HammerBlade Manycore

By: Ana Cardenas Beltran

Single-core vs. Multicore vs.
Manycore Processor

All have different purposes and different
architectures

Single-core is a microprocessor with a
single core

Multicore devices have 2-8 cores in
them

Manycore consists of thousands of cores

Single Core CPU

Multi-core CPU

© The Digital Dimension of Technolog

Manycore Processors

® A processor that consists of a large number of cores
e Designed for a high degree of parallel processing
e Able to handle thousands of threads simultaneously

{ om —

—4—————e—+¢

I
e e e e

N

{}. -

ve

|
+
|
4

-
|
|
|

b—

Different Types of Instruction Streams

SIMD Parallel Processing
e GPUs use Single Instruction, Multiple

Data (SIMD)
e A single instruction stream is applied to

—
c

multiple separate data structures

e Threads execute the same instruction on
different data

e Synchronous Programming

—
c

Data pool

—
(&=

:
HEHHEH

MIMD Processing

e Hammerblade uses Multiple
Instruction, Multiple Data

(MIMD)

e Asynchronous programming
o Allows multiple things to happen

—
-
—
C

—
-
—
-

concurrently

e More effective than SIMD in terms
of performance

Data pool

t

EHHBH
U

HEHHBH

—
(-
—
c

Hammerblade Architecture

Nodes

e FEach node is a single
System-on-Chip

e Multiple Nodes are interconnected

e Each node is architected from an
array of tiles connected by a 2-D
mesh network

A High-Level Manycore Architecture Diagram

Tile Groups

e Each tile contains a core

e Tile Group - subarray of tiles

o Execute a single program

e Tile Groups are launched using
Grids

o Allow iterative invocations of Tile

Groups

| 030y |51 (129 |5 (229 |
1 o ——

Architecture for the Manycore

Threads Overview in GPUS

e Threads grouped into
Thread

thread blocks B
—9
® Grid is made of thread %
blocks

Thread Block Streaming Multiprocessor

In GPU, threads block ___Erecutediy
. drilspatchedlzzjat;e e %’%’% \%'

Streaming Multiprocessor
(SM)

e Kernel Grid dispatched by
GPU Unit

Kernel Grid Complete GPU Unit

Execution Model of HammerBlade vs GPU

Grid dimensions <4 4 4>

Wil
/002 AMioa Mo A

Hest code ©

Dispatch
to tilegroup

Risc-v tilegroup

Sequential
thread
execution

execution

Hammerblade

Block dimensions <3,2,2>
blockldx = <3,1,0>

Dispatch
to SM

Streaming

) Multiprocessor
Sequential

thread
execution

for thread
warps in SM
{ run Kemel } Exacution units

[EREE

L1 data cache

Concurren!
thread
execution

P

Basejump Manycore Accelerator Network

e 2D mesh network
e Single global memory space is shared by all

X coordinates
nodes on the network

e Fach tile is allocated a local address space

o Private data memory in each core

e Global Memory space is addressed by the
node’s coordinates and a local address

o <X cord,Y cord, local address>

»
2
T
=
2
8
P

Transaction Ordering

e (Ordered Network

o Sequential order
e XY dimension ordered
routing

o Travel along one dimension
first, then the other

® Mesh nodes can route

packets in 5 directions
o P=0,S,N,E,W

Simulation

e Synopsis VCS and the RISC-V toolchain are used to simulate the architecture of
the Hammerblade
o Synopsis is a Verilog simulator

e Set up by cloning github repositories

Clone and Compile the RISC-V Toolchain (and RTL)

git clone git@bitbucket.org:taylor-bsg/bsg_manycore.git
git clone git@bitbucket.org:taylor-bsg/bsg_ip_cores.git

cd bsg_manycore/software/riscv-tools
make checkout-all
make build-riscv-tools

Programming in CUDA-Lite

e CUDA-Lite allows Hammerblade to mimic the structure of a GPU
o Easy transition from CUDA to CUDA-Lite
o (C++
e Single Program, Multiple Data (SPDM) paradigm
o Tasks are split up and run simultaneously on multiple processors
e CUDA known variables and its own hardware specific variables
e Example of CUDA known variables:
o gridDim
o blockDim
o Blockldx (position of block)

