CONFERENCE |

v April 4-7, 2016 | Silicon Valley

THE FUTURE OF UNIFIED
MEMORY

Nikolay Sakharnykh, 4/5/2016

BBBBBBBBBB

< NVIDIA.

« Haven’t graded midterm yet, will be finished on Wednesday

* May I2t2nd — last day to drop without a W or change to S/NS with no fee or
penalty

» https://reqgistrar.ucr.edu/resources/forms

« Lab 2 due Monday May 18t
« Lab 3 due Monday May 25%
 Lab 4 due Friday June 12t
*Nolab 5

* Quiz 3 Wednesday May 27t

* Quiz 4 will be a “take home quiz” where it will comprise of your 4 lowest
scored questions over the previous 3 quizzes due Monday June 6%

« Final June 3 or on finals week?

https://registrar.ucr.edu/resources/forms

IIIIIIIIIIIIIIIIIIIIII

Pinned host memory

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

— DMA (Direct Memory Access) hardware is used by cudaMemcpy () for better efficiency
— Frees CPU for other tasks
— Hardware unit specialized to transfer a number of bytes requested by OS
— Between physical memory address space regions (some can be mapped I/O memory locations)
— Uses system interconnect, typically PCle in today’s systems

CPU Main Memory (DRAM)

PCle
coal—

Memory

GPU card
(or other 1/0 cards)

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

— Modern computers use virtual memory management
— Many virtual memory spaces mapped into a single physical memory
— Virtual addresses (pointer values) are translated into physical addresses
— Not all variables and data structures are always in the physical memory
— Each virtual address space is divided into pages that are mapped into and out of the physical memory
— Virtual memory pages can be mapped out of the physical memory (page-out) to make room
— Whether or not a variable is in the physical memory is checked at address translation time

virtual me.mor«.X

Soua Evans

@ bork

your computer hos

p\r\cjsic.a\ memoryy

physical memory has

addresses

O-36R

bU+ Wkeﬂ Your P(O%('Qm

every program has its
own virtual address space

o €y

Program
references an address =
! @ memoryY like Ox Sc690.2402 20 {0x 124520 —"bananas’
4GB 204-PN SODIMM DORS / @
h —] that s not a phusical Pfo;?ram
: memory address ¥
Its o address
Linux kee ps o. mopping from every, time you switch

virtual memory pages to
phﬁsical memory pages called

the " page table”

m“po.se" is a. Ykb w'?e‘;‘m
chunk of memory /'gigger

PID virtual adde physical addr
1971 Ox20000 Ox142000
2310 Ox 20000 ©9x22%000

2310 Ox?21000

Ox 9788000

when your program
occesses o virtual address

T'm accessin 9
el Ox 21000

cPU

the page table and

MMU then access the right
“memo PhYSiCa‘ address
mmo.%‘e'meni'

un?

hacdware

oof T'Il look +hadt up in

whic process is running,
Linux needs to switch

the page table

here's the address of
LV process 2950 's page table

nux
Xl

M™MU

thonks T'U use
that now 1

RSITY OF CALIFORNIA

ERS

1]

Suuia Evans
@b0rk

poge faolts

every Linux process has
a poge table

* page table &

virtual memory |physical memory
address address
Ox 19723000 | Ox 1422000
Ox 19724000 Ox 422000
0x 1524000 not in memory
Ox 1844000 Ox4a.000 read only

what happens durmg
A page foult?

— the MMU sends an
in+errupi’

Some pages are marked
as either

X read Onllj

- {
* not resident in memOr:j AR preg [hops fufaing

—* Linux kernel code +o handle
the page fault rung

TN fix +he problem and

let your program keep
running

when you ‘h’s to aecess
4 page that's marked
“not in memory *, that
+ri33ers o, ! page ‘Faul‘t!

“notin memor%" usually
means the doto. is
on disk 7

vi "+UOJ me,mor%

o 7 R e
o/ pV

in RAM on Jdisk.

Havfng some yirtual memoryy
thad is ac:l'ual(s on disk ig

how sSwWop and mmop work

how swo.p work s

Orun out of RAM @ When o program tries to access

RAM-EZZsZzzsZr=2] ‘,‘~\>~ the. me moryy thera's of page‘

Jisk. -» B] - fault .

