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Abstract-- Expressions are found for the throughput and delay 
performance of a Tree Conflict Resolution Algorithm that is 
used in a Local Area Network with carrier sensing (and possi- 
bly also collision detection). We assume that Massey's constant 
size window algorithm is used to control access to the channel, 
and that the resulting conflicts (if any) are resolved using a 
Capetanakis-like preorder  traversal tree algorithm with d-ary  
splitting. We develop and solve functional equations for vari- 
ous performance metrics of the system and apply the "Moving  
Se rve r"  technique to calculate the main component of the 
delay. Our results compare very favorably with those for 
CSMA protocols, which are commonly used in Local Area Net- 
works that support sensing. 

1. INTRODUCTION 

Many Local Area Networks (LANs) can be modeled as a col- 
lection of nearby stations (i.e., host computers, work stations, 
servers, gateways, etc.) connected to a common broadcast channel 
through which they can exchange messages ([I, 2]). In a broadcast 
channel, each message sent by one station will be received by every 
other station. However, if the arrivals of two or more messages 
overlap in time at a single receiver, then we say that a collision has 
occurred, and assume that none of those messages is received 
correctly. In the case of LANs, it is usually assumed that the data 
rate of the channel is very high, but the channel can only span a 
limited distance. The limited distance assumption is a key feature 
in distinguishing LANs from other similar systems because it offers 
the possibility of improving the scheduling efficiency of the proto- 
col through the use of carrier sensing (where we assume that by 
monitoring the channel a quiescent station can determine whether 
or not the channel is currently idle) and possibly also collision 
detection (where we assume that an active station can transmit and 
monitor the channel at the same time to determine whether or not it 
is participating in a collision). Of course, perfect scheduling is still 
impossible because of the finite signal propagation rate between the 
stations: the status information that one station can infer about the 
rest using carrier sensing and collision detection is always slightly 

* This work was supported by the Natural Sciences and Engineering 
Research Council of Canada under research grant A5517. 

Permission to copy without fee all or part of this material is granted pro- 
vided that the copies are not made or distributed for direct commercial 
advantage, the ACM copyright notice and the rifle of the pubfication and i~ 
date appear, and notice is given that copying is by permission of the Associ- 
ation for Computing Machinery. To copy otherwise, or to republish, 
requires a fee and/or specific permi~ion. 

• 1987 ACM 0-89791-225-x/87/0005[0234 . . . . . .  75e 

out of date. 

Access to the common channel is controlled by a distributed 
algorithm known as a random access protocol, such as the well- 
known CSMA protocols ([3,4]). Here access to the channel is 
governed by simple rules (such as "transmit as soon as the channel 
is clear" in the case of l-Persistent CSMA ([3]) and whenever a 
collision occurs, each of the affected messages is rescheduled for a 
later time according to some random "backoff"  algorithm. In the 
case of Ethemet ([I]), for example, the backoff delay is chosen uni- 
formly between 0 and 2 minlk,8} times the worst-case propagation 
time following the k th collision for this message. 

The throughput and delay performance of various CSMA pro- 
tocols has been studied extensively in the literature, typically by 
assuming either an infinite population model in which the com- 
bined traffic " in  equilibrium", due to new messages and scheduled 
retransmissions, is represented by a Poisson process (e.g., [3,4]), 
or an unbuffered station model in which the state of the network is 
characterized by the number of stations that are ready to transmit a 
message (e.g., [5]). However, in the absence of dynamic control 
procedures, it is well known ([6,7]) that CSMA protocols may be 
unstable and, in particular, that results based on the "s t rong" Pois- 
son assumption (in which the total traffic on the channel including 
retransmissions can be viewed as a Poisson process) should be 
regarded with skepticism, especially when the average number of 
retransmissions per message is significant. 

Instead of a CSMA protocol, we assume that a Tree Conflict 
Resolution Algorithm (TCRA) is used to control access to the com- 
mon channel. The operation of TCRAs is quite different from 
CSMA protocols because they resolve conflicts algorithmically, 
when they occur, through the use of group testing ([8]) instead of 
just asking the stations to go away for a while and try again. And 
as a consequence, TCRAs are provably stable for arrival rates 
below some predetermined value. Each 'step' in the execution of a 
TCRA only depends on knowing its current state and observing the 
feedback (i.e., 'idle', 'success' or 'collision' - -ava i lab le  to all sta- 
tions through carrier sensing and/or collision detection) that 
resulted from the previous 'step'. TCRAs have been studied 'exten- 
sively in the literature under the assumption that the 'cost '  of each 
step (i.e., the durations of empty slots, successful transmissions, 
and collisions) is the same ([9, 10, 1 I, 12]). 

