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Logistics

Please sign up for a week to present
o  One presentation per group for now
Emerson will present DVFS in Heterogeneous Embedded Systems next week
As always, feel free to message or email me if you have any questions or concerns
Let's start working!!!!



Today

e Provide you a helpful resource for some concepts, terminology, and history
e Accelerated workshop on various computer architectures
e Hope to peak your interests enough for you to start to ask questions



Parallel
Computing
Architectures

How is computing machine is
design?



COMPUTING ARCHITECTURES

A Computing Architecture is the design of functionality,

organization, and implementation of a computing system
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COMPUTING HARDWARE

Biological Mechanical Electrical
Designed to solve some computational problem

Application Specific General Purposée



COMPUTING SOFTWARE

A set of instructions that directs a computer’s hardware to perform a task

Biological Mechanical Electrical



THE USERS

The people who creates software and operates the hardware

Marget Hamiliton Melba Roy Mouton

Dorothy
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WEAVING AS CODE

A warp thread is woven either above or belove the weft thread

Can be visualized through binary representation (drawdown)

A drawdown pattern can be made to produce a non-repeating automata

It is possible to generate a Turing-complete program woven into the fabric itself

Warp Weft

https: / /www?2.cs.arizona.edu/patterns /weaving /webdocs/gre ddal.pdf
http://blog.blprnt.com/blog /blprnt /infinite-weft-exploring-the-old-aesthetic



https://www2.cs.arizona.edu/patterns/weaving/webdocs/gre_dda1.pdf
http://blog.blprnt.com/blog/blprnt/infinite-weft-exploring-the-old-aesthetic

A History of Women's Role in Computing Architectures

COMPUTING SOFTWARE

A set of instructions that directs a computer's hardware 10 perferm o task

Biological Mechanical Electrical

https://www.youtube.com/watch?v=GuEyXXZA3Ms&t=18s


http://www.youtube.com/watch?v=GuEyXXZA3Ms

Visualize two separate flows of information through a computer
Mixing the two streams produces a single output

One for instructions (Thread) and the Data that is computed on

Threads as a streams of information

R
>
o

Instruction Pool

[00d ®req

SISD |

N




A thread as a Von Neumon processor

— Von-Neumann
Processor is an
abstract diagram of a
computer

— Contains 4 units
— Processing Unit
— Control Unit
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5-stage Compute pipeline
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5-stage Compute pipeline

Time (in clock cycles)
CcC 1 cCc2 CcC 3 cCc4 CC>5 CcC 6 cC7 ccC 8 cCco9o

Program
execution
order

(in instructions)
I— -1
Iw $10, 20($1) EI.—I—EE 1S I — *
I -1
ERIEES & N
Regl | [ gl
add $12, $3, $4 R | 1 °9
w 13, 24(51) [l_l_a'a‘:
| —

sub $11, $2, $3

add $14, $5, $6



Increased Complexity
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Memory Performance Gap

* Memory Performance Gap means the CPU is underutilized while it
waits for data
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Typical Memory Hierarchy
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* Principle of locality:

* A program accesses a relatively small portion of the address space at a time

» Two different types of locality:
« Temporal locality: if an item is referenced, it will tend to be referenced again soon
» Spatial locality: if an item is referenced, items whose addresses are ciose iend to be referenced soon



Principle of Locality

* Why does the hierarchy work?

* Because most programs exhibit /ocality, which the cache can take
advantage of.

* The principle of al locality says that if a program accesses one memory
address, there is a good chance that it will access the same address again.
* The principle of ¢ | lo¢ / says that if a program accesses one memory

address, there is a good chance that it will also access other nearby addresses.



Principle of Locality

* First time the processor reads from an address in main memory, a copy of
that data is also stored in the cache.

* The next time that same address is read, we can use the copy of the data in the
cache instead of accessing the slower dynamic memory.

» So the first read is a little slower than before since it goes through both main
memory and the cache, but subsequent reads are much faster.

* This takes advantage of temporal locality—commonly accessed data is
stored in the faster cache memory

* By storing a block (multiple words) we also take advantage of spatial locality

CPU

A little static
RAM (cache)

Lots of
dynamic RAM




Temporal locality in instructions

* Loops are excellent examples of temporal locality in programs.
* The loop body will be executed many times.

» The computer will need to access those same few locations of the instruction memory
repeatedly.

* For example:
» Each instruction will be fetched over and over again, once on every loop iteration.

