (GFLOP/S)

16 0.0164 0.0497

32 0.1098 0.1392

48 0.3598 0.1837

64 0.7891 0.1135

128 2.7519 0.0451

160 4.1552 0.0571

256 4.336 0.0154

512 2.7411 0.0111

Results - Videocore 4

Matrix Size
1 QPU
(GFLOP/S)

12 QPUs
(GFLOP/S) CPU (GFLOP/S)

16 0.0087 0.0126 0.0497

32 0.0356 0.0856 0.1392

48 0.0536 0.2294 0.1837

64 0.0657 0.3575 0.1135

128 0.0765 0.7522 0.0451

160 0.0802 0.8244 0.0571

256 0.0712 0.8036 0.0154

512 ERROR 0.8762 0.0111

Results - Videocore 4

- Despite their speed differences, both libraries outperformed the
CPU on matrix multiplication, especially with large

- Py-videocore ran matrix multiplication much faster than
V3Dlib

- Due to less overhead and more direct interfacing with the
QPU

- Different matrix sizes affect GFLOP/S
- Achieved 8.7 GFLOP/S with 96x363 and 363x3072 matrices

- The Raspberry Pi Zero dangerously heats up when running this
- It is a good idea to repeat this with proper power measurement

tools

Results - Videocore 6

Matrix Size QPUs (GFLOP/S) CPU (GFLOP/S)

64 0.7798 1.336

128 2.746 2.243

192 4.045 2.501

256 4.271 2.354

320 4.152 2.501

384 4.399 2.539

448 4.06 2.685

512 4.322 2.766

Results - Videocore 6

Matrix Size
1 QPU
(GFLOP/S)

8 QPUs
(GFLOP/S) CPU (GFLOP/S)

16 0.004053 0.024646 1.336

32 0.059568 0.161280 2.243

48 0.057149 0.38400 2.501

64 0.117160 0.626737 2.354

128 0.169393 1.221971 2.501

160 0.183535 1.376901 2.539

256 0.205640 1.479911 2.685

512 0.109250 1.38213 2.766

Results - Videocore 6

- Using the Py-videocore library our QPU runs faster than the
CPU with a matrix 128x128 - 1088 x 1088

- Using the V3D Lib library the CPU outperforms the QPU by a
great amount

- Findings : The Py videocore 6 library ran matrix multiplication
significantly faster than the VD3Lib library

Videocore 4 vs 6, Benchmark Comparison

Matrix Size
Videocore 4 QPUs
(GFLOP/S)

Videocore 4
CPU(GFLOP/S)

Videocore 6 QPUs
(GFLOP/S)

Videocore 6
CPU(GFLOP/S)

16 0.0126 0.0497 0.004053 1.336

32 0.0856 0.1392 0.059568 2.243

48 0.2294 0.1837 0.057149 2.501

64 0.3575 0.1135 0.117160 2.354

128 0.7522 0.0451 0.169393 2.501

160 0.8244 0.0571 0.183535 2.539

256 0.8036 0.0154 0.205640 2.685

512 0.8762 0.0111 0.109250 2.766

Videocore 4 vs 6, Benchmark Comparison

Videocore 4 vs 6, Benchmark Comparison

- Depending on the library, the Videocore 4 sometimes outperforms
the Videocore 6

- py-videocore and py-videocore6 always outperform V3DLib when
executing code on the QPU

- Likely due to the difference between assembly implementations
- Faster to directly map assembly to functions, rather than

making a high-level API

Future Goals

- We plan to further expand our understanding by continuing to run tests
and analyzing the performance of the system

- Overclock the Raspberry Pi 4

- Implement BLAS
- Basic Linear Algebra Subprograms
- Common linear algebra operations like dot products, matrix

multiplication, etc.

- Libraries that implement BLAS already exist for both Videocore GPUs
- qmkl and qmkl6 (which use py-videocore and py-videocore6

underneath)
- Current libraries are either incompatible with all models or have

an incomplete featureset

https://github.com/Idein/qmkl
https://github.com/Idein/qmkl6

Future Goals

- Improve performance and compatibility with models by making
modifications to the BLAS libraries

- This will help with analysis of more complex libraries which will also
increase the capabilities of the Raspberry Pi

- Be able to use the BLAS libraries on the QPU to accelerate machine
learning frameworks, like PyTorch

- Use the optimized frameworks and BLAS libraries to measure
power consumption

https://pytorch.org/

QUESTIONS?

