Challenges and Optimizations in
Multi-accelerator Systems

Kiran Ranganath

Data centers and Supercomputers

DGX-1 Deep Learning Data Center Architecture

10 Gb/s Main Ethernet to
data network / storage

1 Gb/s Ethernet to

management network

[| e | it
R T
e W E— A
g0 p OND | (00 D ;[;[;E_
glpl o | | 00 O | | 00 (NS

00 O 00 p N “m:[_

0 1 (- 0 (- <0 (- =
)GX-1 Compute DGX-1 Compute DGX-1 Compute :,
POD 0D POD
72 1B links to additional PODs ~ ~ — —~ _ o

DGX-1 Compute POD

Mangement Ethernet
Main Ethernet

What does each server have?

* CPUs

* Boot Operating System.
* Heart of the System.

What does each server have?

* CPUs
e Accelerators — GPUs, DPUs, B§2

IPUs, TPUs, ASICs, etc.

What does each server have?

* CPUs

e Accelerators — GPUs, DPUs, IPUs, TPUs,
GraphCore, etc.

* Interconnects — PCle, NVLink, Nvswitch,
AMD Inifinity, etc.

e More about this later.

* Why accelerators?

* Thermodynamics, Computational Fluid
Dynamics, Machine Learning.

500+ GPU-ACCELERATED APPLICATIONS

Q AMBER @ ANSYS Fluent
Q GAUSSIAN @ GROMACS

@) Ls-DYNA @ NaMD

O OpenFOAM @ Simulia Abaqus
Q VASP @ WRF

EVERY DEEP LEARNING FRAMEWORK

++

A -/

mxnet PYTORCH

$TensorFlow theano

Nvidia DGX System

Il NVLink
B PCle

* 8 V100 GPUs

* NVLinks
* Single — 25 GBps
* Double — 50 GBps
* PCle — 12 GBps

e Each GPU has 6 NVLinks

300

80

2014 2015 2016 2017

Optimization Spaces

* Device driver - software used to control and
drive the hardware.

[Device Driver }

Optimization Spaces

e Device driver - software to control and drive
the hardware.

* Message Passing Interface/Collective
Communication Libraries — used to
implement synchronization primitives

r

Collective Communication Calls

~N

Device Driver

Il NVLink

Yy

[M PCle
1
Y'Y Eap

NCCL

* Nvidia Collective Communication Library

Broadcast Scatter Gather All-Gather

All-to-All Reduce

Optimization Spaces

e Device driver - software to control and drive
the hardware.

* Message Passing Interface/Collective
Communication Libraries — used to
implement synchronization primitives

* Scheduler — Policy to map jobs to hardware
based on constraints and requirements

Scheduler

Collective Communication Calls

Device Driver

Il NVLink

o 8

[M PCle
q

'tV mar

Optimization Spaces

* Device driver - software to control and drive

the hardware. ! Runtime \
* Message Passing Interface/Collective (Scheduler)
Communication Libraries — used to % _ — <
implement synchronization primitives _Collective Communication Calls |
* Scheduler — Policy to map jobs to hardware \ Device Driver)

based on constraints and requirements

 Runtime — Software to handle execution of
jobs. Ex: CUDA Runtime, KOKKOS, DAGEE,
ATMI, etc.

W NVLink
B M PCle

1

Y'Y Eap

Optimization Spaces

e Device driver - software to control and drive
the hardware.

* Message Passing Interface/Collective
Communication Libraries — used to implement
synchronization primitives

* Scheduler — Policy to map jobs to hardware
based on constraints and requirements

e Runtime — Software to handle execution of
jobs. Ex: CUDA Runtime, KOKKOS, DAGEE,
ATMI, etc.

* Programming Models — Implementation model
to represent instructions. Ex: CUDA, HIP etc.