@ Linux saves some RAM ® time +o move some
data +o disk. Lmox Ld0to. back to RAMY

RAM »mmspszeseen__3—

disk Y] — virfual memory

e et

® if this happens a lot your
program gets VERY SLoO

" (T'm always wm‘-’-ms for dota
+o be moved in £ oot of RAM

® mark those pages as

*not resident in memory”

in the page table 4 eSident
virfual memory %
RAM

Y OF CALIFORNIA

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

— DMA uses physical addresses

— When cudaMemcpy () copies an array, it is implemented as one or more DMA transfers

— Address is translated and page presence checked for the entire source and destination regions at the beginning
of each DMA transfer

— No address translation for the rest of the same DMA transfer so that high efficiency can be achieved

— The OS could accidentally page-out the data that is being read or written by a DMA and page-in
another virtual page into the same physical location

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

— Pinned memory are virtual memory pages that are specially marked so that they cannot be paged out
— Allocated with a special system API function call
— a.k.a. Page Locked Memory, Locked Pages, etc.

— CPU memory that serve as the source or destination of a DMA transfer must be allocated as pinned
memory

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

— The DMA used by cudaMemcpy() requires that any source or destination in the host memory is
allocated as pinned memory

— If a source or destination of a cudaMemcpy () In the host memory is not allocated in pinned memory, it
needs to be first copied to a pinned memory — extra overhead

— cudaMemcpy () is faster if the host memory source or destination is allocated in pinned memory since
no extra copy is needed

Pageable Data Transfer Pinned Data Transfer
Device Device
Host Host
Pageable Pinned Pinned
Memory Memory Memory

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

— cudaHostAlloc (), three parameters

— Address of pointer to the allocated memory
— Size of the allocated memory in bytes
— Option — use cudaHostAllocDefault for now

— cudaFreeHost (), One parameter
— Pointer to the memory to be freed

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

int main ()

{

float *h A, *h B, *h C;

cudaHostAlloc ((void **) &h A, N* sizeof (float),
cudaHostAllocDefault) ;

cudaHostAlloc ((void **) &h B, N* sizeof (float),
cudaHostAllocDefault) ;

cudaHostAlloc ((void **) &h C, N* sizeof (float),
cudaHostAllocDefault) ;

// cudaMemcpy () runs 2X faster

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

— Use the allocated pinned memory and its pointer the same way as those returned by malloc () ;

— The only difference is that the allocated memory cannot be paged by the OS

— The cudaMemcpy () function should be about 2X faster with pinned memory

— Pinned memory is a limited resource
— over-subscription can have serious consequences

CJ When poll is active, respond at PollEv.com/marcuschow119

Why is pinned memory a limited resource? What might be
the consequences of over-subscription?

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

IIIIIIIIIIIIIIIIIIIIII

Unified Memory

F C

UCRIVERSID

Memory hierarchy
GPU O GPU 1 GPUN

System
Memory

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

Starting with Kepler and
Custom Data Management

System
Memory

GPU Memory

CUDA 6

Developer View With
Unified Memory

Unified Memory

. 4/8/2

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

UNIFIED MEMORY

Single pointer for CPU and GPU

» CPU code GPU code with Unified Memory
void sortfile(FILE *fp, int N){ void sortfile(FILE *fp, int N){
char *data; char *data;

data = (char *)malloc(N): cudaMallocManaged(&data, N);

fread(data, 1, N, fp); fread(data, 1, N, fp);

gsort(data, N, 1, compare); gsort<<<...>>>(data,N,1,compare);

cudaDeviceSynchronize();
use_ data(data);

free(data); use_data(data);

\} cudaFree(data);

Code example explained

cudaMallocManaged(&ptr, ...); <«—— Pages are populated in GPU memory
*ptr = 1; «—— CPU page fault: data migrates to CPU
gsort<<<...>>>(ptr); +«——— Kernel launch: data migrates to GPU

GPU always has address translation during the kernel execution
Pages allocated before they are used - cannot oversubscribe GPU

