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Abstract—This paper proposes long-term reliability management for
spatial multitasking GPU architectures. Specifically, we focus on electro-
migration (EM)-induced long-term failure of the GPU’s power delivery
network. A distributed power delivery network model at functional unit
granularity is developed and used for our EM analysis of GPU archi-
tectures. We use a recently proposed physics-based EM reliability model
and consider the EM-induced time-to-failure at the GPU system level as
a reliability resource. For GPU scheduling, we mainly focus on spatial
multitasking, which allows GPU computing resources to be partitioned
among multiple applications. We find that the existing reliability-agnostic
thread block scheduler for spatial multitasking is effective in achieving
high GPU utilization, but poor reliability. We develop and implement a
long-term reliability-aware thread block scheduler in GPGPU-Sim, and
compare it against existing reliability-agnostic scheduler. We evaluate
several use cases of spatial multitasking and find that our proposed
scheduler achieves up to 30% improvement in long-term reliability.

I. INTRODUCTION

The use of general-purpose graphics computing units (GPGPUs)
for high-performance computing has recently gained much attention.
However, as the complexity of high-performance computing systems
continues to increase, the probability of failure in one of the machines
is also expected to increase. This naturally brings up the necessity
of research in reliability, especially with the focus on GPGPUs.
Long-term reliability such as electromigration (EM) is one of the
concerns in modern VLSI design. As technology advances, reliability
is perceived as a major constraint in high-performance computing due
to the high failure rates in deep submicron devices.

While long-term reliability of computing systems has emerged
as a serious problem, to the best of our knowledge, no prior work
has assessed its impact on GPGPUs. Only some initial efforts on
soft errors have been carried out for GPGPUs [1] where most of the
radiation-induced (soft error) failures are caused by the corruption
of memory resources. Our main contribution in this work is the
quantification of the EM-induced interconnect reliability of GPGPUs
using spatial multitasking, with widely-used GPGPU benchmarks.
Spatial multitasking is a technique commonly used in GPUs to
improve GPU utilization [2]. Under spatial multitasking, thread blocks
from different applications are allocated to their own exclusive sets
of Streaming Multiprocessors (SMs), enabling simultaneous execution
of multiple kernels.

In this paper, we propose long-term reliability management for
GPGPUs using spatial multitasking for executing general-purpose
workloads. We develop a distributed power delivery network model
at functional unit granularity. We utilize this PDN model for our
EM analysis of GPU architectures using a recently proposed physics-
based EM reliability model and consider the EM-induced time-to-
failure (TTF) at the GPU system level as a reliability resource. For
GPU scheduling, we focus on spatial multitasking, which allows GPU
computing resources, i.e., SMs, to be partitioned among multiple
applications. We find that the existing reliability-agnostic thread-
block scheduler for spatial multitasking is effective in achieving high
GPU utilization, but ineffective for reliability. We develop a long-
term reliability-aware thread-block scheduler in GPGPU systems and
evaluate with widely-used GPGPU benchmarks.
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II. LONG-TERM RELIABILITY MODEL FOR GPGPU
A. Physics-based electromigration assessment model

EM is a major challenge and limitation for VLSI design with
increasing temperature, current and voltage in interconnect trees.
Atoms (either lattice atoms or defects/impurities) migrate toward the
anode end of metal wire along the trajectory of conducting electrons
and eventually form a void leading to increase of resistance. In
order to model this phenomenon, a recently proposed three-phase
EM model [3], [4] has been employed in this work.

In this model, the EM wear-out process consists of three phases:
(a) nucleation phase; (b) incubation phase; (c) growth phase. In the
nucleation phase, stress starts to build-up over time. When it exceeds
critical stress, void will be formed and we enter the incubation phase.
When the void is larger than the critical size for the wire, the wire
resistance starts to change and we enter the growth phase. The new
3-phase EM model gives a more accurate time to failure estimation
and can be applied to more general multi-segment wires since it is
based on the stress diffusion physics in confined copper wires.

1) EM assessment on on-chip power delivery network: Because
of the concern with the long-term average effects of the current, EM
related work generally assumes a DC model of the power delivery
network (PDN). Resistance change for branches in growth phase will
affect the current density in other branches.