Although the idea of applying a TCRA to a Local Area Net- 
work is not new (e.g., ([13, 12, 14]), the novelty in our work is in 
finding an analytical expression for the expected delay. Further- 
more, we permit the set of conflicting messages 1o be partitioned 
into d groups, d _> 2, following a collision rather than the usual case 
where d = 2 is assumed.* This generalization is important in the 
LAN environment: because of carrier sensing, the 'cost'  (in terms 

* Mathys and Flajolet in [15] have considered d-ary  splitting in the equal 
length slot case. 
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of wasted channel time) of an idle slot will always be less than a 
collision, and perhaps many times less if there is no collision detec- 
tion. Thus, it may take less time to endure many (short) idle slots 
than to risk a further (long) collision. And, indeed, it can be shown 
([14]) that if a collision lasts b times as long as an idle slot, then 
the optimal number of groups satisfies 

d* = l + q b  

2. THE M O D E L  

We make most of the usual assumptions about the environ- 
ment, except from the features that come as a result of the availa- 
bility of carrier sensing and/or collision detection (CS/CD). There 
is a single error free synchronous broadcast channel. The packets 
are of fixed length. Stations have the ability to recognize silence 
(no transmission) and/or collisions on the channel in an early stage 
and terminate the time slot within an a priori known time interval. 
The time to detect the absence of transmission, through carrier 
sensing, is usually called a minislot-- while the time needed for 
the transmission of a packet is called a slot. We take the minislot 
to be our basic time unit, assuming that the slot and the time to 
detect and recover from a collision can be expressed as integral 
numbers of minislots. We denote by a the ratio of the time needed 
for a successful transmission (slot) to the carrier sensing time (min- 
islot) and by b the ratio of the time spent in a collision to the car- 
der  sensing time.l" Our definitions for a and b as positive integers 
do not agree with most of the literature, where they are usually 
expressed as fractions of a message transmission time. However, 
these definitions are more natural for our study which is based on 
discrete time systems. Although our time unit is, throughout the 
analysis, the mimslot, it is more convenient to normalize our final 
delay results in units of packet transmission time, as we do in all 
our plots. 

The Conflict Resolution Algorithm we consider is the well 
known d-ary (preorder traversal) Tree Conflict Resolution Algo- 
rithm (referred to, in the binary case, as the Capetanakis Collision 
Resolution Algorithm by Massey in [12]): 

If a conflict arises, the active set is partitioned into d subsets 
according to an addressing scheme. All conflicts in the first 
subset, if any, are resolved first, recursively. Then, those of 
the second, and then the third, etc., up to the dth  subset, are 
resolved (see also figure 2 for an example in the binary case). 

The partitioning can be on the basis of random "coin tosses" 
or packet arrival times (random addressing), or on the basis of sta- 
tion addresses (deterministic addressing). It is known from the 
work of Capetanakis ([10]) that in the finite population case, a 
deterministic addressing scheme performs better than a random 
one. In the infinite population model, however, the addressing 
schemes me equivalent from the point of view of throughput or 
epoch length statistics, hut the use of the time of arrival to resolve 
collisions leads to a FIFO system with lower variance. This 
method, however, introduces correlation between different parts of 
the delay, as evaluated in this study, complicating the analysis; we 
thus avoid it and instead we assume that the addressing scheme is 
based on "coin tosses". 

I" The usual channel models  for tree algorithms assume " z e r o "  propagation 
time and/or common destination, while most CSMA studies emume any 
other station as destination is possible. We have decided to follow the first 
approach so that our results can be reduced (setting a = I, b = 1) m the 
slandatd case for tree algodthme. Hence, m be fair in our comparisons with 
other CSMA studies, we incorporate one extra minislm in our packet 
U'ansmlssion time. That is, i f  the ratio of  packet transmission t ime to carder  
sansing t ime is r ,  we set a = r + l .  

To complete a random access system, in addition to a conflict 
resolution algorithm, we require also a channel access algorithm to 
specify when packets may join a conflict resolution algorithm. We 
adopt a simple and efficient channel access algorithm proposed by 
Massey ([12]), the simplified Window Algorithm (see figure I): 

Assume that at time t (measured in minislots), the conflict 
resolution algorithm has just completed the transmission(s) of 
all packets that arrived before ~. (Initially, we set t~.-0, 
~ - 0 . )  Then at time t + = max[ t ,  x+w }, the channel access 
algorithm permits all packets that arrived in the window 
( z ,  z+w ] to be transmitted. After all of these packets have 
been transmitted successfully (possibly with the aid of the 
conflict resolution algorithm) using I minislots, ILl ,  we 
repeat the process after setting t *-- t + + I, "~ ~-- ~ + w. 