Programming Models

Runtime

Scheduler

Collective Communication Calls

Device Driver

l NVLink

'y

(] M PCle
1
¢V map

Optimization Spaces

* In this presentation, we shall motivate Programming Models
problems and discuss solutions in, . —)

* Scheduler - /

* Collective Communication Calls \ Scheduler J

: Collective Communication Calls j

: Device Driver j

B NVLink
1y Hrce
1
1V mop

]

W N il
t IS e | 0
“ o m”.“m o "'
P .
“‘ * JIL ‘L ’-"

Allocation Problem

* Multi-tenancy

* Not all applications require
the whole system

* Fragmentation!

e More about this in the next
slide.

% M Nvink
AR

'K B PCle

{(
'Y moe

* Different jobs have different
needs —

* Number of GPUs -
 Compute resource utilization

* Inter-GPU communication Fragmentation

Fragmentation

Fragmentation

Fragmentation

Jobl P Job2 pHEEEY Job3 PK Job3

SO N . hd
I3 *lk = EZ
P P

Job2 p{ Job2 pEEEY{ Job3 PPN
— NI

Fragmentation

Jobl P Job2 pHEEEY Job3 PK Job3

SO N . hd
I3 *lk = EZ
P P

Job2 p{ Job2 pEEEY{ Job3 PPN
— NI

Fragmentation

GPU O m Job2 pEEEY Job3 P Job3

3 2 K*IF’ K =

Job2 p{ Job2 pEEEY{ Job3 PPN
— NI

Fragmentation

Job4 M4 Job2 pEEEY Job3 PK| Job3

E XX K*IF’ K =

Job2 pi{ Job2 pEEE{ Job3 pi{ Job4
—N M N

Fragmentation

B NVLink
B rCle

B QP

Interconnects — PCle and NVLink

* PCle - high-speed serial computer
expansion bus standard.

e NVLink - wire-based serial multi-lane near-
range communications link.

40 —e— NV2-Single
—=a— NV2-Double
—e— PCle

Bandwidth(GB/s)

10% 10° 108 107 108 10°
Data Size (Bytes)

Problems with worst case allocation

* Speed up can improves over 200% for certain ML training workloads.

& 3 & N BNv2-Double U BANV2-Single [} OPCIe

'Y ¥ ¥ m

UQf 1 §é:: §Z §é:: §/: N \%
Vi N N N N N

VGG-16 Resnet AlexNet Inception CaffeNet GoogleNet
Network

Solution-1: Optimize Worst-case allocations

* Assuming Scheduler did its best job.
* Fragmentation is inevitable!

* WOTIR — Nvlink Forwarding
* Avoid PCle by hopping over unutilized NVLinks

* Modify Nvidia Collective Communication Library (NCCL).

m M - o
"' b
I 1T » |— — o
P} 1}
{ | | \
W NVLink GPuo | [i
']
M rCle | i
1]
[
’

Programming Models

Runtime

Scheduler

Collective Communication Calls

Device Driver

4
PIKA4

)

1

"v \‘ .)

P f “\‘“ "
[}

i I K
I eruo [(TTY | crua ': '
1] L}
. hd = i1
) =3 .'E } X L ;
P PR e

(K
(A%
“‘ o m ”l“ m o "'
P 0
-

-
'''''

4

W NvVLink
M PCle
M arl

All-Reduce Implementation

Input data [T1 ?//sa”p°" Copy Double Reduce
Receive /E 1T Output data % COPYE Reduce @ COpy %
e

port

Rank

pOffset

Copy

Copy

All-Reduce w/ Route Implementation

Input data 17]‘/seNd port Double Red (T L]

COPY B Gopy ey Reduce D Co0Ne® £
Receive /E [T1 Output data COpy R i COpy I-;.-I
port _

Rank 0 2(R) 3 4
Skip first c‘Ppy if router

pOffset nOffset 0 0 Router’s previnput & 0 :QO o O,
Copy DE]\\]\\ nextOutht should both 0]‘-\ [[T
K=nroute=> b~ N FE T addpotser o E T o

e \\\\0 l‘_' " i%l \~\ 0 I 1
. [1NN “o—t- -
= S T :
K-2-routers - mm D Ngormms R e, P R T B [

NG ! 11 1 0 s 1 EEE O
= —

85 g s
Jronasmmmmsnny 2 =
Lo . bed]
e —_————_—_ e ——— — e ———————

S 2 o 1o ... 1 [ge

= [Finmsimisimmiimss -] .

