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Example – Matrix Multiplication



A Basic Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M

int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N

int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {

float Pvalue = 0;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k) {

Pvalue += M[Row*Width+k]*N[k*Width+Col];

}

P[Row*Width+Col] = Pvalue;

}

}



Example – Matrix Multiplication

__global__ void MatrixMulKernel(float* M, float* N, float* P, int Width) {

// Calculate the row index of the P element and M

int Row = blockIdx.y*blockDim.y+threadIdx.y;

// Calculate the column index of P and N

int Col = blockIdx.x*blockDim.x+threadIdx.x;

if ((Row < Width) && (Col < Width)) {

float Pvalue = 0;

// each thread computes one element of the block sub-matrix

for (int k = 0; k < Width; ++k) {

Pvalue += M[Row*Width+k]*N[k*Width+Col];

}

P[Row*Width+Col] = Pvalue;

}

}



A Toy Example: Thread to P Data Mapping

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

Block(0,0) Block(0,1)
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BLOCK_WIDTH = 2
Thread(0,0)

Thread(1,0)

Thread(0,1)

Thread(1,1)



Calculation of P0,0 and P0,1
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Tiled parallel algorithms



Global Memory Access Pattern 
of the Basic Matrix Multiplication Kernel

Thread 1 Thread 2
…

Global Memory



Tiling/Blocking - Basic Idea

Thread 1 Thread 2

…

Global Memory

On-chip Memory

Divide the global memory content into tiles

Focus the computation of threads on one or a small number 

of tiles at each point in time  



Tiling/Blocking - Basic Idea

Thread 1 Thread 2

…

Global Memory

On-chip Memory



Tiling needs synchronization
– Good: when threads have similar access timing

– Bad: when threads have very different timing

Thread 1

Thread 2

Time

Thread 1

Thread 2

Time

…



Barrier Synchronization for Tiling



Outline of Tiling Technique
– Identify a tile of global memory contents that are accessed by multiple threads

– Load the tile from global memory into on-chip memory

– Use barrier synchronization to make sure that all threads are ready to start the phase

– Have the multiple threads to access their data from the on-chip memory

– Use barrier synchronization to make sure that all threads have completed the current phase

– Move on to the next tile





Tiled matrix multiplication
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Matrix Multiplication
– Data access pattern

– Each thread - a row of M and a column of N

– Each thread block – a strip of M and a strip of N
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Tiled Matrix Multiplication
– Break up the execution of each 

thread into phases 

– so that the data accesses by the 
thread block in each phase are 
focused on one tile of M and one 
tile of N

– The tile is of BLOCK_SIZE 
elements in each dimension



Loading a Tile
– All threads in a block participate

– Each thread loads one M element and one N element in tiled code

18



Phase 0 Load for Block (0,0)
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Phase 0 Use for Block (0,0) (iteration 0)

P0,1P0,0

P1,0

P0,2 P0,3

P1,1

P2,0 P2,2 P2,3P2,1

P1,3P1,2

P3,0 P3,2 P3,3P3,1

M0,1M0,0

M1,0

M0,2 M0,3

M1,1

M2,0 M2,2 M2,3M2,1

M1,3M1,2

M3,0 M3,2 M3,3M3,1

N0,1N0,0

N1,0

N0,2 N0,3

N1,1

N2,0 N2,2 N2,3N2,1

N1,3N1,2

N3,0 N3,2 N3,3N3,1

M0,1M0,0

M1,0 M1,1

N0,1N0,0

N1,0 N1,1

Shared Memory

Shared Memory



Phase 0 Use for Block (0,0) (iteration 1)
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Phase 1 Load for Block (0,0)
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Phase 1 Use for Block (0,0) (iteration 0)
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Phase 1 Use for Block (0,0) (iteration 1)
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Execution Phases of Toy Example



Execution Phases of Toy Example (cont.)