3¢k e e e ek sk e e e ke ok ok e ke ke ok ok ok ke ok ok ok ke ok ke sk ok ok ok ok ok ok ok ok ke sk ok ok ke ok ok ok ok ke ok ok ok ok ke ke ok ok ok ke ke ok ok ok ke ok ok ok ok ke ok
* Define tg_dim_x/y: number of tiles in each tile group
* Calculate grid_dim_x/y: number of tile groups needed
e e e ok ok e ok ok ok ke ok ok ok ke ke ok ok ok ke ok ke ok ok ok ok ok ok ok ok ke ok ok ok ok ke ok ok ok ok ok ok ok ok ok ok ke ok ok ok ok ke ok ok ok ok ke ok ok ok ok ke ke ok ok ke /
hb_mc_dimension_t tg_dim = { .x = 0, .y = 0 };
hb_mc_dimension_t grid_dim = { .x = 0, .y =0 };
if (!strcmp("vO", test_name)){
//strcmp is used to compare string arguments
tg_dim = { .x =1, .y =1 }; //tile group dimensions
grid_dim = { .x =1, .y =1 }; //grid dimensions
else if (!strcmp("vl", test_name)){

tg dim = { .x =2, .y =2 };

grid_dim = { . 1, y:=1 }:
else if (!strcmp("v2", test_name)){
tg_dim = { .x S ayii=dlog
grid_dim = { . 1, .y =1 };
else if (!strcmp("v3", test_name)){
tg dim = { .x =2, .y =21};
grid_dim = { .x =2, .y =2 };
else {
bsg_pr_test_err("Invalid version provided!.\n");
return HB_MC_INVALID;

Project

Goal: Learning how to program in
CUDA_Lite

Progress: Got simulation running
successfully and working on coding the
transpose of a Matrix to learn how to use
the different functions and variables in

CUDA-Lite
o Comfortable with VIM

Challenges: Initially did not have much
experience with Linux, VIM, or
programming in CUDA (programming in
CUDA-Lite without knowing CUDA is
challenging)

Hello World! Tile Graup Tile-ID: O, Afg: 0

BSG INFO: test passed!

| [INFO][RX]

[INFO][RX]

[INFO][RX]

[INFO][RX]
l[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
[INFO][RX]
| [INFO][RX]

Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing
Freezing

tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile
tile

t=7U4679000
t=74681000
t=74683000
t=74685000
t=74687000
t=74688000
t=74689000
t=74690000
t=74691000
t=74692000
t=74693000
t=74694000
t=74696000
t=74697000
t=74698000
t=74699000
t=74700000
t=74702000
t=74703000
t=74707000
t=74709000
t=74712000
t=74712000
t=74714000
t=74715000
t=74717000
t=74717000
t=74719000
t=74721000
t=74723000
t=74725000

I

1

1

1

1

1

1

1

1

1

1

1

I

1

1

I

I

L

X X X X X X X X X X

[1 N 1 1 1 1 1 N 1 1 1
DO EWNSNFOOUEWNSNORUOUOGEWNNOR OO EWNRE®

XX X X X X X X X X X X X X X X X X X X X

QOO OO EOEOEEEEWWEWEWWNWNWNWNONNNNN

Rereiii e b A AT AT A A A A A A e A A A A A A A i A A A

Future

e Work on more programs in CUDA-Lite throughout the rest of the quarter
e Will be continuing research with Marcus and Professor Wong over the Summer
and throughout the school year

e Use the simulation to study different aspects of the Hammerblade

References

A. Rovinski et al., "A 1.4 GHz 695 Giga Risc-V Inst/s 496-Core Manycore Processor
With Mesh On-Chip Network and an All-Digital Synthesized PLL in 16nm CMOS,"
2019 Symposium on VLSI Circuits, 2019, pp. C30-C31, doi:
10.23919/VLSIC.2019.8778031.

Xie, Shaolin, and Michael Taylor., “The BaseJump Manycore Accelerator Network,”
2018.

Dustin, et al., “HammerBlade Manycore Technical Reference Manual, ”

Sung, Michael., “SIMD Parallel Processing,” Architectures Anonymous, 2000.
http://www.ai.mit.edu/projects/aries/papers/writeups/darkman-writeup.pdf

http://www.ai.mit.edu/projects/aries/papers/writeups/darkman-writeup.pdf

Thank you