Double ‘ :

K-2-routers Copy | : oo 0 1 o e
- --- E} 3 -
n ¥ '
ST A, = -G I —: N —e - _._}._._._._._._._._._._._._.:.‘\ i T

. : Ny I Tt 1 0 S 2 0

(o) i —————

Benefits of WOTIR

2

ay o 100
S =

o= S

s S 50
3 3

I~ ~

3

= 0

Data Size (Bytes) Data Size (Bytes)

I

40 —e— NV2-Single
—=a— NV2-Double
—— PCle

0 BT e \ il
104 10° 106 107 108 10°
Data Size (Bytes)

Bandwidth(GB/s)

Evaluation

Improvement (%)

. Benefits of WOTIR
40 — w
30 | @‘{\9
\ N\

AlexNet GoogleNet VGG-16 ResNet-50

Normalized Time

o

\]

[

Evaluation: Benefits of WOTIR

2-GPU Normalized Execution time

3-GPU Normalized Execution time

I

1.63

I8 WOTIR 1.48 I8 WOTIR

1.28

NENVLink #8PCle 1.93 2:09 o | [NENVLink 8 PCle

2.22

1.74 1.61

12 0.99

2

1.134 06

2

1.08
L 0.94

2

778

_

1.071.07 1.15

A

2%

AlexNet GoogleN et VGG-16 ResNet-50 Geomean AlexNet

\ \ 5
GoogleNet VGG-16 ResNet-50

Overhead of WOTIR

Min | 25th% | Median | 75th% | 95th% Max

State (ms) (ms) (ms) (ms) (ms) (ms)

w/o Routing | 2.033 | 2.034 2.035 2.036 2.040 3.140
w/ Routing | 2.034 | 2.035 2.036 2.053 | (5.674) |(11.459

Can we avoid worst-case allocations?

* Intelligent scheduling. | Programming Models |
* Scheduling policies have been explored Runtime
since 1960s. , w
Scheduler
* Challenges in using existing Scheduling > <
.- . Collective Communication Calls
policies. \ !
. . Devi Dri
* Heterogeneity in Compute resources . Svice Jriver)

* Earlier we mostly one type of compute
resource (CPUs) and they were mostly
connected via one type of interconnect.

B NVLink
1y Hrce
1
v mar

]

1] ‘Q ,’ L}
t IS e | 0
“ o m”.“m o "'
P 0
“‘ * JIL ‘L ’-"

Problems with Naive Scheduling

* Problems with naive scheduling

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
B WAIIocated/ B WldealAIIocation

Worst case allocations

3500 800

nusz:U numGPU
* Some applications benefit from o — 5
better allocations while somedo ™
nOt. ;31000 §3OO
* Can we use this to our advantage to =
improve system utilization and "o w0z gm0 a0 o0 0 20 amo oo
throughput?
(a) GoogleNet (Insensitive) (b) VGG-16 (Sensitive)
3 N §NV2-Double U BNV2-single] DPCIe
SN N
321N W
m N
Q.‘ \ %_‘ %_l |
«»vn 1 : - . . NN
. N : : N2
5 1 N z z Wi

IVGG-16 Resnet AlexNet Inception"CaﬂeNet GoogleNetI

Network

CDF

Bandwidth(GB/s)

0.

40

20

5

0

Bandwidth sensitivity

| 1 | | 1

102 103 10* 10°

10° 107 108 10°
Size (Bytes)

—e— NV2-Single
—a— NV2-Double
PCle

—_—

| L ! |

106 107 108 10°

Data Size (Bytes)

104 10°

Network Communication calls Bandwidth
AlexNet . ‘e
GoogleNet per iter. Sensitive
VGG Alex.Net 80,001 Yes
R Inception-v3 2,830,001 Yes
esnet
HigEion VGG-16 160,001 Yes
CaffeNet Resnet-50 1,600,001 Yes
CaffeNet 84,936 No
GoogleNet 640,001 No
o B N BNv2-Double U AINV2-single] OPCIe
%
S 2
.
«»vn 1 7, EK =
Z7EEN7 %
O AN il & . IR