Loop: Iw $t0, 0($s1)
add  $tO, $t0, $s2
SW $t0, 0($s1)
addi $s1, $s1, -4
bne $s1, $0, Loop



Temporal locality in Data

* Programs often access the same variables over and over, especially within
loops. Below, sum and i are repeatedly read and written.

« Commonly-accessed variables can sometimes be kept in registers, but this
Is not always possible.
* There are a limited number of registers.

* There are situations where the data must be kept in memory, as is the case with
shared or dynamically-allocated memory.

sum = 0;
for (i=0; i < MAX; i++)
sum = sum + f(i);



Spatial locality in Instructions

* Nearly every program exhibits spatial locality, because instructions are usually executed
In sequence — if we execute an instruction at memory location /, then we will probably
also execute the next instruction, at memory location j+1.

« Code fragments such as loops exhibit both temporal and spatial locality.

sub $sp, $sp, 16
sw $ra, 0($sp)
sw  $s0, 4(%$sp)
sw $%$a0, 8(%$sp)
sw $al, 12($sp)



Spatial locality in Data

* Programs often access data that is stored ?un?_=%: T
/ of\l =0, i< S o ot
contiguously. sum = sum + alil;

* Arrays, like a in the code on the top, are
stored in memory contiguously.

* The individual fields of a record or object like

employee are also kept contiguously in employee.name = “Homer Simpson’;
memory employee.boss = “Mr. Bums”;

employee.age = 45;




Abstracted CPU

Memory (Off-chip DRAM)

L3 Data Cache

L2 Data Cache

Core

D-% RF

L1 Data Cache

I-$ RF
Instr. Cache Register File
Data N
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>EX MEM WB




CPU in a Computer System

Memory
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GPU / Accelerator

CPU

Disk

PCI Device
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Software-Hardware Stack

(" Start[Her
He eApplications

. C/C++/J
 Computer Architecture spans the SW i
connection between hardware and e OS | Libraries
software . Machine Cod

* Efficiency through understanding how

each level interacts

* Hardware design informs software
design and vice versa HW

Logic Gates

Transistors

Voltage / Currents




The Process in Operating Systems

* The Process is the OS
abstraction for execution
* Unit of execution
 Unit of scheduling

* Itis a program in execution

 This can introduce overheads
when handling many processes

Applications

Process

File system

Virtual memory

CPU

Operating System

Disk

RAM

<number=>



The Process in Operating Systems

OxFFFFFFFF -~
« It contains all the state for a Stack
program in execution o
* An Address space containing: - Pynamic
+ Static Memory
* Code and input data for the program Ags;izs (Dynamicm’:;ory Alloc)
* Dynamic Memory =
+ Allocated memory Static Data
+ Execution stack (Data Segment) .
— Static
* A set of control and general Coila .
purpose registers (Text Segment)

0x00000000 -

<number=



Process vs Thread

« Separate execution and resource container roles . .
. ] ) code data files code data files
« The thread defines a sequential execution stream
within a process.(PC, SP' reQISterS) registers stack registers (|| registers ||| registers
» The process defines the address space, resources,
and general process attributes (everything but stack | stack || stack

threads)
* Threads become the unit of scheduling g ; ; g
thread —> -

* Processes are now the containers in which threads
execute

* Processes become static, threads are the dynamic
entities

~ thread

single-threaded process multithreaded process



Process vs Thread

« Separating threads and processes makes

It easier to support multithreaded

applications Thread 2 —>

« Concurrency (multithreading) can be very
useful

« Improving program structure

« Handling concurrent events (e.g., Web

requests)
* Writing parallel programs

PC (T2) —

Stack (T1) Thread 1
Stack (T2)
Stack (T3) <— Thread 3
Heap
Static Data
<— PC(T3)

Code

~——— PC(T1)




Parallel
Computing
Architectures

How do we process more data at
once?



Multicore Designs

Gain parallelism by adding addition cores
Each core is independent of one another
Multiple Instruction Multiple Data

How do you connect each core together?

SISD Instruction Pool

PU

Data Pool

MIMD |

Instruction Pool

PU

PU

Data Pool

PU

PU
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PU
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Interconnection Network

e Independent Cores communicate through higher level caches (L2 and L3)
e Are connected through bus system interconnect

code || data || files Memory (Off-chip DRAM)

registers (|| registers ||| registers L3 Data Cache

stack stack stack

L2 Data Cache

Interconnection Network
+— thread .
Core ' Core Core
I-$ RF D-$ RF
Instr. Cache Register File L1 Data Cache
| | | | | |

Data C e
, path | IF ——C 1D MEM WB | Core Core

multithreaded process I — -




Utilizing multiple cores

e Multithreaded process can map a thread to a single core
e Can have multiple process run on different cores

code data files
Memory (Off-chip DRAM) :
registers :[registers registers
L3 Data Cache :
stack ‘ stack ||| stack
L2 Data Cache
Core - Core ; <« thread
-~
mE . Jonl
Core Core
multithreaded process




Tiled Mesh Networks

Can connect cores through a Mesh
Network

Each tile is very tiny

Each tile routes messages to its
neighbors

Hammerblade Manycore project

How to efficiently write parallel
algorithms for it?