In order to get an accurate result, in the new EM-induced
reliability analysis algorithm for PDN, we check the voltage drops
of the nodes at fixed time steps. The resistance of one or more wires
begins to change (increase) starting with the void nucleation times. At
each time step, we collect new wires whose nucleation times were
reached, and compute the new resistance for existing wires in the
growth phase and the corresponding voltage drops of the whole grid.
This process is repeated until the voltage drop of one or more nodes
exceeds the critical voltage drops allowed.

B. System-level reliability resource consumption model

Given the new physics-based EM model, we now introduce our
system level EM-reliability resource consumption model with TTE.
We notice that treating the EM as a resource was first introduced
in [5]. But this work is still based on the traditional Black’s equation.

Assume that we have a set of different time intervals Apg
characterized by different workloads in terms of current density j
and temperature T}, for a processor. It means that P = Y 7'_, Apy is
the total execution time. Each kth workload, if it lasts until imaginary
failure, provides time-to-failure 7T F},. Thus the failure rate at the kth
workload, which last Apy, is A, = 1/TT F},. Then the average failure
rate for the considered set of work loads can be expressed as follows.

n

=30 BB, M

A
s =3 PP = >

j= 1ApJ

As a result, the expected time to failure or average lifetime of the
whole processor, TT'F' is [5],
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Based on the (2), we can treat the lifetime of the processor
specified by TTF as a resource that could be consumed as the SM
works. We first define the specified TTF as a nominal value, denoted
as T'T'F, which is the intended or required life of the SM under a
typical temperature and power setting for a core or system.

However, in reality, TTF varies under different temperature and
power settings and we define consumption rate for workload k as

_ TTFx
T TTE,

3

CTrk

in which the lifetime in real case (1I'T'F} under the kth workload)
could be estimated by the new proposed reliability model in the
previous sub-sections.

If TTF, > TTFn, then cry < crn, which indicates that heavy
tasks are assigned and the SM is consuming its nominal lifetime at a
lower rate, and thus the real lifetime is longer than the nominal one.
Conversely, if TTF, < TTFu, then cry > cry, which indicates
that light tasks are assigned and the SM is consuming its nominal
lifetime at the higher rate, and thus the real lifetime is shorter than
the nominal one.

In Fig. 1 we show the consumption rate of a range of common
GPU applications. Clearly, there is a wide range of consumption rate
behavior across benchmarks.

III. GPGPU ARCHITECTURE AND STREAM MULTIPROCESSOR
SCHEDULING

Fig. 2 provides an overview of the GPU architecture in this
work. This work uses NVIDIA GTX480 Fermi GPGPU with 15
Streaming multiprocessors (SMs) as the baseline architecture. Each
SM is comprised of a 128KB register file, two warp schedulers,
two SP execution units, one SFU, and 16 Load/Store units. The
SM core clock is 700MHz with each SP unit containing 16 double
frequency CUDA cores, each with individual integer and floating
point pipelines. Each SM has its own 64KB shared memory and L1
cache. Fermi supports up to 48 active warps per SM. Each warp
comprises of 32 threads executing in a lockstep manner, also called
Single Instruction Multiple Thread (SIMT) execution model. There
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Fig. 3. Off-chip PDN (a), details of PDN of each SM (b), and On-chip PDN
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are a total of 1,536 active threads per SM. The SMs are all connected
to an interconnection network which leads to 6 memory partitions,
containing a shared L2 cache and memory controller.

GPU applications are processed on the GPU as CUDA contexts
that consist of kernels. Kernels are further broken up into thread
blocks, which are scheduled to individual SMs. These thread blocks
are further broken up into warps, which are executed upon. GPUs
can run multiple independent kernels from the same application
or from multiple applications through multi-process service. This
enables spatial multitasking where applications can run concurrently
on different SMs to improve the utilization and efficiency of the GPU.

The goal of this work is to optimize the GPU for long-term
reliability. To achieve this, we add a lightweight on-chip EM-aging
sensor [6] to each SM. This EM-based aging sensor exploits the
natural aging/failure mechanism of interconnect wires to time the
aging of the chip. Compared with existing aging sensors, this sensor
provides a more accurate prediction of the chip usage time at smaller
area footprints due to its simple structure. By utilizing the EM-aging
sensor, we estimate the reliability consumption rate (cry) of each SM
in order to make fine-grain scheduling decisions.

