
Parallel Computation Patterns (Histogram)

Slide credit: Slides adapted from
© David Kirk/NVIDIA and Wen-mei W. Hwu, 2007-2016

Histogram

– A method for extracting notable features and patterns from large data sets

– Feature extraction for object recognition in images

– Fraud detection in credit card transactions

– Correlating heavenly object movements in astrophysics

– …

– Basic histograms - for each element in the data set, use the value to identify a “bin counter” to
increment

A Text Histogram Example

– Define the bins as four-letter sections of the alphabet: a-d, e-h, i-l, n-p, …

– For each character in an input string, increment the appropriate bin counter.

– In the phrase “Programming Massively Parallel Processors” the output histogram is shown
below:

A simple parallel histogram algorithm

– Partition the input into sections
– Have each thread to take a section of the input

– Each thread iterates through its section.

– For each letter, increment the appropriate bin counter

Sectioned Partitioning (Iteration #1)

Sectioned Partitioning (Iteration #2)

6

Input Partitioning Affects Memory Access Efficiency

– Sectioned partitioning results in poor memory access efficiency
– Adjacent threads do not access adjacent memory locations

– Accesses are not coalesced

– DRAM bandwidth is poorly utilized

Input Partitioning Affects Memory Access Efficiency

– Sectioned partitioning results in poor memory access efficiency
– Adjacent threads do not access adjacent memory locations

– Accesses are not coalesced

– DRAM bandwidth is poorly utilized

– Change to interleaved partitioning
– All threads process a contiguous section of elements

– They all move to the next section and repeat

– The memory accesses are coalesced

1 1 1 1 1 2 2 2 2 2 3 3 3 3 3 4 4 4 4 4

1 3 4 1 2 3 4 1 2 3 4 1 3 4 1 2 3 42 2 2

Interleaved Partitioning of Input
– For coalescing and better memory access performance

…

Interleaved Partitioning (Iteration 2)

…

Data races

Objective

– To understand data races in parallel computing

– Data races can occur when performing read-modify-write operations

– Data races can cause errors that are hard to reproduce

– Atomic operations are designed to eliminate such data races

Read-modify-write in the Text Histogram Example

– For coalescing and better memory access performance

…

Read-Modify-Write Used in Collaboration Patterns

– For example, multiple bank tellers count the total amount of cash in the safe

– Each grab a pile and count

– Have a central display of the running total

– Whenever someone finishes counting a pile, read the current running total (read) and add the
subtotal of the pile to the running total (modify-write)

– A bad outcome

– Some of the piles were not accounted for in the final total

A Common Parallel Service Pattern

– For example, multiple customer service agents serving waiting customers

– The system maintains two numbers,
– the number to be given to the next incoming customer (I)

– the number for the customer to be served next (S)

– The system gives each incoming customer a number (read I) and increments the number to be
given to the next customer by 1 (modify-write I)

– A central display shows the number for the customer to be served next

– When an agent becomes available, he/she calls the number (read S) and increments the display
number by 1 (modify-write S)

– Bad outcomes

– Multiple customers receive the same number, only one of them receives service

– Multiple agents serve the same number

A Common Arbitration Pattern

– For example, multiple customers booking airline tickets in parallel

– Each

– Brings up a flight seat map (read)

– Decides on a seat

– Updates the seat map and marks the selected seat as taken (modify-write)

– A bad outcome

– Multiple passengers ended up booking the same seat

Data Race in Parallel Thread Execution

Old and New are per-thread register variables.

Question 1: If Mem[x] was initially 0, what would the value of Mem[x] be
after threads 1 and 2 have completed?

Question 2: What does each thread get in their Old variable?

