HammerBlade Manycore
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Single-core vs. Multicore vs.
Manycore Processor

All have different purposes and different
architectures

Single-core is a microprocessor with a
single core

Multicore devices have 2-8 cores in
them

Manycore consists of thousands of cores

Single Core CPU

Multi-core CPU
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Manycore Processors

® A processor that consists of a large number of cores
e Designed for a high degree of parallel processing
e Able to handle thousands of threads simultaneously
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Different Types of Instruction Streams




SIMD Parallel Processing
e GPUs use Single Instruction, Multiple

Data (SIMD)
e A single instruction stream is applied to
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multiple separate data structures

e Threads execute the same instruction on
different data

e Synchronous Programming
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MIMD Processing

e Hammerblade uses Multiple
Instruction, Multiple Data

(MIMD)

e Asynchronous programming
o  Allows multiple things to happen
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concurrently

e More effective than SIMD in terms
of performance

Data pool
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Hammerblade Architecture




Nodes

e FEach node is a single
System-on-Chip

e Multiple Nodes are interconnected

e Each node is architected from an
array of tiles connected by a 2-D
mesh network

A High-Level Manycore Architecture Diagram




Tile Groups

e Each tile contains a core

e Tile Group - subarray of tiles

o  Execute a single program

e Tile Groups are launched using
Grids

o  Allow iterative invocations of Tile

Groups
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Architecture for the Manycore



Threads Overview in GPUS

e Threads grouped into
Thread

thread blocks B
—9
® Grid is made of thread %
blocks

Thread Block Streaming Multiprocessor

In GPU, threads block ___Erecutediy
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Streaming Multiprocessor
(SM)

e Kernel Grid dispatched by
GPU Unit

Kernel Grid Complete GPU Unit




Execution Model of HammerBlade vs GPU

Grid dimensions <4 4 4>
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Basejump Manycore Accelerator Network

e 2D mesh network
e Single global memory space is shared by all

X coordinates
nodes on the network

e Fach tile is allocated a local address space

o  Private data memory in each core

e Global Memory space is addressed by the
node’s coordinates and a local address

o <X cord,Y cord, local address>
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Transaction Ordering

e (Ordered Network

o  Sequential order
e XY dimension ordered
routing

o  Travel along one dimension
first, then the other

® Mesh nodes can route

packets in 5 directions
o P=0,S,N,E,W




Simulation

e Synopsis VCS and the RISC-V toolchain are used to simulate the architecture of
the Hammerblade
o  Synopsis is a Verilog simulator

e Set up by cloning github repositories

Clone and Compile the RISC-V Toolchain (and RTL)

git clone git@bitbucket.org:taylor-bsg/bsg_manycore.git
git clone git@bitbucket.org:taylor-bsg/bsg_ip_cores.git

cd bsg_manycore/software/riscv-tools
make checkout-all
make build-riscv-tools




Programming in CUDA-Lite

e CUDA-Lite allows Hammerblade to mimic the structure of a GPU
o  Easy transition from CUDA to CUDA-Lite
o (C++
e Single Program, Multiple Data (SPDM) paradigm
o  Tasks are split up and run simultaneously on multiple processors
e CUDA known variables and its own hardware specific variables
e Example of CUDA known variables:
o gridDim
o  blockDim
o Blockldx (position of block)
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* Define tg_dim_x/y: number of tiles in each tile group
* Calculate grid_dim_x/y: number of tile groups needed
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hb_mc_dimension_t tg_dim = { .x = 0, .y = 0 };
hb_mc_dimension_t grid_dim = { .x = 0, .y =0 };
if (!strcmp("vO", test_name)){
//strcmp is used to compare string arguments
tg_dim = { .x =1, .y =1 }; //tile group dimensions
grid_dim = { .x =1, .y =1 }; //grid dimensions
else if (!strcmp("vl", test_name)){

tg dim = { .x =2, .y =2 };

grid_dim = { . 1, y:=1 }:
else if (!strcmp("v2", test_name)){
tg_dim = { .x S ayii=dlog
grid_dim = { . 1, .y =1 };
else if (!strcmp("v3", test_name)){
tg dim = { .x =2, .y =21};
grid_dim = { .x =2, .y =2 };
else {
bsg_pr_test_err("Invalid version provided!.\n");
return HB_MC_INVALID;




Project

Goal: Learning how to program in
CUDA_Lite

Progress: Got simulation running
successfully and working on coding the
transpose of a Matrix to learn how to use
the different functions and variables in

CUDA-Lite
o  Comfortable with VIM

Challenges: Initially did not have much
experience with Linux, VIM, or
programming in CUDA (programming in
CUDA-Lite without knowing CUDA is
challenging)

Hello World! Tile Graup Tile-ID: O, Afg: 0

BSG INFO: test passed!
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Future

e Work on more programs in CUDA-Lite throughout the rest of the quarter
e Will be continuing research with Marcus and Professor Wong over the Summer
and throughout the school year

e Use the simulation to study different aspects of the Hammerblade
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