IV. SIMULATION FRAMEWORK FOR EM ASSESSMENT ON
GPGPU

For the EM assessment of GPGPUs, PDN should be designed
and simulated as discussed in II-A1. The PDN consists of two parts,
off-chip network and on-chip network. The off-chip part is shown in
Fig 3(a). It takes account of the resistors between on-chip PDN and
the power source, which are the resistors of PCB, package, and pad.
The on-chip part is built based on the dimensions of the publicly
available specification and die photo for GTX480. The description
explains that the L2 cache, Network on Chip (NoC), and memory
controllers (MC), which are located in the middle, take approximately
the area of 8 SMs. Thus, we split the PDN for the whole chip to 24
wide sections (4 horizontally and 6 vertically), which are shown in
Fig 3(c). The 20 grid points on the edges, which are emphasized by
dots, are connected to off-chip PDN respectively. Additionally, it is
also shown in the die photo that the aspect ratio of each SM is about
2. Based on the fact that resistors of interconnects are proportional
to their length, we model the PDN for each SM by a simple network
consisting of 12 resistors shown in Fig 3(b). Besides the 12 resistors
for VDD and GN D networks, there are 6 current sources connecting
two corresponding grid points in the two networks, which model the
current that flows through the SM. We assume that the overall current
of each SM is evenly distributed to these six current sources. For the
current flowing through L2 cache, NoC and MC, it is modeled by 15
evenly distributed current sources as this part is modeled by 15 grid
points. For the grid points at the border of two, or four SMs (or L2
cache, NoC, MC), the value of the current source is calculated by
summing the two, or four SMs’ currents, and then as stated above,
dividing by 6. It is assumed in GPGPU-Sim that the operation voltage
for the chip is 1V, so we can easily get the current that flows through
each part from the simulated power trace by GPGPU-Sim.

Fig. 4 shows an overview of our long-term reliability simulation
framework for GPUs. Benchmarks are run on GPGPU-Sim, in which
activity traces are fed into GPUWattch. GPUWattch extracts a power
trace with a sampling rate of 500 cycles. This power trace is then fed
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into HotSpot in order to derive a thermal trace of the GPU. Both the
power trace and the thermal trace are fed into the long-term reliability
framework for EM simulation on PDN.

V. RESOURCE CONSUMPTION RATE-AWARE THREAD BLOCK
SCHEDULING

As shown in Fig. 1, consumption rate (cry) of benchmarks varies
greatly. In this work, we focus on the lifetime of the entire GPU
which is SM with shortest lifetime. Therefore, our goal is to balance
the wear-out of all SMs in the GPU. We assume that the number of
SMs allocated for each application is given by the user. Hence, we
will focus on the scheduling of partitioned applications for long-term
reliability.

There are two key observations for the GPU long-term reliability:
(i) the computational performance of applications depends only on
the number of SMs allocated. (ii) wear-out balancing can be easily
achieved by rotating applications across SMs. So we can find that
shifting each application’s designated SM subset by one is a simple
but effective balancing method. When the thread block scheduler
swaps the target SMs for each application’s kernel, we ensure that
the already-executing thread blocks in an SM will continue until
completion and will not be preempted or migrated in the middle
of thread execution. This is due to the fact that many of GPU
architectures as yet do not support preemption at an arbitrary point
and doing so causes high overhead for GPU context switching.

The main challenge in designing our consumption rate-aware
thread block scheduler is in determining the triggering condition. To
this end, we will explore the following thread block mapping schemes.

Baseline: In the baseline, the thread block scheduler utilizes a
loose round-robin scheme based on prior work on spatial multitask-
ing [2]. Once given an application’s SM partitioning, the thread blocks
of an application are scheduled to a static subset of SMs. Due to
this mapping, the GPU’s long-term reliability is directly tied to the
consumption rate of workload.

Fixed scheduling: The fixed scheduling scheme triggers rotation
after a fixed number of cycles has elapsed. This scheme can lead to
sub-optimal consumption-rate balancing due to its fixed nature and
applications’ dynamic behavior.