Shared memory allows each value to be accessed by multiple threads 



Barrier Synchronization
– Synchronize all threads in a block

– __syncthreads()

– All threads in the same block must reach the __syncthreads() before any of the them can 
move on

– Best used to coordinate the phased execution tiled algorithms
– To ensure that all elements of a tile are loaded at the beginning of a phase

– To ensure that all elements of a tile are consumed at the end of a phase



Tiled matrix multiplication kernel
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Loading Input Tile 0 of M (Phase 0) 

– Have each thread load an M element and an N 
element at the same relative position as its P 
element.

int Row = by * blockDim.y + ty;
int Col =   bx * blockDim.x + tx;
2D indexing for accessing Tile 0:

M[Row][tx]
N[ty][Col]
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Loading Input Tile 0 of N (Phase 0) 

– Have each thread load an M 
element and an N element at the 
same relative position as its P 
element.

int Row = by * blockDim.y + ty;
int Col =   bx * blockDim.x + tx;
2D indexing for accessing Tile 0:

M[Row][tx]
N[ty][Col]
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Loading Input Tile 1 of M (Phase 1) 

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]
N[1*TILE*WIDTH + ty][Col]
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Loading Input Tile 1 of N (Phase 1)

2D indexing for accessing Tile 1:
M[Row][1*TILE_WIDTH + tx]
N[1*TILE*WIDTH + ty][Col]



M[Row][p*TILE_WIDTH+tx]

M[Row*Width + p*TILE_WIDTH + tx]

N[p*TILE_WIDTH+ty][Col]

N[(p*TILE_WIDTH+ty)*Width + Col]

where p is the sequence number of the current phase

M and N are dynamically allocated - use 1D indexing



Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)

{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];

__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}



Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)

{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];

__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}



Tiled Matrix Multiplication Kernel
__global__ void MatrixMulKernel(float* M, float* N, float* P, Int Width)

{

__shared__ float ds_M[TILE_WIDTH][TILE_WIDTH];

__shared__ float ds_N[TILE_WIDTH][TILE_WIDTH];

int bx = blockIdx.x;  int by = blockIdx.y;

int tx = threadIdx.x; int ty = threadIdx.y;

int Row = by * blockDim.y + ty;

int Col = bx * blockDim.x + tx;

float Pvalue = 0;

// Loop over the M and N tiles required to compute the P element

for (int p = 0; p < n/TILE_WIDTH; ++p) {

// Collaborative loading of M and N tiles into shared memory

ds_M[ty][tx] = M[Row*Width + p*TILE_WIDTH+tx];

ds_N[ty][tx] = N[(t*TILE_WIDTH+ty)*Width + Col];

__syncthreads();

for (int i = 0; i < TILE_WIDTH; ++i)Pvalue += ds_M[ty][i] * ds_N[i][tx];

__synchthreads();

}

P[Row*Width+Col] = Pvalue;

}



Tile (Thread Block) Size Considerations

– Each thread block should have many threads
– TILE_WIDTH of 16 gives 16*16 = 256 threads

– TILE_WIDTH of 32 gives 32*32 = 1024 threads

– For 16, in each phase, each block performs 2*256 = 512 float loads from global 
memory for 256 * (2*16) = 8,192 mul/add operations. (16 floating-point operations for 
each memory load)

– For 32, in each phase, each block performs 2*1024 = 2048 float loads from global 
memory for 1024 * (2*32) = 65,536 mul/add operations. (32 floating-point operation for 
each memory load)

37



Shared Memory and Threading
– For an SM with 16KB shared memory

– Shared memory size is implementation dependent!

– For TILE_WIDTH = 16, each thread block uses 2*256*4B = 2KB of shared memory. 