Figure 1: 

t + 

• ~+w "backlog" case 
All : " rest"  t 

packets i t + 
delivered', i ~ .  

I I I I I I I I I : : 

~__ "~+w_ "rest"  period case 
w 

The Window Algorithm: previous epoch ends at t ,  
new one begins at t + = max{ t ,'~+w }. 

Notice that the window size, w, is assumed constant. This is 
a crucial assumption for the analysis and has as a consequence the 
existence of " r e s t "  periods - - t i m e  periods where it would have 
been safe for the channel access algorithm to permit the start of a 
new epoch but such an epoch is not started. There is, however, an 
obvious improvement in delay if the channel access algorithm 
does not impose " r e s t "  periods, whenever there is no backlog 
from previous windows, but instead starts an epoch from a 
" s m a l l "  window. This second channel access algorithm is called 
the (non-simplified) Window Algorithm. The two channel access 
algorithms do have the same maximum throughput ([12]) and 
their difference in delay at light loads is less than one window, 
which is less than a packet transmission time for most cases. 
Obviously, the main reason for our choice of the simplified win- 
dow algorithm is analytic tractability. 

To simplify the description and concentrate on the CS/CD 
features, we assume a large number of independent unbuffered 
stations, modeled as an infinite population. The finite non- 
homogeneous population case without CS/CD has been presented 
in [16]. The extension of this study to such an environment is 
straightforward. Since we concentrate on the infinite population 
model, we assume that the arrival process is Poisson with rate k 
packets per packet transmission time (or ~ a  packets per minislot). 

2.1. An Example 
We refer to figure 2. The time axis is (mini)slotted and furth- 

ermore divided in windows of length 5 (minislots). The time it 
takes to serve a window, resolving all conflicts, is called an epoch. 
At the beginning of an epoch all stations may transmit. If at most 
one transmits, there are no conflicts and the epoch ends there, the 
window having been served. If more than one station transmits, a 
conflict arises. At the next slot only stations that " t o s s "  zero are 
permitted to transmit. If no conflicts arise, at the next slot permis- 
sion is granted to stations that " tossed"  one, otherwise the algo- 
rithm continues recursively splitting the set of the original con- 

235 



® 

I • , 

I 

Figure 2: 

' 'rost"4nc I a I BC [ [BC [BC [ c l ~  

. _ . . _ _ . _ _ - - - - - - 7 ~ a r t u  re tim.e 
11 I arrival time 

A B C  ?... 

The Channel ,~:cess and Conflict Resolution Algo- 
rithms (a =5,  b =3,  d =2,  w =5). 

tenders in progressively smaller subsets until no collision arises. 
Eventually, all d subtrees of the initial collision will have the 
opportunity to resolve their conflicts. 

3. EPOCH LENGTH 

The epoch length, the time required to serve a window resolv- 
ing all conflicts, if any, is denoted by the random variable l. The 
first performance measure we can obtain is Q (x,z), the generating 
function of epoch lengths for a window with expected number of 
packet arrivals x, defined by 

Q(x ,z )  A= . ~  Pr{ I =n  I x } z" 

from which we can derive all the desired statistics of I. This gen- 
erating function can be obtained by solving the following func- 
tional equation 

Q (x ,z ) = z ° Qa(xld,z  ) + (z - z  b+a) e -~ + (z ° - z  b~+a-I) x e-~ (1) 

The proof of equation (1) is given in Appendix A. The intuitive 
justification, however, of this functional equation is very easy. The 
epoch length, in the case of an epoch starting with a collision, is 
the sum of the lengths of the initial collision and the subepochs of 
all the d subtrees, the sum being representedby the first term of 
equation (I), a product in the transform domain. Since the split- 
ting is fair and the population is considered infinite all subepochs 
are statistically indistinguishable and their generating functions 
equal, with expected number of packets in each subepoch l/d of 
the number of the original contenders. However, if there is no col- 
lision to begin with, an adjustment is needed. The second term of 
equation (1) describes the situation in the case of an idle window 
and the third in the case of a single packet arrival. From the true 
transform of the epoch, z in the case of an empty window and z a 
in the case of a window with a single packet, we subtract the result 
implied by the first term of the equation, z b+a and zn. ~+a-I respec- 
tively, and weight these terms by the probabilities of the respective 
events. 

The solution of this functional equation can be obtained in 
the form of a power series 

Q(x ,z )  = ~ q . ( x )  z n (2) 

where the qn(x) can be determined by substituting (2) in (1) and 
equating the coefficients of the same powers of z. This method 
was presented in [17] where the distribution of the delay has been 
obtained in the case of equal slot lengths (i.e., no carrier sensing 
or collision detection) and binary splitting (which is optimal for 
this case). 