Monitoring-aware scheduling: In the monitoring-aware schedul-
ing scheme, we utilize the embedded EM sensor to make triggering
decisions. The use of the EM sensors allows capturing dynamic
application behaviors and their time-varying consumption rate usage.
The monitoring-aware scheduler is given in algorithm 1. The index
of each SM starts from 1 and ends at /NV; hence, the total number of
SMs is N. We measure the accumulated consumption of each SM 4
(denoted as AccumulatedC R; in the algorithm), until the difference
between the maximum and minimum accumulated consumption of
two SMs exceed a certain threshold. We specify the threshold as a unit
normalized to nominal average consumption rate. This ensures that
the difference in consumption rate between SMs does not diverge too
greatly from each other, leading to a balanced long-term reliability.

Monitoring-aware Scheduling;

while Application is running do

foreach SM; in all SMs do

CR; < Current EM sensor reading for SM; ;
AccumulatedCR; < AccumulatedCR; + CR;

end

CRmaz < maxi<;<n(AccumulatedCR;) ;

CRpin < mini<;<n(AccumulatedCR;) ;

if CRyax — CRiin > threshold then
Rotate application’s SM subset by 1 ;
Vi:1 <14 <N, clear AccumulatedCR; ;

else

\ Schedule round-robin to current subset ;
end

end
Algorithm 1: Monitoring-aware Scheduling

11

+BP_P
4BP_G
HD_P
H3D_G
PF_P
+PFG
—Hs_P
=HS G

0.6
Baseline 1 2 4 8 16 uniform

Fig. 5. Normalized Consumption Rate with Fixed Scheduling Policy

Uniform scheduling: Lastly, we compare against a uniform
scheduling scheme serveing as target goal for long-term reliability.
This scheduling policy does not take into account SM partitioning
with the goal of maximizing consumption-rate balance across SMs.

VI. EXPERIMENTAL RESULTS

To evaluate our long-term reliability GPU approach, we utilize
the Rodinia benchmark suite. The consumption rate of 16 Rodinia
benchmarks was shown previously in Fig. 1. We group the Rodinia
benchmarks into two categories; high consumption(BP, H3D, PF, HS)
and low consumption(M, P, NW, G).

We selected 8 benchmarks consisting of the 4 highest and lowest
consumption rates. We then mix the benchmarks from each group to
evaluate a multitasked GPU running a high consumption and a low
consumption application so that there are 16 mixes. For our mixes,
we allocate 8 SMs for the higher consumption application and 7 SMs
for the lower consumption application. In section VI-B, we explore
how our proposed techniques fair under different partitioning.

A. Fixed Scheduling Performance

Fig. 5 shows the results of fixed scheduling policy. The x-axis
shows the number of rotations triggered using fixed intervals, and the
y-axis shows the consumption rate, normalized to the baseline. In this
experiment, we choose the period to trigger as the total runtime of
the longer application, divided by the x-axis. This figure demonstrates
both the effectiveness of a fixed scheduling technique along with the
sensitivity to the period length. The right-most data points show the
optimal consumption rate with the given mix. Using our 16 mixed
benchmarks, as shown in Fig. 5, when the frequency of rotations
increase (and the period of rotations decrease), overall consumption
rate goes down because the work across each SM effectively becomes
more and more uniform. This is why the consumption rate of each
benchmark slowly gets closer to uniform. Fig. 7 shows that the fixed
scheduler geometric mean has a 17.9% average improvement over the
baseline.

B. Monitoring-Aware Scheduling Evaluation

In Fig. 7 we show the results of the baseline, fixed scheduling,
monitor-aware scheduling, and uniform scheduling. Here the rotation



TABLE 1.

