Matirx Multiply (Memory and
Data Locality)
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__global  void MatrixMulKernel (float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] = Pvalue;
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__global  void MatrixMulKernel (float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M
int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N
int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {
float Pvalue = 0;
// each thread computes one element of the block sub-matrix
for (int k = 0; k < Width; ++k) {
Pvalue += M[Row*Width+k]*N[k*Width+Col];
}
P[Row*Width+Col] = Pvalue;
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Tiled parallel algorithms
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Global Memory

Thread 1 Thread 2

Divide the global memory content into tiles

Focus the computation of threads on one or a small number
of tiles at each point in time



Global Memory

On-chip Memory

Thread 2



— Good: when threads have similar access timing

Thread 1

Thread 2

Thread 1

Thread 2
— Bad: when threads have very different timing



Thread 0
Thread 1
Thread 2

Thread 3
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Thread N-3

Thread N-2
Thread N-1
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— ldentify a tile of global memory contents that are accessed by multiple threads

— Load the tile from global memory into on-chip memory

— Use barrier synchronization to make sure that all threads are ready to start the phase

— Have the multiple threads to access their data from the on-chip memory

— Use barrier synchronization to make sure that all threads have completed the current phase
— Move on to the next tile



CJ When poll is active, respond at PollEv.com/marcuschow119

What factors may influence your choice of tile size?

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.comfapp -.
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Tiled matrix multiplication



— Data access pattern
— Each thread - a row of M and a column of N
— Each thread block — a strip of M and a strip of N
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— Break up the execution of each
thread into phases

— so that the data accesses by the
thread block in each phase are
focused on one tile of M and one
tile of N

— The tile is of BLOCK_SIZE M
elements in each dimension
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— All threads in a block participate
— Each thread loads one M element and one N element in tiled code

18
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threadojo PvalueO,O += PValueO’O +=
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threadO’O PValueO’O += PValueO’O +=
)Ndsg o+ Mds,, ,*Nds, , +
ds, 1 *Nds; o Mds, ;*Nds, o
threadojl PVa 1ue0’1 += Pvalue()’l +=
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threadljl Pvaluel,l += PValueu 4=
Mdsl,O*NdSO,l + Mdsl,O*NdSO,l +
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time

Shared memory allows each value to be accessed by multlple threads
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— Synchronize all threads in a block
— __syncthreads()

— All threads in the same block must reach the __syncthreads() before any of the them can
move on

— Best used to coordinate the phased execution tiled algorithms
— To ensure that all elements of a tile are loaded at the beginning of a phase
— To ensure that all elements of a tile are consumed at the end of a phase



IIIIIIIIIIIIIIIIIIIIII

Tiled matrix multiplication kernel
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N
2D indexing for accessing Tile 1: =
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M[Row][p*TILE_ WIDTH-+tx]
=  M[Row*Width + p*TILE_WIDTH + tx]

N[p*TILE_WIDTH-+ty][Col]
=  N[(p*TILE_WIDTH+ty)*Width + Col]

where p is the sequence number of the current phase

UCKI

NIVERSITY OF CHLIFORNI

VERSIDE




NIVERSITY OF CALIFORNIA

UCRIVERSIDE

__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)

~ shared-

float ds M[TILE WIDTH] [TILE WIDTH];

~_shared  float ds N[TILE WIDTH] [TILE WIDTH];

int bx = blockIdx.x; 1int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int Col = bx * blockDim.x + tx;
float Pvalue 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE WIDTH; ++p) {
// Collaborative loading of M and N tiles into shared memory
ds M[ty]l[tx] = M[Row*Width + p*TILE WIDTH+tx];
ds N[ty][tx] = N[(t*TILE WIDTH+ty)*Width + Col];
__syncthreads () ;

for (int i = 0; i < TILE WIDTH; ++i)Pvalue += ds M[ty][i] * ds N[i][tx];
___synchthreads () ;

}

P[Row*Width+Col] = Pvalue;
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__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared  float ds M[TILE WIDTH] [TILE WIDTH];

float ds N[TILE WIDTH] [TILE WIDTH];

