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Data centers and Supercomputers

DGX-1 Deep Learning Data Center Architecture

10 Gb/s Main Ethernet to
data network / storage

1 Gb/s Ethernet to

management network
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What does each server have?

* CPUs

* Boot Operating System.
* Heart of the System.




What does each server have?

* CPUs
e Accelerators — GPUs, DPUs, B§2

IPUs, TPUs, ASICs, etc.




What does each server have?

* CPUs

e Accelerators — GPUs, DPUs, IPUs, TPUs,
GraphCore, etc.

* Interconnects — PCle, NVLink, Nvswitch,
AMD Inifinity, etc.

e More about this later.

* Why accelerators?

* Thermodynamics, Computational Fluid
Dynamics, Machine Learning.

500+ GPU-ACCELERATED APPLICATIONS

Q AMBER @ ANSYS Fluent
Q GAUSSIAN @ GROMACS

@) Ls-DYNA @ NaMD

O OpenFOAM @ Simulia Abaqus
Q VASP @ WRF

EVERY DEEP LEARNING FRAMEWORK
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$TensorFlow theano



Nvidia DGX System

Il NVLink
B PCle

* 8 V100 GPUs

* NVLinks
* Single — 25 GBps
* Double — 50 GBps
* PCle — 12 GBps

e Each GPU has 6 NVLinks
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Optimization Spaces

* Device driver - software used to control and
drive the hardware.

[ Device Driver }




Optimization Spaces

e Device driver - software to control and drive
the hardware.

* Message Passing Interface/Collective
Communication Libraries — used to
implement synchronization primitives
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NCCL

* Nvidia Collective Communication Library

Broadcast Scatter Gather All-Gather

All-to-All Reduce




Optimization Spaces

e Device driver - software to control and drive
the hardware.

* Message Passing Interface/Collective
Communication Libraries — used to
implement synchronization primitives

* Scheduler — Policy to map jobs to hardware
based on constraints and requirements

Scheduler

Collective Communication Calls

Device Driver
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Optimization Spaces

* Device driver - software to control and drive

the hardware. ! Runtime \
* Message Passing Interface/Collective ( Scheduler )
Communication Libraries — used to % _ — <
implement synchronization primitives _Collective Communication Calls |
* Scheduler — Policy to map jobs to hardware \ Device Driver )

based on constraints and requirements

 Runtime — Software to handle execution of
jobs. Ex: CUDA Runtime, KOKKOS, DAGEE,
ATMI, etc.
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Optimization Spaces

e Device driver - software to control and drive
the hardware.

* Message Passing Interface/Collective
Communication Libraries — used to implement
synchronization primitives

* Scheduler — Policy to map jobs to hardware
based on constraints and requirements

e Runtime — Software to handle execution of
jobs. Ex: CUDA Runtime, KOKKOS, DAGEE,
ATMI, etc.

* Programming Models — Implementation model
to represent instructions. Ex: CUDA, HIP etc.

Programming Models

Runtime

Scheduler

Collective Communication Calls

Device Driver
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Optimization Spaces

* In this presentation, we shall motivate Programming Models
problems and discuss solutions in, . — )

* Scheduler - /

* Collective Communication Calls \ Scheduler J

: Collective Communication Calls j

: Device Driver j
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Allocation Problem

* Multi-tenancy

* Not all applications require
the whole system

* Fragmentation!

e More about this in the next
slide.
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* Different jobs have different
needs —

* Number of GPUs -
 Compute resource utilization

* Inter-GPU communication Fragmentation
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Fragmentation
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Fragmentation
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Fragmentation
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Fragmentation
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Fragmentation

B NVLink
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Interconnects — PCle and NVLink

* PCle - high-speed serial computer
expansion bus standard.

e NVLink - wire-based serial multi-lane near-
range communications link.

40 —e— NV2-Single
—=a— NV2-Double
—e— PCle

Bandwidth(GB/s)
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Problems with worst case allocation

* Speed up can improves over 200% for certain ML training workloads.
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Network



Solution-1: Optimize Worst-case allocations

* Assuming Scheduler did its best job.
* Fragmentation is inevitable!