SENSITIVITY TO SM PARTITION FOR BACKPROP-MYOCYTE

1:14 2:13 3:12 4:11 5:10 6:9 7:8 8:7 9:6 10:5 11:4 12:3 13:2 14:1
uniform 1.2079 1.1863 1.3825 1.3743 | 0.8122 | 0.6183 | 0.6796 | 0.7669 | 0.6052 | 0.6121 0.5795 | 0.9831 1.0713 1.0238
16 1.2048 1.1587 1.2895 1.3066 | 0.8436 | 0.6796 | 0.6119 | 0.7816 | 0.6497 | 0.6457 | 0.6443 | 0.9935 1.0884 1.0146
8 1.4017 1.4443 1.6696 1.6558 T.0514 | 0.8485 | 0.7456 | 0.9007 | 0.7055 | 0.6987 | 0.6482 | 0.9895 1.1402 1.0661
4 1.2156 1.3135 1.5632 1.6358 1.0998 | 0.9383 | 0.8923 1.0182 | 0.7943 | 0.8283 0.807 1.1017 1.1492 1.0587
2 0.9252 0.845 1.1264 1.4427 1.1471 0.9082 | 0.7568 1.03 0.8453 0.784 0.7849 1.0197 | 0.9904 | 0.9267
1 0.9982 | 0.9466 | 0.8854 1.2234 1.1695 1.0491 0.3323 1.0128 | 0.9384 | 0.9416 | 0.8606 1.0728 1.0239 | 0.9087
baseline 1 T T I I 1 1 1 1 1 1 T T T

threshold of 7 was used for our monitoring-aware scheduler. A
sensitivity analysis of the threshold value will be shown later in
this section. In summary, our monitoring-aware scheduler reduces the
consumption rate by 30% on average. This result is very close to that
of the uniform scheme (average 31% reduction).

Monitoring-Aware Scheduler is able to outperform the Fixed
Scheduler because it catches any dynamic workloads that is missed in
the Fixed Scheduler if the rotation frequency is too low. This creates
uniform workloads across all SM while also minimizing the number
of rotations needed over the lifetime of the applications.

Consumption Rate

Fig. 6. Sensitivity to rotation threshold for monitoring-aware scheduling

C. Scheduling Overhead

Our scheduler incurs minimal overheads as we only modify
the mapping policies between thread blocks and the target SM.
However, the monitoring-aware schedule’s rotation of an application’s
SM subset forces a context switch for all SMs. Our SM rotation
can be supported in hardware by the fine-grained context switching
mechanism found in Simultaneous Multikernel GPU [7]. In their
paper, they found that context switching contributes, on average, a
2% throughput overhead over the application’s lifetime. This is due
to the extra time used for transferring data for the new context, as well
as some loss of L1 cache locality. We found similar results during
our experimentation.

D. Sensitivity to SM partitioning

Table I shows the consumption rate normalized to the baseline
of a Backprop-Myocyte mixed workload. The numbers on the left
column represent numbers of rotations triggered using fixed intervals.
The top row shows the ratio of SMs provisioned for Backprop and
Myocyte, respectively. This table shows several notable trends. First,
reliability-aware scheduling is most effective when the number of
SMs allocated to each application is relatively balanced, with an 11
to 4 ratio at most. Furthermore, it is also more effective if the low
consumption-rate application has more SMs allocated. In addition,
this table utilized the fixed scheduling policy in order to demonstrate
the variance in benefits due to the static policy. In many of the
scenarios, the consumption rate impact is variable as the fixed rotation
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cycle length decrease. This further supports the need for a dynamic
reliability monitoring aware scheduler.

Fig. 6 shows the results of varying the rotation threshold of
the monitoring-aware scheduler. The x-axis shows the threshold
value and the y-axis show the consumption rate normalized to the
baseline. A smaller threshold leads to more rotations, thereby leading
to more balanced wear across SMs. In general, as the threshold
increases, the consumption rate also increases due to less rotation.
The consumption rate typically begins increasing with a threshold
value of 10. This value means that we will trigger rotation when
the maximum and minimum consumption rate differs by 10 times
the nominal consumption rate. Therefore, in our scheme, we select a
threshold of 10 as it gives a balance between minimizing the number
of rotations while still providing a lower consumption rate and it is
used throughout the experimental evaluation.

VII. CONCLUSION

In this paper, we proposed thread-block schedulers for GPU long-
term reliability against electromigration (EM)-induced failure. We
modeled the EM-induced time-to-failure (TTF) at the GPU system
level as a reliability metric. For GPU architectures, we focused on
spatial multitasking which allows GPU resources to be partitioned
among multiple applications. We developed long-term reliability-
aware thread-block schedulers in GPGPU-sim and compared them
against the existing approach. Experimental results indicate that our
proposed scheme improves GPU system-level reliability by 30%
on average. To the best of our knowledge, this work is the first
approach to quantify and address the EM-induced reliability of GPU
architectures.
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