Pages migrate to GPU only on kernel launch - cannot migrate on-demand

4 4/8/2

n1r

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

Kernel launch triggers bulk page migrations
GPU memory System memory
~0.3 TB/s ~-0.1 TB/s

cudaMallocManaged

page
kernel fault
launch page
fault

4 4/8/2

n1r

Now supports GPU page faults

cudaMallocManaged(&ptr, ...); <«—— Empty, no pages anywhere (similar to malloc)
*ptr = 1; <—— CPU page fault: data allocates on CPU
gsort<<<...>>>(ptr); +«—— GPU page fault: data migrates to GPU

If GPU does not have a VA translation, it issues an interrupt to CPU
Unified Memory driver could decide to map or migrate depending on heuristics

Pages populated and data migrated on first touch

4/8/2°

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

True on-demand page migrations
GPU memory System memory
~0.7 TB/s ~-0.1 TB/s

cudaMallocManaged - -

page
fault

page interconnect _
it “

page

fagle ™ B

map VAto
system memory

4/8/21

VERSITY OF CALIFORNIA

UCRIVERSIDE

Improvements over previous GPU generations
On-demand page migration

GPU memory oversubscription is now practical (*)
Concurrent access to memory from CPU and GPU (page-level coherency)

Can access OS-controlled memory on supporting systems

(*) on pre-Pascal you can use zero-copy but the data will always stay in system memory

4/8/2?

Pre-Pascal: atomics from the GPU are atomic only for that GPU

GPU atomics to peer memory are not atomic for remote GPU

GPU atomics to CPU memory are not atomic for CPU operations

Pascal: Unified Memory enables wider scope for atomic operations
NVLINK supports native atomics in hardware

PCI-E will have software-assisted atomics

4/8/23

Pre-Pascal: direct access requires P2P support, otherwise falls back to sysmem

Use CUDA MANAGED FORCE DEVICE ALLOCto mitigate this

Pascal: Unified Memory works very similar to CPU-GPU scenario

GPU A accesses GPU B memory: GPU A takes a page fault

Can decide to migrate from GPU B to GPU A, or map GPUA

GPUs can map each other’s memory, but CPU cannot access GPU memory directly

4/8/2

CJ When poll is active, respond at PollEv.com/marcuschow119

Is unified memory different than pinned memory? Why or
why not?

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

NEW APPLICATION USE
CASES

UCRIVERSIDE

Maximum flow

272 2/4

2/5

@
3/3 Q sink
source 174

1/3

1/2 1/1

4/8/2

Maximum flow
Edmonds-Karp algorithm pseudo-code:

while (augmented path exists)

{

run BFSto find augmented path «<—— Parallel: run on GPU
backtrack and update flow graph «—— Serial: run on CPU

}

Implementing this algorithm without Unified Memory is just painful

Hard to predict what edges will be touched on GPU or CPU, very data-driven

4/8/28

Maximum flow with Unified Memory

Pre-Pascal:
The whole graph has to be migrated to GPU memory
Significant start-up time, and graph size limited to GPU memory size
Pascal:
Both CPU and GPU bring only necessary vertices/edges on-demand
Can work on very large graphs that cannot fit into GPU memory

Multiple BFS iterations can amortize the cost of page migration

4/8/2°

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

Maximum flow performance projections

Unified Memory speed-up over zero-copy (NVLINK) Speed'up vs GPU d]reCtly

B bascine N optimized accessing CPU memory (zero-copy)
l ity migrate on first touch
25 — I l
| |
oo b L ! Optimized:
| | ! | developer assists with hints for
15 1 i ! best placement in memory
| | |
o - s
] o - GPU memory
05 | 1, 1 —
7o | | oversubscription
0.0 : : : I
I ! I
| | 1

Application working set / GPU memory size

4/8/2°

Now possible with Pascal
Many domains would benefit from GPU memory oversubscription:

Combustion - many species to solve for 4
Quantum chemistry - larger systems

Ray-tracing - larger scenes to render

Unified Memory on Pascal will provide oversubscription by default!