VGG-16 Resnet

AlexNet Inception CaffeNet GoogleNet

Network

Graph-based Scheduling for Multi-Accelerator
Systems

* Hardware Topologies
* Rapidly changing architectures

e Modern interconnects differ
significantly from precursor

 Different Programming Models
* Different Runtime Systems

Graph-based Scheduling for Multi-Accelerator
Systems

* Hardware Topology

* Application Topology
e Different compute
requirements
* 1-CPU, 2-GPUs, etc.

* Communication intensity
among nodes.

Graph-based Scheduling for Multi-Accelerator
Systems

* Hardware Topology

* Application Topology

* Find ideal allocations

* Use knowledge of
Hardware and Application
topologies.

@%

Optimization Spaces

. Programming Models
* How can modern Multi-accelerator > -
schedulers be designed? ! Runtime)
Scheduler
Collective Communication Calls
Device Driver

i)

4 W NVLink
]

Y M PCle

1

'Y omar

Multi-Accelerator Pattern Allocation (MAPA)

(o)
(oo |-

/

App graphs

N

7

1 3

Graph
Pattern
Matching

~N

7

Update

Possible Matches

QR

7

S

Pattern
Scoring

7~ N\
Allocation
_u .
Policy
e, J

Allocation }

Scoring allocations

* Aggregated BW (Agg BW) — Sum Soyogmed S
of available BW for a given @)
application topology within an B il o B
allocation.

(3
o

AggBW = Z w(e)
ec(E(P)NE(M))
* Preserved BW — Sum of available
BW given an allocation is
scheduled.

Preserved Bandwidth = Z w(e)
ecE(G\M)

Problems with AggBW

* AggBW does not translate to improved performance.

o0
S
O

600
400
200

Exec. Time (s)

-

50 100 150 200
Aggregated BW (GBps)
(a) VGG-16 training Execution Time

Effective BW (Eff BW)

* Bandwidth achievable in given allocation.
e Eff BW is obtained by running a NCCL-based microbenchmark.

* All-Reduce benchmark on largest contiguous data block.

o0
-
-

600
400
200

0

Exec. Time (s)

20 40 60 30
Ef fective BW (GBps)
(c) VGG-16 training Execution Time

Modelling Eff BW

* |t is not practical to run microbenchmarks to obtain Eff BW scores.

* Non-linear Polynomial Regression.
* (x,y,z) — (Double NVLinks, Single NVLinks, PCle links)

Predicted Ef fective Bandwidth =

1 1 1
91x+92y+93z+94—+95—+96
X1 y+1 z+1
1 1 1
+97xy+98yz+99zx+910 +911 +912
xy + 1 yz+1 zx + 1

1
xyz +1

+ 013xyz + 014

Predicted Eff BW

—
K,

< B 60 ®

& = 5

R o 40 s

= g ' ® 2-GPU

2 AQ A s ®3-GPU
ey ® il

o L—®22
0 20 40 60 80

Actual Ef f. BW (GBps)

Scheduling Policy

Algorithm 1: Preserve Allocation Policy

Result: Allocation
HWgraph hGraph;
AppGraph aGraph;
Allocation alloc;
Patterns possiblePatterns = graphPatternMatching (aGraph,
hGraph);
if aGraph is bwSensitive then
foreach pattern in possiblePatterns do
if EffectiveBW (pattern) > EffectiveBW (alloc) then
| alloc = pattern;
end

end
end

else

foreach pattern in possiblePatterns do
if PreservedBW (pattern) > PreservedBW (alloc) then
| alloc = pattern;

end

end
end

Evaluation: Benefits of MAPA

% scheduler . 2 . 875 — = ¢ scheduler 5
1000 ' [baseline ' 850 [baseline . .
v . [0 Topo-aware t v [Topo-aware :
Y 800] I Greedy o 825 I Greedy
E ' [0 Preserve E 800 =1 Preserve
‘
c fe
i *at0 H 2775
g 3 i
2 400 . 2750
w w
725
200 A
O U 700

vgg-16 alexnet resnet-50 inception-v3 BW-Sensitive caffenet googlenet BW-Insensitive
Network Network
(a) Execution time of bandwidth sensitive jobs (b) Execution time of bandwidth insensitive jobs

