
April 4-7, 2016 | Silicon Valley

THE FUTURE OF UNIFIED

MEMORY
Nikolay Sakharnykh, 4/5/2016

Logistics
• Haven’t graded midterm yet, will be finished on Wednesday

• May 22nd – last day to drop without a W or change to S/NS with no fee or
penalty

• https://registrar.ucr.edu/resources/forms

• Lab 2 due Monday May 18th

• Lab 3 due Monday May 25th

• Lab 4 due Friday June 12th

• No lab 5

• Quiz 3 Wednesday May 27th

• Quiz 4 will be a “take home quiz” where it will comprise of your 4 lowest
scored questions over the previous 3 quizzes due Monday June 6th

• Final June 3rd or on finals week?

https://registrar.ucr.edu/resources/forms

Pinned host memory

CPU-GPU Data Transfer using DMA

– DMA (Direct Memory Access) hardware is used by cudaMemcpy() for better efficiency

– Frees CPU for other tasks

– Hardware unit specialized to transfer a number of bytes requested by OS

– Between physical memory address space regions (some can be mapped I/O memory locations)

– Uses system interconnect, typically PCIe in today’s systems

CPU Main Memory (DRAM)

GPU card

(or other I/O cards)

DMAGlobal

Memory

PCIe

Virtual Memory Management
– Modern computers use virtual memory management

– Many virtual memory spaces mapped into a single physical memory

– Virtual addresses (pointer values) are translated into physical addresses

– Not all variables and data structures are always in the physical memory
– Each virtual address space is divided into pages that are mapped into and out of the physical memory

– Virtual memory pages can be mapped out of the physical memory (page-out) to make room

– Whether or not a variable is in the physical memory is checked at address translation time

Data Transfer and Virtual Memory

– DMA uses physical addresses
– When cudaMemcpy() copies an array, it is implemented as one or more DMA transfers

– Address is translated and page presence checked for the entire source and destination regions at the beginning
of each DMA transfer

– No address translation for the rest of the same DMA transfer so that high efficiency can be achieved

– The OS could accidentally page-out the data that is being read or written by a DMA and page-in
another virtual page into the same physical location

Pinned Memory and DMA Data Transfer

– Pinned memory are virtual memory pages that are specially marked so that they cannot be paged out

– Allocated with a special system API function call

– a.k.a. Page Locked Memory, Locked Pages, etc.

– CPU memory that serve as the source or destination of a DMA transfer must be allocated as pinned
memory

CUDA data transfer uses pinned memory.

– The DMA used by cudaMemcpy() requires that any source or destination in the host memory is
allocated as pinned memory

– If a source or destination of a cudaMemcpy() in the host memory is not allocated in pinned memory, it
needs to be first copied to a pinned memory – extra overhead

– cudaMemcpy() is faster if the host memory source or destination is allocated in pinned memory since
no extra copy is needed

Allocate/Free Pinned Memory
– cudaHostAlloc(), three parameters

– Address of pointer to the allocated memory

– Size of the allocated memory in bytes

– Option – use cudaHostAllocDefault for now

– cudaFreeHost(), one parameter

– Pointer to the memory to be freed

Putting It Together - Vector Addition Host Code Example

int main()

{

float *h_A, *h_B, *h_C;

…

cudaHostAlloc((void **) &h_A, N* sizeof(float),

cudaHostAllocDefault);

cudaHostAlloc((void **) &h_B, N* sizeof(float),

cudaHostAllocDefault);

cudaHostAlloc((void **) &h_C, N* sizeof(float),

cudaHostAllocDefault);

…

// cudaMemcpy() runs 2X faster

}

Using Pinned Memory in CUDA
– Use the allocated pinned memory and its pointer the same way as those returned by malloc();

– The only difference is that the allocated memory cannot be paged by the OS

– The cudaMemcpy() function should be about 2X faster with pinned memory

– Pinned memory is a limited resource
– over-subscription can have serious consequences

Unified Memory

HETEROGENEOUS ARCHITECTURES
Memory hierarchy

System
Memory

2

GPU
Memory

GPU 0 GPU 1 GPU N

CPU

UNIFIED MEMORY
Starting with Kepler and CUDA 6

4/8/2
016

Custom Data Management

System
Memory

GPU Memory

Developer View With
Unified Memory

Unified Memory

4

UNIFIED MEMORY
Single pointer for CPU and GPU

• CPU code

void s o r t f i l e (F ILE * f p , i n t N) {

char *data;

data = (char *)mal loc(N);

f read(data, 1 , N, f p) ;

qsor t (data, N, 1 , compare);

use_data(data);

f ree (da ta) ;