* WOTIR — Nvlink Forwarding
* Avoid PCle by hopping over unutilized NVLinks

* Modify Nvidia Collective Communication Library (NCCL).
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All-Reduce Implementation
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All-Reduce w/ Route Implementation

Input data 17 ]‘/seNd port Double Red (T L]

COPY B Gopy ey Reduce D Co0Ne® £
Receive /E [T1 Output data COpy R i COpy I-;.-I
port _

Rank 0 2(R) 3 4
Skip first c‘Ppy if router

pOffset nOffset 0 0 Router’s previnput & 0 :QO o O,
Copy DE]\\ ]\\ nextOutht should both 0 ]‘-\ [ [T
K=nroute=> b~ N FE T addpotser o E T o

e \\\\0 l‘_' " i%l \~\ 0 I 1
. [ 1NN “o—t- -
= S T :
K-2-routers - mm D Ngormms R e, P R T B [

NG ! 11 1 0 s 1 EEE O
= —
_______________

85 g s
Jronasmmmmsnny 2 =
Lo . bed ]
e —_————_—_ e ——— — e ———————

S 2 o 1o ... 1 [ge

= [Finmsimisimmiimss -] .

Double ‘ :

K-2-routers Copy | : oo 0 1 o e
- --- E} 3 -
n ¥ '
ST A, = -G I —: N —e - _._}._._._._._._._._._._._._.:.‘\ ....... i T

. : Ny I Tt 1 0 S 2 0

(o) i —————



Benefits of WOTIR
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Evaluation

Improvement (%)

. Benefits of WOTIR
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Normalized Time

o

\]

[

Evaluation: Benefits of WOTIR

2-GPU Normalized Execution time

3-GPU Normalized Execution time
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Overhead of WOTIR

Min | 25th% | Median | 75th% | 95th% Max

State (ms) (ms) (ms) (ms) (ms) (ms)

w/o Routing | 2.033 | 2.034 2.035 2.036 2.040 3.140
w/ Routing | 2.034 | 2.035 2.036 2.053 | (5.674 ) |(11.459




Can we avoid worst-case allocations?

* Intelligent scheduling. | Programming Models |
* Scheduling policies have been explored Runtime
since 1960s. , w
Scheduler
* Challenges in using existing Scheduling > <
.- . Collective Communication Calls
policies. \ !
. . Devi Dri
* Heterogeneity in Compute resources . Svice Jriver )

* Earlier we mostly one type of compute
resource (CPUs) and they were mostly
connected via one type of interconnect.
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Problems with Naive Scheduling

* Problems with naive scheduling

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
B WAIIocated/ B WldealAIIocation



Worst case allocations
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* Some applications benefit from o — 5
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CDF

Bandwidth(GB/s)
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Graph-based Scheduling for Multi-Accelerator
Systems

* Hardware Topologies
* Rapidly changing architectures

e Modern interconnects differ
significantly from precursor

 Different Programming Models
* Different Runtime Systems




Graph-based Scheduling for Multi-Accelerator
Systems

* Hardware Topology

* Application Topology
e Different compute
requirements
* 1-CPU, 2-GPUs, etc.

* Communication intensity
among nodes.




Graph-based Scheduling for Multi-Accelerator
Systems

* Hardware Topology

* Application Topology

* Find ideal allocations

* Use knowledge of
Hardware and Application
topologies.
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Optimization Spaces

. Programming Models
* How can modern Multi-accelerator > -
schedulers be designed? ! Runtime )
Scheduler
Collective Communication Calls
Device Driver
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Multi-Accelerator Pattern Allocation (MAPA)
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Scoring allocations

* Aggregated BW (Agg BW) — Sum Soyogmed S
of available BW for a given @ )
application topology within an B il o B
allocation.

(3
o

AggBW = Z w(e)
ec(E(P)NE(M))
* Preserved BW — Sum of available
BW given an allocation is
scheduled.

Preserved Bandwidth = Z w(e)
ecE(G\M)



Problems with AggBW

* AggBW does not translate to improved performance.
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(a) VGG-16 training Execution Time



Effective BW (Eff BW)

* Bandwidth achievable in given allocation.
e Eff BW is obtained by running a NCCL-based microbenchmark.

* All-Reduce benchmark on largest contiguous data block.
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(c) VGG-16 training Execution Time



Modelling Eff BW

* |t is not practical to run microbenchmarks to obtain Eff BW scores.