Unfortunately, the answers may vary according to the relative execution
timing between the two threads, which is referred to as a data race.

thread1: thread2: Old  Mem[x]
New  Old + 1
Mem[x]  New

Old  Mem[x]
New  Old + 1
Mem[x]  New

Timing Scenario #1

Time Thread 1 Thread 2

1 (0) Old Mem[x]

2 (1) New Old + 1

3 (1) Mem[x]  New

4 (1) Old Mem[x]

5 (2) New  Old + 1

6 (2) Mem[x]  New

• Thread 1 Old = 0

• Thread 2 Old = 1

• Mem[x] = 2 after the sequence

Timing Scenario #2

Time Thread 1 Thread 2

1 (0) Old Mem[x]

2 (1) New  Old + 1

3 (1) Mem[x]  New

4 (1) Old Mem[x]

5 (2) New Old + 1

6 (2) Mem[x]  New

• Thread 1 Old = 1

• Thread 2 Old = 0

• Mem[x] = 2 after the sequence

Timing Scenario #3

Time Thread 1 Thread 2

1 (0) Old Mem[x]

2 (1) New Old + 1

3 (0) Old Mem[x]

4 (1) Mem[x]  New

5 (1) New  Old + 1

6 (1) Mem[x]  New

• Thread 1 Old = 0

• Thread 2 Old = 0

• Mem[x] = 1 after the sequence

Timing Scenario #4

Time Thread 1 Thread 2

1 (0) Old Mem[x]

2 (1) New  Old + 1

3 (0) Old Mem[x]

4 (1) Mem[x]  New

5 (1) New Old + 1

6 (1) Mem[x]  New

• Thread 1 Old = 0

• Thread 2 Old = 0

• Mem[x] = 1 after the sequence

Purpose of Atomic Operations
– To Ensure Good Outcomes

thread1:

thread2: Old Mem[x]
New  Old + 1
Mem[x]  New

Old Mem[x]
New  Old + 1
Mem[x]  New

thread1:

thread2: Old Mem[x]
New  Old + 1
Mem[x]  New

Old Mem[x]
New  Old + 1
Mem[x]  New

Or

Atomic operations in cuda

Data Race without Atomic Operations

– Both threads receive 0 in Old

– Mem[x] becomes 1

thread1:

thread2: Old  Mem[x]

New  Old + 1

Mem[x]  New

Old  Mem[x]

New  Old + 1

Mem[x]  New

Mem[x] initialized to 0

time

Key Concepts of Atomic Operations

– A read-modify-write operation performed by a single hardware instruction on a memory
location address
– Read the old value, calculate a new value, and write the new value to the location

– The hardware ensures that no other threads can perform another read-modify-write operation
on the same location until the current atomic operation is complete
– Any other threads that attempt to perform an atomic operation on the same location will typically be

held in a queue

– All threads perform their atomic operations serially on the same location

Atomic Operations in CUDA

– Performed by calling functions that are translated into single instructions (a.k.a. intrinsic functions or
intrinsics)

– Atomic add, sub, inc, dec, min, max, exch (exchange), CAS (compare and swap)

– Read CUDA C programming Guide 4.0 or later for details

– Atomic Add

int atomicAdd(int* address, int val);

– reads the 32-bit word old from the location pointed to by address in global or shared memory,
computes (old + val), and stores the result back to memory at the same address. The function
returns old.

More Atomic Adds in CUDA

– Unsigned 32-bit integer atomic add
unsigned int atomicAdd(unsigned int* address,

unsigned int val);

– Unsigned 64-bit integer atomic add
unsigned long long int atomicAdd(unsigned long long

int* address, unsigned long long int val);

– Single-precision floating-point atomic add (capability > 2.0)
– float atomicAdd(float* address, float val);

A Basic Text Histogram Kernel

– The kernel receives a pointer to the input buffer of byte values

– Each thread process the input in a strided pattern
__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo)

{

int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads

int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x

// consecutive elements

while (i < size) {

int alphabet_position = buffer[i] – “a”;

if (alphabet_position >= 0 && alpha_position < 26)

atomicAdd(&(histo[alphabet_position/4]), 1);

i += stride;

}

}

A Basic Histogram Kernel (cont.)

– The kernel receives a pointer to the input buffer of byte values

– Each thread process the input in a strided pattern

__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo)

{

int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads

int stride = blockDim.x * gridDim.x;

// All threads handle blockDim.x * gridDim.x

// consecutive elements

while (i < size) {

int alphabet_position = buffer[i] – “a”;

if (alphabet_position >= 0 && alpha_position < 26)

atomicAdd(&(histo[alphabet_position/4]), 1);

i += stride;

}

}

Atomic operation performance

Atomic Operations on Global Memory (DRAM)

• An atomic operation on a
DRAM location starts with a
read, which has a latency of a
few hundred cycles

• The atomic operation ends
with a write to the same
location, with a latency of a
few hundred cycles

• During this whole time, no
one else can access the
location

Atomic Operations on DRAM

– Each Read-Modify-Write has two full memory access delays
– All atomic operations on the same variable (DRAM location) are serialized

atomic operation N atomic operation N+1

time

DRAM read latency DRAM read latencyDRAM write latency DRAM write latency

Latency determines throughput

– Throughput of atomic operations on the same DRAM location is the rate at which the
application can execute an atomic operation.