}

4

/

8

/

2

0

1

6

}

6

GPU code with Unified Memory

void s o r t f i l e (F ILE * f p , i n t N) {

char *data;

cudaMallocManaged(&data, N);

f read(data, 1 , N, f p) ;

qsort<<<...>>>(data,N,1,compare);

cudaDeviceSynchronize();

use_data(data);

cudaFree(data);

UNIFIED MEMORY ON PRE-PASCAL
Code example explained

4/8/2
016

GPU always has address translation during the kernel execution

Pages allocated before they are used – cannot oversubscribe GPU

Pages migrate to GPU only on kernel launch – cannot migrate on-demand

cudaMallocManaged(&ptr, . . .) ;

* p t r = 1 ;

qsor t<<<. . .>>>(pt r) ;

Pages are populated in GPU memory

CPU page fault: data migrates to CPU

7

Kernel launch: data migrates to GPU

UNIFIED MEMORY ON PRE-PASCAL
Kernel launch triggers bulk page migrations

4/8/2
016

GPU memory
~0.3 TB/s

System memory
~0.1 TB/s

PCI-E

8

kernel
launch

page
fault
page
fault

cudaMallocManaged

UNIFIED MEMORY ON PASCAL
Now supports GPU page faults

4/8/2
016

10

If GPU does not have a VA translation, it issues an interrupt to CPU

Unified Memory driver could decide to map or migrate depending on heuristics

Pages populated and data migrated on first touch

cudaMallocManaged(&ptr, . . .) ;

* p t r = 1 ;

qsor t<<<. . .>>>(pt r) ;

Empty, no pages anywhere (similar to malloc)

CPU page fault: data allocates on CPU

GPU page fault: data migrates to GPU

UNIFIED MEMORY ON PASCAL
True on-demand page migrations

4/8/2
016

11

GPU memory
~0.7 TB/s

System memory
~0.1 TB/s

interconnectpage
fault

page
fault

page
fault

map VAto
system memory

cudaMallocManaged

UNIFIED MEMORY ON PASCAL
Improvements over previous GPU generations

4/8/2
016

12

On-demand page migration

GPU memory oversubscription is now practical (*)

Concurrent access to memory from CPU and GPU (page-level coherency)

Can access OS-controlled memory on supporting systems

(*) on pre-Pascal you can use zero-copy but the data will always stay in system memory

UNIFIED MEMORY: ATOMICS

4/8/2
016

13

Pre-Pascal: atomics from the GPU are atomic only for that GPU

GPU atomics to peer memory are not atomic for remote GPU

GPU atomics to CPU memory are not atomic for CPU operations

Pascal: Unified Memory enables wider scope for atomic operations

NVLINK supports native atomics in hardware

PCI-E will have software-assisted atomics

UNIFIED MEMORY: MULTI-GPU

4/8/2
016

14

Pre-Pascal: direct access requires P2P support, otherwise falls back to sysmem

Use CUDA_MANAGED_FORCE_DEVICE_ALLOC to mitigate this

Pascal: Unified Memory works very similar to CPU-GPU scenario

GPU A accesses GPU B memory: GPU A takes a page fault

Can decide to migrate from GPU B to GPU A, or map GPUA

GPUs can map each other’s memory, but CPU cannot access GPU memory directly

1
5

NEW APPLICATION USE

CASES

1/11/2

1/4

2/5

2/4

2/4
2/2

3/3

ON-DEMAND PAGING
Maximum flow

4/8/2
016

17

source
sink

1/3

ON-DEMAND PAGING
Maximum flow

4/8/2
016

18

Edmonds-Karp algorithm pseudo-code:

Implementing this algorithm without Unified Memory is just painful

Hard to predict what edges will be touched on GPU or CPU, very data-driven

while (augmented path ex i s ts)

{

run BFS to f i n d augmented path

backtrack and update f low graph

}

Parallel: run on GPU

Serial: run on CPU

ON-DEMAND PAGING
Maximum flow with Unified Memory

4/8/2
016

19

Pre-Pascal:

The whole graph has to be migrated to GPU memory

Significant start-up time, and graph size limited to GPU memory size

Pascal:

Both CPU and GPU bring only necessary vertices/edges on-demand

Can work on very large graphs that cannot fit into GPU memory

Multiple BFS iterations can amortize the cost of page migration

ON-DEMAND PAGING

4/8/2
016

20

Maximum flow performance projections

Optimized:
developer assists with hints for
best placement in memory

GPU memory
oversubscription

Speed-up vs GPU directly
accessing CPU memory (zero-copy)

Baseline:
migrate on first touch

On-demand migration

GPU OVERSUBSCRIPTION
Now possible with Pascal

4/8/2
016

21

Many domains would benefit from GPU memory oversubscription:

Combustion – many species to solve for

Quantum chemistry – larger systems

Ray-tracing - larger scenes to render

Unified Memory on Pascal will provide oversubscription by default!