4/8/2

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

Dynamic queues
Problem: GPU populates queues with unknown size, need to overallocate

Here only 35% of memory is actually used! —

Solution: use Unified Memory for allocations (on Pascal)

4/8/23

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

Dynamic queues
Memory is allocated on-demand so we don’t waste resources

\ | J
page page

All translations from a given SM stall on page fault on Pascal

4/8/2

PERFORMANCE
TUNING

General guidelines

Minimize page fault overhead:

Fault handling can take 10s of pys, while execution stalls
Keep data local to the accessing processor:
Higher bandwidth, lower latency

Minimize thrashing:

Migration overhead can exceed locality benefits

4/8/26

New hints in CUDA 8
cudaMarPref etchAsync(ptr, length, destDevice, stream)

Unified Memory alternative to cudaMemcpyAsync

Async operation that follows CUDA stream semantics
cudaMemAdvise(ptr, length, advice, device)

Specifies allocation and usage policy for memory region

User can set and unset advices at any time

4/8/2

UNIVERSITY OF CALIFORNIA

UCRIVERSIDE

PREFETCHING

Simple code example

void foo(cudaStream _t s) {
char *data; .
cudaMallocManaged(&data, N); GPU faults are expensive

prefetch to avoid excess faults
init_data(data, N); /

cudaMemPrefetchAsync(data, N, myGpuld, s);
mykernel<<<..., s>>>(data, N, 1, compare);
cudaMemPrefetchAsync(data, N, cudaCpuDeviceld, s);
cudaStreamSynchronize(s);

CPU faults are less expensive
may still be worth avoiding

use_ data(data, N);

cudaFree(data);

28

cudaMemAdviseSetReadMostly

Use when data is mostly read and occasionally written to

init_data(data, N);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, myGpuld);

Read-only copy will be

Kk | N);
@I IR =2 (EiE, M) created on GPU page fault

use data(data, N);
\ CPU reads will not page fault

4/8/2°

 Prefetching creates read-duplicated copy of data and avoids page faults

» Note: writes are allowed but will generate page fault and remapping
init_data(data, N);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, myGpuld);
cudaMemPrefetchAsync(data, N, myGpuld, cudaStreamLegacy);

mykernel<<<...>>>(data, N) \

use_data(data, N); v*\ created during prefetch

CPU and GPU reads * Read-only copy will be
will not fault

4/8/2°

Preferred location and direct access
cudaMemAdviseSetPreferredLocation

Set preferred location to avoid migrations

First access will page fault and establish mapping
cudaMemAdviseSetAccessedBy

Pre-map data to avoid page faults

First access will not page fault

Actual data location can be anywhere

R 4/8/2

n1r

INTERACTION WITH OPERATING
SYSTEM

@
U
c
Sm
55
mr-
Z0
aOQ
m=<<

LINUX AND UNIFIED MEMORY

ANY memory will be available for GPU*
GPU code with Unified Memory

CPU code

void sortfile(FILE *fp, int N){
char *data;
data =(char *)malloc(N);
fread(data, 1, N, fp);

gsort(data, N, 1, compare);

use_data(data);

free(data);

N

void sortfile(FILE *fp, int N){
char *data;
data =(char *)malloc(N);
fread(data, 1, N, fp);

gsort<<<...>>>(data,N,1,compare);
cudaDeviceSynchronize();

use_data(data);

free(data);

*on supported operating systems

4/8/2016 42 <ANVIDIA.

HMM
HMM will manage a GPU page table and keep it synchronize with the CPU page table

Also handle DMA mapping on behalf of the device
HMM allows migration of process memory to device memory
CPU access will trigger fault that will migrate memory back

HMM is not only for GPUs, network devices can use it as well

Mellanox has on-demand paging mechanism, so RDMA will work in future

4/8/23

Use Unified Memory now! Your programs will work even better on Pascal

Think about new use cases to take advantage of Pascal capabilities
Performance hints will provide more flexibility for advanced developers

Even more powerful on supported OS platforms

4/8/2°

CJ When poll is active, respond at PollEv.com/marcuschow119

In Unified Memory, When would explicit copying would
provide a benefit to your program? When would you not do
that?

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.com/app ..