-~ shared
int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int “Col=Mox= lodd.ck DI M ke=t==toxs
float Pvalue 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE WIDTH; ++p) {
// Collaborative loading of M and N tiles into shared memory
ds M[ty][tx] = M[Row*Width + p*TILE WIDTH+tx];
ds_Nlty] [tx] N[ (t*TILE WIDTH+ty) *Width + Coll;
__syncthreads () ;

for (int i = 0; i < TILE WIDTH; ++i)Pvalue += ds M[ty][i] * ds N[i][tx];
__synchthreads () ;

}

P[Row*Width+Col] = Pvalue;
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__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)
{
__shared  float ds M[TILE WIDTH] [TILE WIDTH];

float ds N[TILE WIDTH] [TILE WIDTH];

-~ shared
int bx = blockIdx.x; int by = blockIdx.y;
int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;
int “Col=Mox= lodd.ck DI M ke=t==toxs
float Pvalue 0;

// Loop over the M and N tiles required to compute the P element
for (int p = 0; p < n/TILE WIDTH; ++p) {
// Collaborative loading of M and N tiles into shared memory
ds M[ty][tx] = M[Row*Width + p*TILE WIDTH+tx];
ds_Nlty] [tx] N[ (t*TILE WIDTH+ty) *Width + Coll;
__syncthreads () ;

for (int i = 0; i < TILE WIDTH; ++i)Pvalue += ds M[ty][i] * ds N[i][tx];
__synchthreads () ;

P[Row*Width+Col] = Pvalue;
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— Each thread block should have many threads
— TILE_WIDTH of 16 gives 16*16 = 256 threads
— TILE_WIDTH of 32 gives 32*32 = 1024 threads

— For 16, in each phase, each block performs 2*256 = 512 float loads from global
memory for 256 * (2*16) = 8,192 mul/add operations. (16 floating-point operations for
each memory load)

— For 32, in each phase, each block performs 2*1024 = 2048 float loads from global
memory for 1024 * (2*32) = 65,536 mul/add operations. (32 floating-point operation for
each memory load)

37
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— For an SM with 16KB shared memory
— Shared memory size is implementation dependent!
— For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory.

— For 16KB shared memory, one can potentially have up to 8 thread blocks executing
— This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)

— The next TILE_WIDTH 32 would lead to 2*32*32*4 Byte= 8K Byte shared memory usage per thread block,
allowing 2 thread blocks active at the same time

— However, in a GPU where the thread count is limited to 1536 threads per SM, the number of blocks per SM is
reduced to one!

— Each __ syncthread() can reduce the number of active threads for a block
— More thread blocks can be advantageous

38
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How can we modify this kernel to handle matrix of any size?

.. Start the presentation to see live content. For screen share software, share the entire screen. Get help at pollev.comfapp -.



IIIIIIIIIIIIIIIIIIIIII

Handling arbitrary matrix sizes in
tiled algorithms



NIVERSITY OF CALIFORNIA

UCRIVERSIDE

« The tiled matrix multiplication kernel we presented so far can handle only square
matrices whose dimensions (Width) are multiples of the tile width (TILE_WIDTH)

* However, real applications need to handle arbitrary sized matrices.

* One could pad (add elements to) the rows and columns into multiples of the tile size, but would
have significant space and data transfer time overhead.

« We will take a different approach.
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Threads (1,0) and (1,1) need special
treatment in loading N tile
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Threads (0,1) and (1,1) need
special treatment in loading M tile
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All Threads need special
treatment. None of them should
introduce invalidate contributions
to their P elements.
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Threads (0,1) and (1,1) need special
treatment in loading N tile
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— When a thread is to load any input element, test if it is in the valid index range
— Ifvalid, proceed to load
— Else, do not load, just write a 0

— Rationale: a 0 value will ensure that that the multiply-add step does not affect the final value of the
output element

— The condition tested for loading input elements is different from the test for calculating output P
element
— Athread that does not calculate valid P element can still participate in loading input tile elements
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— Each thread loads
— M[Row][p*TILE_WIDTH+tx]
—  M[Row*Width + p*TILE_WIDTH+tx]
— Need to test
— (Row < Width) && (p*TILE_WIDTH+tx < Width)
— If true, load M element
— Else, load 0
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— Each thread loads
— N[p*TILE_WIDTH+ty][Col]
— N[(p*TILE_WIDTH+ty)*Width+ Col]
— Need to test
— (p*TILE_WIDTH+ty < Width) && (Col< Width)
— If true, load N element
— Else, load 0