How can we utilize the fact that each tile
is independent of one another?

Black
Parrot

Black
Parrot

Black | |

Parrot

Black

Parrot

Black | |

Parrot

Black
Parrot

Black
Parrot

Black
Parrot




Parallel Other than MIMD

e \What if we don't need to have independent cores?
e How can we still increase parallelization within the hardware?



Vectorization

We want to be able process more data
Add more physical compute units
this is how a loom works
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Back to Theory

e Single Data -> Multiple Data

SISD Instruction Pool

SIMD Instruction Pool

—.._
_.._
—.._

-

Data Pool

Data Pool




Vector Processors

* Increase the number of ALU
hardware units

* Increasing the number of
datapaths per functional unit
reduces the execution time, as
more element operations can be
processed concurrently.
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Vector Processors

* Increase size (width) of registers

* Increasing number of datapaths
requires more data to be
accessed within a single cycle
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Vector Operations

* Assign a thread to each element of an array

* One thread operates on a single element

vector A

vector B

Tid N-1

j

AIN-1]

Tid 0 Tid 1 Tid 2
Al0] All] Al2]
B[0] B[1] B[2]
© -

B[N-1]

clol

Cl1]

Cl2]

op

CIN-1]




Von-Neumann Model with SIMD units

Duplicate Processing Unit to N
support vector instructions ) Memory .
Still share a single control unit ‘ B i 1
1| SIMD unit
Reg
File
= —
Control Unit

PC IR




Increased Complexity

Pipeline w

fe_cmd

ith SIMD Units

FE cmd

O
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Abstracted CPU with Vector Units

Memory (Off-chip DRAM)

L3 Data Cache

L2 Data Cache

I-$ RF
Instr. Cache Register File
Data N
Path IF —E ID

Core
D-$ RF
L1 Data Cache
>EX MEM WB |

Y

Vector Units

-

Vector Units




Raspberry Pi QPU

e Singleinstruction stream has mix of
scalar and vector instructions

e How toprogram this style of simd
unit?

e What are the overheads of needing
to copy data to other parts of the
chip?

Herz des Raspbe

rry Pi 4: Broadcom BCM2711

Das System-on-Chip (SoC) BCM2711 vereint nicht nur vier CPU-Kerne mit einer GPU,
sondern enthélt auch Controller fir viele Schnittstellen

neue oder stark verbesserte Teile

beibehaltene Teile

LPDDR4-SDRAM HDMI 2.0
(1,2, 4 GByte)
csil [psil |~HOMI20

Broadcom BCM2711
VideoCore VI (VC6)
~ 3D-GPU LPDDR4- H.265 VP9 H.264 |JPEG | Kamera Display-
4x ARM Cortex-A72 (VC6) SDRAM-  de/  dek. |de-/ | de-/ Engine
Controller ' enk.  (exp.) 'enk. || enk. @i
: | S| (S
[N N N i MMU
L2-Cache: 1 MByte [N = | DPI
MMU L2-Cache: Mailbox || vPU || DMA || ISP
128 KByte || (VCHIQ)
ARM/VC MMU 4-fach ass.
|
AMBA/AXI-Bus
PCle2.0x1  Gigabit- DMA| | USB| Timer| 2x 5x 5x |[ 7x AUX |/spio |[PCM/ 4x
Ethernet- 2.0 SDIO | UART | SPI FC | oxspl ||(egacy) | FS | PWM
A PLOT1 =
MAC (Arasan) ( ) MinUART |
piii [ I 1
GPIO-Multiplexer
USB 3.0 Ethernet PHY WLAN+
(VIAVL805) (BCM54213PE) Bluetooth
(CYW43455)
2x 2x RJ45 USB-C HUSD-Card SPI-EEPROM GPIO-Pfostenstecker Aﬁdio-

USB3.0 USB20

oTG (DDR50) (512 KByte) Klinke

tMagazin fur Computertechnik 2019



Increased Complexity

Massively Parallel Vector Processors

e Give more space to vector units, reduce the number of scalar units
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Increased Complexity

Massively Parallel Vector Processors

Compute Unit / Core
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GPU Architecture

Now we can handle thousands of threads!!
How do we organize thread execution?