~
o
~
o

(o)}
o
(o))
o

scheduler
[baseline
[0 Topo-aware
[0 Greedy

wu
o
w
o

Predicted Effective BW (GBps)
ey
o

Predicted Effective BW (GBps)
=
o

30 @ baseline 30 [Preserve
[Topo-aware
20 [Greedy 20 l l
10 L I Preserve 4 L - 10 . L -
vgg-16 alexnet resnet-50 inception-v3 BW-Sensitive caffenet googlenet BW-Insensitive
Network Network

(c) Effective bandwidth of bandwidth sensitive jobs (d) Effective bandwidth of bandwidth insensitive jobs

Summary of Evaluation

Policy MIN | 25th % | 50th % | 75th % | MAX | Tput
Baseline | 1.000 | 1.000 | 1.000 | 1.000 | 1.000 | 1.00
Topo-aware 1.002 1.029 1.385 1.014 1.075 1.07
Greedy 0.997 | 1.059 | 1.519 | 1.048 | 1.319 | 1.08
: T
Preservation | 1.006 | 1.057 | 1119 | 1124 |(1.352)(1.12)

Read 1.12 and 1.35 as 12% and
35% better respectively.

Conclusion

* Fragmentation is inevitable.

Conclusion

* Fragmentation is inevitable.

* Efficient scheduling can help mitigate
fragmentation.

Conclusion

* Fragmentation is inevitable.

* Efficient scheduling can help mitigate
fragmentation.

e Use WOTIR to alleviate effects of
unavoidable bad allocations.

Conclusion

* Fragmentation is inevitable.

* Efficient scheduling can help mitigate
fragmentation.

e Use WOTIR to alleviate effects of
unavoidable bad allocations.

* Existing scheduling algorithms may
not work with multi-accelerator
constraints.

Programming Models

Runtime

Scheduler

Collective Communication Calls

Device Driver

........
4
4 ‘\
’ . [}

s 0
"

ceeeo, o=
0

o
°®
GPU

*
i ’. .‘
*

LY
.....

. 8
SR
S
U4

| K
mm«m 1
N b {4

*I } X 38

PR ¥

]
AN
\ erus S0 eeu2 [T seus [SX eru7 ,.'
P o

W NVLink
M PCle
W QP

Conclusion

* Fragmentation is inevitable.

* Efficient scheduling can help mitigate
fragmentation.

e Use WOTIR to alleviate effects of
unavoidable bad allocations.

* Existing scheduling algorithms may
not work with multi-accelerator

constraints.

* Propose novel hardware topologies
to assist schedulers.

(a) Torus-2d (b) Cube-mesh

Ongoing/Other work

e MAPA overhead

e Approximate graph matching
* Probabilistic graph mining

* Scale Scheduling policies

e Summit

* 9,216 POWER9 22-core CPUs
e 27,648 NVIDIA Tesla V100 GPUs

—
(e
N

Overhead (ms)
=2

NN pex-v U@ summit

D] Torus-2d IE B CubeMesh-16

Y. SNV N4 N :

2 3 4 5
Number of GPUs Requested

https://en.wikipedia.org/wiki/POWER9
https://en.wikipedia.org/wiki/NVIDIA_Tesla

Ongoing/Other work

e MAPA overhead

e Approximate graph matching
* Probabilistic graph mining

(Summer’19)

 Effective kernel placement decisions at runtime.

* Optimizing Programming Model
(Summer’20)

* Programming Models to enable and simplify
multi-accelerator programming.

* Multiple types of accelerators (CPUs, GPUs, TPUs,
etc.)

Programming Models

Scheduler

Collective Communication Calls

Device Driver

l NVLink

R
') M PCle
40

'Y mar