ON-DEMAND ALLOCATION
Dynamic queues

4/8/2
016

23

Problem: GPU populates queues with unknown size, need to overallocate

Solution: use Unified Memory for allocations (on Pascal)

Here only 35% of memory is actually used!

ON-DEMAND ALLOCATION
Dynamic queues

4/8/2
016

24

Memory is allocated on-demand so we don’t waste resources

All translations from a given SM stall on page fault on Pascal

page page

2
5

PERFORMANCE

TUNING

PERFORMANCE TUNING
General guidelines

4/8/2
016

26

Minimize page fault overhead:

Fault handling can take 10s of μs, while execution stalls

Keep data local to the accessing processor:

Higher bandwidth, lower latency

Minimize thrashing:

Migration overhead can exceed locality benefits

PERFORMANCE TUNING
New hints in CUDA 8

4/8/2
016

27

cudaMemPref etchAsync(pt r , length, destDev ic e, s t ream)

Unified Memory alternative to cudaMemcpyAsync

Async operation that follows CUDA stream semantics

cudaMemAdvise(ptr, length , advice, device)

Specifies allocation and usage policy for memory region

User can set and unset advices at any time

PREFETCHING
Simple code example

4

/

8

/

2

0

1

6

28

void foo(cudaStream_t s) {

char *data;

cudaMallocManaged(&data, N);

in i t_data(da ta , N);

cudaMemPrefetchAsync(data, N, myGpuId, s) ;

mykernel<<<... , s>>>(data, N, 1 , compare);

cudaMemPrefetchAsync(data, N, cudaCpuDeviceId, s) ;

cudaStreamSynchronize(s);

use_data(data, N);

cudaFree(data);

}

CPU faults are less expensive
may still be worth avoiding

GPU faults are expensive
prefetch to avoid excess faults

mykernel<<<...>>>(data, N);

use_data(data, N);

cudaMemAdviseSetReadMostly

Use when data is mostly read and occasionally written to

i n i t_data(da ta , N);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, myGpuId);

READ DUPLICATION

4/8/2
016

29

Read-only copy will be
created on GPU page fault

CPU reads will not page fault

READ DUPLICATION

• Prefetching creates read-duplicated copy of data and avoids page faults

• Note: writes are allowed but will generate page fault and remapping

• i n i t_data(data , N);

• cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, myGpuId);

cudaMemPrefetchAsync(data, N, myGpuId, cudaStreamLegacy);

mykernel<<<...>>>(data, N);

• Read-only copy will be

4/8/2
016

30

init_data(data, N);

cudaMemAdvise(data, N, cudaMemAdviseSetReadMostly, myGpuId);

cudaMemPrefetchAsync(data, N, myGpuId, cudaStreamLegacy);

mykernel<<<...>>>(data, N)

use_data(data, N); created during prefetch

CPU and GPU reads
will not fault

DIRECT MAPPING
Preferred location and direct access

4/8/2
016

32

cudaMemAdviseSetPreferredLocation

Set preferred location to avoid migrations

First access will page fault and establish mapping

cudaMemAdviseSetAccessedBy

Pre-map data to avoid page faults

First access will not page fault

Actual data location can be anywhere

4
1

INTERACTION WITH OPERATING

SYSTEM

4/8/2016 42

LINUX AND UNIFIED MEMORY
ANY memory will be available for GPU*

f read(data, 1 , N, f p) ;

qsor t (data, N, 1 , compare);

use_data(data);

f ree (data) ;

}

f read(data, 1 , N, f p) ;

qsort<<<...>>>(data,N,1,compare);

cudaDeviceSynchronize();

use_data(data);

f ree (da ta) ;

}

CPU code

void s o r t f i l e (F ILE * f p , i n t N) {

char *data;

data = (char *)mal loc(N);

GPU code with Unified Memory

void s o r t f i l e (F ILE * f p , i n t N) {

char *data;

data = (char *)mal loc(N) ;

*on supported operating systems

HETEROGENEOUS MEMORY MANAGER
HMM

4/8/2
016

43

HMM will manage a GPU page table and keep it synchronize with the CPU page table

Also handle DMA mapping on behalf of the device

HMM allows migration of process memory to device memory

CPU access will trigger fault that will migrate memory back

HMM is not only for GPUs, network devices can use it as well

Mellanox has on-demand paging mechanism, so RDMA will work in future

TAKEAWAYS

4/8/2
016

44

Use Unified Memory now! Your programs will work even better on Pascal

Think about new use cases to take advantage of Pascal capabilities

Performance hints will provide more flexibility for advanced developers

Even more powerful on supported OS platforms