TILE WIDTH  TILE_WIDTH
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11

for (intp = 0; p < (Width-1) / TILE_WIDTH + 1; ++p) {

if(Row < Width && t * TILE_WIDTH+tx < Width) {
ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];
}else {
ds_Mty][tx] = 0.0;
}
if (o*TILE_WIDTH+ty < Width && Col < Width) {
ds_NJty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];
}else {
ds_N[ty][tx] = 0.0;
}

__syncthreads();



++ if(Row < Width && Col < Width) {
12 for (inti=0;i < TILE_WIDTH; ++i) {
13 Pvalue += ds_M[ty][i] * ds_NI[i][tx];
}
14 __ syncthreads();
15 }/* end of outer for loop */
++ if (Row < Width && Col < Width)
16 P[Row*Width + Col] = Pvalue;
} * end of kernel */

UcRI
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— For each thread the conditions are different for
— Loading M element
— Loading N element
— Calculating and storing output elements

— The effect of control divergence should be small for large matrices
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— In general, the matrix multiplication is defined in terms of rectangular matrices
— Jx k M matrix multiplied with a k x | N matrix results in a j x | P matrix

— We have presented square matrix multiplication, a special case

— The kernel function needs to be generalized to handle general rectangular matrices
— The Width argument is replaced by three arguments: |, k, |

When Width is used to refer to the height of M or height of P, replace it with |

When Width is used to refer to the width of M or height of N, replace it with k

When Width is used to refer to the width of N or width of P, replace it with |
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Tiled Matrix multiply control
divergence
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— Boundary condition checks are vital for complete functionality and robustness of parallel code
— The tiled matrix multiplication kernel has many boundary condition checks
— The concern is that these checks may cause significant performance degradation
— For example, see the tile loading code below:

HRew<WHeHR-&&HTHEEWADTFH+b<WHeH)-
ds_MJty][tx] = M[Row * Width + p * TILE_ WIDTH + tx];
} else {
ds_MJty][tx] =

}

- — " - it
ds N[ty][tx] = N[(p*TILE_ WIDTH + ty) * Width + Col];
} else {
ds_N[ty][tx] = 0.0;
}
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— 1. Blocks whose tiles are all within valid range until the last phase.
— 2. Blocks whose tiles are partially outside the valid range all the way

Type 1

Type 2
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— Assume 16x16 tiles and thread blocks

— Each thread block has 8 warps (256/32)

— Assume square matrices of 100x100

— Each thread will go through 7 phases (ceiling of 100/16)

— There are 49 thread blocks (7 in each dimension)
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— Assume 16x16 tiles and thread blocks

— Each thread block has 8 warps (256/32)

— Assume square matrices of 100x100

— Each warp will go through 7 phases (ceiling of 100/16)

— There are 42 (6*7) Type 1 blocks, with a total of 336 (8*42) warps

— They all have 7 phases, so there are 2,352 (336*7) warp-phases Type 1
— The warps have control divergence only in their last phase

— 336 warp-phases have control divergence THE wWiDTH
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— Type 2: the 7 block assigned to load the bottom tiles, with a total of 56 (8*7) warps

— They all have 7 phases, so there are 392 (56*7) warp-phases

— The first 2 warps in each Type 2 block will stay within the valid range until the last phase
— The 6 remaining warps stay outside the valid range

— So, only 14 (2*7) warp-phases have control divergence

«+——>
TILE WIDTH
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— Type 1 Blocks: 336 out of 2,352 warp-phases have control divergence
— Type 2 Blocks: 14 out of 392 warp-phases have control divergence
— The performance impact is expected to be less than 12% (350/2,944 or (336+14)/(2352+14))

M

Type 1

Type 2
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— The calculation of impact of control divergence in loading N tiles is somewhat different and is
left as an exercise

— The estimated performance impact is data dependent.
— For larger matrices, the impact will be significantly smaller

— In general, the impact of control divergence for boundary condition checking for large input
data sets should be insignificant
— One should not hesitate to use boundary checks to ensure full functionality

— The fact that a kernel is full of control flow constructs does not mean that there will be heavy
occurrence of control divergence

— We will cover some algorithm patterns that naturally incur control divergence (such as
parallel reduction) in the Parallel Algorithm Patterns modules