– For 16KB shared memory, one can potentially have up to 8 thread blocks executing

– This allows up to 8*512 = 4,096 pending loads. (2 per thread, 256 threads per block)

– The next TILE_WIDTH 32 would lead to 2*32*32*4 Byte= 8K Byte shared memory usage per thread block, 
allowing 2 thread blocks active at the same time 

– However, in a GPU where the thread count is limited to 1536 threads per SM, the number of blocks per SM is 
reduced to one!

– Each __syncthread() can reduce the number of active threads for a block
– More thread blocks can be advantageous
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Handling arbitrary matrix sizes in 
tiled algorithms



Handling Matrix of Arbitrary Size
• The tiled matrix multiplication kernel we presented so far can handle only square 

matrices whose dimensions (Width) are multiples of the tile width (TILE_WIDTH)

• However, real applications need to handle arbitrary sized matrices.

• One could pad (add elements to) the rows and columns into multiples of the tile size, but would 
have significant space and data transfer time overhead.

• We will take a different approach.



Phase 1 Loads for Block (0,0) for a 3x3 Example 

P0,1P0,0

P1,0

P0,2

P1,1

P2,0 P2,2P2,1

P1,2

M0,1M0,0

M1,0

M0,2

M1,1

M2,0 M2,2M2,1

M1,2

N0,1N0,0

N1,0

N0,2

N1,1

N2,0 N2,2N2,1

N1,2

M0,2

M1,2

N2,1N2,0 Shared Memory

Shared Memory

Threads (1,0) and (1,1) need special 

treatment in loading N tile 

Threads (0,1) and (1,1) need 

special treatment in loading M tile



Phase 1 Use for Block (0,0) (iteration 0)
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Phase 1 Use for Block (0,0) (iteration 1)
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to their P elements.



Phase 0 Loads for Block (1,1) for a 3x3 Example 

Threads (0,1) and (1,1) need special 
treatment in loading N tile 
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Threads (0,1) and (1,1) need special 

treatment in loading N tile 

Threads (1,0) and (1,1) need 

special treatment in loading M tile



A “Simple” Solution
– When a thread is to load any input element, test if it is in the valid index range

– If valid, proceed to load

– Else, do not load, just write a 0

– Rationale: a 0 value will ensure that that the multiply-add step does not affect the final value of the 
output element

– The condition tested for loading input elements is different from the test for calculating output P 
element

– A thread that does not calculate valid P element can still participate in loading input tile elements



Phase 1 Use for Block (0,0) (iteration 1)
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Boundary Condition for Input M Tile
– Each thread loads

– M[Row][p*TILE_WIDTH+tx]

– M[Row*Width + p*TILE_WIDTH+tx]

– Need to test
– (Row < Width) && (p*TILE_WIDTH+tx < Width)

– If true, load M element

– Else , load 0

M

TILE_WIDTHTILE_WIDTH



Boundary Condition for Input N Tile
– Each thread loads

– N[p*TILE_WIDTH+ty][Col]

– N[(p*TILE_WIDTH+ty)*Width+ Col]

– Need to test
– (p*TILE_WIDTH+ty < Width) && (Col< Width)

– If true, load N element

– Else , load 0

N
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Loading Elements – with boundary check

– 8    for (int p = 0; p < (Width-1) / TILE_WIDTH + 1; ++p) {

–

– ++       if(Row < Width && t * TILE_WIDTH+tx < Width) {

– 9               ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];

– ++       } else {

– ++             ds_M[ty][tx] = 0.0;

– ++       }

– ++       if (p*TILE_WIDTH+ty < Width && Col < Width) {

– 10             ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];

– ++       } else {

– ++             ds_N[ty][tx] = 0.0;

– ++       }

– 11      __syncthreads();

–



Inner Product – Before and After
– ++    if(Row < Width && Col < Width) {

– 12     for (int i = 0; i < TILE_WIDTH; ++i) {

– 13            Pvalue += ds_M[ty][i] * ds_N[i][tx];

– }

– 14     __syncthreads();

– 15   } /* end of outer for loop */

– ++   if (Row < Width && Col < Width) 