– The rate for atomic operation on a particular location is limited by the total latency of the
read-modify-write sequence, typically more than 1000 cycles for global memory (DRAM)
locations.

– This means that if many threads attempt to do atomic operation on the same location
(contention), the memory throughput is reduced to < 1/1000 of the peak bandwidth of one
memory channel!

You may have a similar experience
in supermarket checkout

– Some customers realize that they missed an item after they started
to check out

– They run to the isle and get the item while the line waits
– The rate of checkout is drastically reduced due to the long latency of running to the

isle and back.

– Imagine a store where every customer starts the check out before
they even fetch any of the items

– The rate of the checkout will be 1 / (entire shopping time of each customer)

Hardware Improvements

– Atomic operations on Fermi L2 cache
– Medium latency, about 1/10 of the DRAM latency

– Shared among all blocks

– “Free improvement” on Global Memory atomics

atomic operation N atomic operation N+1

time

L2 latency L2 latency L2 latency L2 latency

Hardware Improvements

– Atomic operations on Shared Memory
– Very short latency

– Private to each thread block

– Need algorithm work by programmers (more later)

..

atomic

operation

N

atomic

operation

N+1

time

Privatization Technique for Improved
Throughput

Privatization

Atomic Updates

Heavy contention and
serialization

Final
Copy

…Block 0 Block 1 Block N

Atomic Updates

Privatization (cont.)

Final
Copy

…Block 0 Block 1 Block N

Atomic Updates

Copy 0 Copy 1

Final
Copy

Copy N…

Block 0 Block 1 Block N…

less contention and serialization

Privatization (cont.)

Final
Copy

…Block 0 Block 1 Block N

Atomic Updates

Copy 0 Copy 1

Final
Copy

Copy N…

Block 0 Block 1 Block N…

less contention
and serialization

Cost and Benefit of Privatization

– Cost
– Overhead for creating and initializing private copies

– Overhead for accumulating the contents of private copies into the final copy

– Benefit
– Much less contention and serialization in accessing both the private copies and the final copy

– The overall performance can often be improved more than 10x

Shared Memory Atomics for Histogram

– Each subset of threads are in the same block

– Much higher throughput than DRAM (100x) or L2 (10x) atomics

– Less contention – only threads in the same block can access a shared memory variable

– This is a very important use case for shared memory!

Shared Memory Atomics Requires Privatization

– Create private copies of the histo[] array for each thread block

__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo)

{

__shared__ unsigned int histo_private[7];

Shared Memory Atomics Requires Privatization

– Create private copies of the histo[] array for each thread block

__global__ void histo_kernel(unsigned char *buffer,

long size, unsigned int *histo)

{

__shared__ unsigned int histo_private[7];

if (threadIdx.x < 7) histo_private[threadidx.x] = 0;

__syncthreads();

Initialize the bin counters in
the private copies of histo[]

Build Private Histogram

int i = threadIdx.x + blockIdx.x * blockDim.x;

// stride is total number of threads

int stride = blockDim.x * gridDim.x;

while (i < size) {

atomicAdd(&(private_histo[buffer[i]/4), 1);

i += stride;

}

Build Final Histogram

// wait for all other threads in the block to finish

__syncthreads();

if (threadIdx.x < 7) {

atomicAdd(&(histo[threadIdx.x]), private_histo[threadIdx.x]);

}

}

More on Privatization

– Privatization is a powerful and frequently used technique for parallelizing applications

– The operation needs to be associative and commutative

– Histogram add operation is associative and commutative

– No privatization if the operation does not fit the requirement

– The private histogram size needs to be small

– Fits into shared memory

– What if the histogram is too large to privatize?
– Sometimes one can partially privatize an output histogram and use range testing to go to either global

memory or shared memory