'GPU
| | SIMT Core Cluster SIMT Core Cluster SIMT Core Cluster

1

: SIMT SIMT SIMT SIMT SIMT SIMT
: Core Core Core Core Core Core
I e :

: i i

: ’ Interconnection Network ‘
| 1 !

I Memory Memory Memory

| Partition Partition Partition

1



Vector Operations

* Assign a thread to each element of an array

* One thread operates on a single element

vector A

vector B

Tid N-1

j
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Tid 0 Tid 1 Tid 2
Al0] All] Al2]
B[0] B[1] B[2]
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Arrays of Parallel Threads

* A CUDA kernel is executed by a grid (array) of threads
— Allthreads in a grid run the same kernel code (Single Program Multiple Data)
— Each thread has indexes that it uses to compute memory addresses and make control decision

+ However this is not scalable with large arrays or matricies
* Nothing inherent with id to map to a specific SM to execute

o

\ \
) ) ) J

i = threadldx.x;

Cli] = Ali] + BIil;

T4 7
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Thread Blocks: Scalable Cooperation

— Divide thread array into multiple blocks
— Thread Blocks become Unit of scheduling to an SM
— Can easily scale to different number of SMs

Thread Block 0 Thread Block 1 Thread Block N-1
! ) .'.“ ) ) ) ) J“. ! ; ! ! J.“ ! )
i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x + i = blockldx.x * blockDim.x +
threadldx.x; threadldx.x; threadldx.x;
Cli] = Ali] + BIil; C[i] = Ali] + BIil; C[i] = Ali] + BIil;

SYSLS S S ONSS S8 NS S

¥ Y ¥ :
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Transparent Scalability

« Each block can execute in any order relative to others.

« Hardware is free to assign blocks to any processor at
any time
* Akernel scales to any number of parallel processors

I

Block0  Block1 &
time | B2 Biooks

[Block 4 Block s
‘Blocks Blook 7

Block0 Block1 Block2 Block3
‘Block4 Block5 Block6  Block7

l time




blockldx and threadldx

« Each thread uses indices to decide

what data to work on
—  blockldx: 1D, 2D, or 3D

— threadldx: 1D, 2D, or 3D ElgloN™ s ok 0, B Block (0,
\ 0) 1)

device

addressing when processing

«  Simplifies memory
T =
I\

multidimensional data
— Image processing
— Solving PDEs on volumes

P Block(l 1 #»1

(100) (1,0.1) (1.0,2) (1,0,3)




GPU Hierarchies

Hardware M SM || SM
I 1111114314 QR T T | e

Address Space Local per thread Shared Memory Global



Power %, Time % and Energy % of Fully active GPU

Power

100

] |
C U Sca ll n g : SIMT Core Cluster SIMT Core Cluster SIMT Core Cluster
: SIMT SIMT SIMT | SIMT SIMT | SIMT
: Core Core Core Core Core Core
e Areusingthis many cores efficient? ! :
® How should we manage all of the CUs/SEs? : ‘ Interconnection Network ’
e Howdoyou keep track of utilization? ! ! {
1 Memory Memory Memory
: Partition Partition Partition

= Power % = Time % Energy %
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90 800
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Time\and Energy

50
=== 100

10 20 30 40 50

#CU's active

8% less energy by using only 32 CUs
out of 56 total



GPU in a Computer System

Memory

/O

GPU / Accelerator

CPU

Disk

PCI Device
Memory Space

Main Memory
Space



Kernel Launching and Tasking

e How are kernels launched from the CPU to GPU?

e How toenforce dependencies between kernels?

e What kind of parallel algorithms does this
mechanism allow us to make?

——— - —

gems5 maintains active list
inside HW queue scheduler

Completion Signal A
Completion Signal B

|
1
I
Barrier Packet |
I
1
1
1

HSA software HSA software
queue #0 queue #1 /

Active list

HW Queue
Scheduler Dispatcher

Y S i qucue T NI 2GR
HSAREKeS HW Model Components




Integrated GPU Architectures

e Whatif CPU and GPU areon the
same chip?

How does that affect power
consumption?

6-core CPU
How do we control both set of NV
384-core GPU JPEG
cores now?

48 Tensor Cores NV Decoder

Multimedia Complex




Sustainable Computing Architectures

e Parallel architectures are energy efficient
e Everyone is trying to make using them more efficient and cost effective