* Non-linear Polynomial Regression.
* (x,y,z) — (Double NVLinks, Single NVLinks, PCle links)

Predicted Ef fective Bandwidth =

1 1 1
91x+92y+93z+94—+95—+96
X1 y+1 z+1
1 1 1
+97xy+98yz+99zx+910 +911 +912
xy + 1 yz+1 zx + 1

1
xyz +1

+ 013xyz + 014



Predicted Eff BW
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Scheduling Policy

Algorithm 1: Preserve Allocation Policy

Result: Allocation
HWgraph hGraph;
AppGraph aGraph;
Allocation alloc;
Patterns possiblePatterns = graphPatternMatching (aGraph,
hGraph);
if aGraph is bwSensitive then
foreach pattern in possiblePatterns do
if EffectiveBW (pattern) > EffectiveBW (alloc) then
| alloc = pattern;
end

end
end

else

foreach pattern in possiblePatterns do
if PreservedBW (pattern) > PreservedBW (alloc) then
| alloc = pattern;

end

end
end




Evaluation: Benefits of MAPA

% scheduler . 2 . 875 — = ¢ scheduler 5
1000 ' [ baseline ' 850 [ baseline . .
v . [0 Topo-aware t v [ Topo-aware :
Y 800 ] I Greedy o 825 I Greedy
E ' [0 Preserve E 800 =1 Preserve
‘
c fe
i *at0 H 2775
g 3 i
2 400 . 2750
w w
725
200 A
O U 700

vgg-16 alexnet resnet-50 inception-v3  BW-Sensitive caffenet googlenet BW-Insensitive
Network Network
(a) Execution time of bandwidth sensitive jobs (b) Execution time of bandwidth insensitive jobs

~
o
~
o

(o)}
o
(o))
o

scheduler
[ baseline
[0 Topo-aware
[0 Greedy

wu
o
w
o

Predicted Effective BW (GBps)
ey
o

Predicted Effective BW (GBps)
=
o

30 @ baseline 30 [ Preserve
[ Topo-aware
20 [ Greedy 20 l l
10 L I Preserve 4 L - 10 . L -
vgg-16 alexnet resnet-50 inception-v3  BW-Sensitive caffenet googlenet BW-Insensitive
Network Network

(c) Effective bandwidth of bandwidth sensitive jobs (d) Effective bandwidth of bandwidth insensitive jobs



Summary of Evaluation

Policy MIN | 25th % | 50th % | 75th % | MAX | Tput
Baseline | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00
Topo-aware 1.002 1.029 1.385 1.014 1.075 1.07
Greedy 0.997 | 1.059 | 1.519 | 1.048 | 1.319 | 1.08
: T
Preservation | 1.006 | 1.057 | 1119 | 1124 |(1.352)(1.12 )

Read 1.12 and 1.35 as 12% and
35% better respectively.
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Conclusion

* Fragmentation is inevitable.

* Efficient scheduling can help mitigate
fragmentation.

e Use WOTIR to alleviate effects of
unavoidable bad allocations.

* Existing scheduling algorithms may
not work with multi-accelerator
constraints.
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Conclusion

* Fragmentation is inevitable.

* Efficient scheduling can help mitigate
fragmentation.

e Use WOTIR to alleviate effects of
unavoidable bad allocations.

* Existing scheduling algorithms may
not work with multi-accelerator

constraints.

* Propose novel hardware topologies
to assist schedulers.

(a) Torus-2d (b) Cube-mesh



Ongoing/Other work

e MAPA overhead

e Approximate graph matching
* Probabilistic graph mining

* Scale Scheduling policies

e Summit

* 9,216 POWER9 22-core CPUs
e 27,648 NVIDIA Tesla V100 GPUs

—
(e
N

Overhead (ms)
=2

NN pex-v U@ summit

D ] Torus-2d IE B CubeMesh-16

Y. SNV N4 N :

2 3 4 5
Number of GPUs Requested


https://en.wikipedia.org/wiki/POWER9
https://en.wikipedia.org/wiki/NVIDIA_Tesla

Ongoing/Other work

e MAPA overhead

e Approximate graph matching
* Probabilistic graph mining

(Summer’19)

 Effective kernel placement decisions at runtime.

* Optimizing Programming Model
(Summer’20)

* Programming Models to enable and simplify
multi-accelerator programming.

* Multiple types of accelerators (CPUs, GPUs, TPUs,
etc.)

Programming Models
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