– 16         P[Row*Width + Col] = Pvalue;

– } /* end of kernel */



Some Important Points
– For each thread the conditions are different for 

– Loading M element

– Loading N element

– Calculating and storing output elements

– The effect of control divergence should be small for large matrices



Handling General Rectangular Matrices

– In general, the matrix multiplication is defined in terms of rectangular matrices
– j x k M matrix multiplied with a k x l N matrix results in a j x l P matrix

– We have presented square matrix multiplication, a special case

– The kernel function needs to be generalized to handle general rectangular matrices
– The Width argument is replaced by three arguments: j, k, l

– When Width is used to refer to the height of M or height of P, replace it with j

– When Width is used to refer to the width of M or height of N, replace it with k

– When Width is used to refer to the width of N or width of P, replace it with l



Tiled Matrix multiply control 
divergence



Performance Impact of Control Divergence

– Boundary condition checks are vital for complete functionality and robustness of parallel code
– The tiled matrix multiplication kernel has many boundary condition checks

– The concern is that these checks may cause significant performance degradation

– For example, see the tile loading code below:

if(Row < Width && t * TILE_WIDTH+tx < Width) {

ds_M[ty][tx] = M[Row * Width + p * TILE_WIDTH + tx];

} else {

ds_M[ty][tx] = 0.0;

}

if (p*TILE_WIDTH+ty < Width && Col < Width) {

ds_N[ty][tx] = N[(p*TILE_WIDTH + ty) * Width + Col];

} else {

ds_N[ty][tx] = 0.0;

}



Two types of blocks in loading M Tiles
– 1. Blocks whose tiles are all within valid range until the last phase.

– 2. Blocks whose tiles are partially outside the valid range all the way

M

TILE_WIDTH

Type 1

Type 2



Analysis of Control Divergence Impact

– Assume 16x16 tiles and thread blocks

– Each thread block has 8 warps (256/32)

– Assume square matrices of 100x100

– Each thread will go through 7 phases (ceiling of 100/16)

– There are 49 thread blocks (7 in each dimension)



Control Divergence in Loading M Tiles

– Assume 16x16 tiles and thread blocks

– Each thread block has 8 warps (256/32)

– Assume square matrices of 100x100

– Each warp will go through 7 phases (ceiling of 100/16)

– There are 42 (6*7) Type 1 blocks, with a total of 336 (8*42) warps

– They all have 7 phases, so there are 2,352 (336*7) warp-phases

– The warps have control divergence only in their last phase

– 336 warp-phases have control divergence



Control Divergence in Loading M Tiles (Type 2)

– Type 2: the 7 block assigned to load the bottom tiles, with a total of 56 (8*7) warps

– They all have 7 phases, so there are 392 (56*7) warp-phases

– The first 2 warps in each Type 2 block will stay within the valid range until the last phase

– The 6 remaining warps stay outside the valid range

– So, only 14 (2*7) warp-phases have control divergence



Overall Impact of Control Divergence

– Type 1 Blocks: 336 out of 2,352 warp-phases have control divergence

– Type 2 Blocks: 14 out of 392 warp-phases have control divergence

– The performance impact is expected to be less than 12% (350/2,944 or (336+14)/(2352+14))

M

TILE_WIDTH

Type 1

Type 2



Additional Comments
– The calculation of impact of control divergence in loading N tiles is somewhat different and is 

left as an exercise

– The estimated performance impact is data dependent.
– For larger matrices, the impact will be significantly smaller

– In general, the impact of control divergence for boundary condition checking for large input 
data sets should be insignificant

– One should not hesitate to use boundary checks to ensure full functionality

– The fact that a kernel is full of control flow constructs does not mean that there will be heavy 
occurrence of control divergence

– We will cover some algorithm patterns that naturally incur control divergence (such as 
parallel reduction)  in the Parallel Algorithm Patterns modules