To obtain an expression for the expected packet delay, we 
will need expressions for the first two moments of the epoch length. 
The mean epoch length can be obtained as 

L (x ) = ~z [ Q (x ,z )] :=l (3) 

Differentiating (1) with respect to z, setting z = 1 ,  and using (3) we 
get the following functional equation for the expected epoch 
length. 

L(x)  =b +d L ( x / d ) -  ( b + d - l )  ( l+x) e -x (4) 

The solution of this functional equation in the form of a series is 

L ( x ) = n ~  a .  x" 

with 

c t0=l  ¢ x l = a - i  ~n = ( - I )  n ( b + d - l ) ( n - i )  n > l .  (5) 
' ' n ! ( l ' - d  I-'n ) ' 

The second moment can be obtained as 

02 
H ( x ) =  - ~ - [  Q(x ,z  )] _.=l + L(x)  . (6) 

We can then obtain the following functional equation for the 
second moment 

H(x)  = b 2 + 2bd L (x/d)  + d H(x /d )  + d ( d - I )  L2(xld) 

- (b+d-1)  [ ( 2 a + b + d - l )  x + (b+d+l)  ] e -x (7) 

with solution 

where 

~ = l ,  13~=~-I ,  

H(x)= ~ p .  x" 

+ - ~ -  2 b a , + ( d - l )  ~ian.-i , n > l .  (8) 

It should perhaps be emphasized that the expansions of both L (x) 
and H(x)  are convergent alternating series and thus the error, of 
the computation can be made arbitrarily small. 

4. T H R O U G H P U T  AND STABILITY 

Since we deal with an infinite population model, and the 
conflict resolution algorithm guarantees that by-the end of an 
epoch all packets involved in the original collision have been suc- 
cessfully transmitted, average throughput and input rate, Z, coin- 
cide, as long as the system is stable. 

To find the maximum stable throughput of the protocol, we 
have to consider the conditions under which there is no long term 
backlog in the system. Intuitively it is easy to justify the following 
condition for stability: 

L ( w  3./a ) < w . (9) 

This condition essentially states that for the system to be stable, the 
mean service time for a window, L ( g w / a  ), must be less than the 
interarrival time between successive windows, w. '  The proof of 
this stability condition will be obvious after the development of a 
queueing model for the system, in the next section, from which the 
delay is obtained. 

The above inequality contains two parameters, one explicit, 
w, and one implicit, d,  that can be tuned to obtain the maximum 
stability region. This region of course depends on the other 
parameters of the system as well. 



Maximum Stable Throughput 
(w,d) 

a b =a b =a12  b =2 

.428 
1 

(3,2) 

.493 .584 .493 
2 

(4,3) (4,2) (4~3) 

.593 .661 .661 
4 

(4,3) (5,3) (5,3) 

.698 .761 .830 
10 

(6,4) (8,4) (10,3,) 
.764 .822 .907 

20 
(8,6) (10,4) (19,3) 

.820 .866 .951 
4O 

(11,8) (14,6) (36,3) 

.877 .910 .979 
100 

(16,11) (22,8) (89,3) 

.934 .952 .994 
40O 

(30,21) (42,16) (349,3) 

.957 .969 .997 
1000 

(48,33) (64,24) (870,3) 

Table 1: Maximum Stable Throughput and the corresponding 
values of the optimal window size, w, and the optimal 
degree of the tree, d, (in parentheses) for some combi- 
nations of the packet length, a ,  and collision length, b, 
in minislots. 

5. DELAY 

In this section we obtain expressions for the delay experi- 
enced by a packet from the moment of its arrival to a station up to 
the completion of its successful reception at the destination. To 
arrive at such expressions we sprit the total delay, denoted by the 
random variable t, in three independent parts, to, tl,  and t2, that 
require different techniques to be evaluated. Of course, 
t = to + t I + t2. We define the following random variables: 

to: The time from the appearance of the packet at the station up 
to the end of the current window (i.e., the first window boun- 
dary). 

t i: The time from the end of the window of arrival of the packet 
until the beginning of the epoch in which the packet is 
transmitted (and also successfully received, since the conflict 
resolution algorithm guarantees the resolution of all 
conflicts). 

t2: The time spent in the epoch of transmission from the moment 
of the initial collision, if any, up to the successful transmis- 
sion of the packet, inclusive. 

The initial delay, to, is merely the residual life of the current 
window at the moment of the packet arrival. Since we have an 
infinite population with Poisson arrivals, to is distributed uni- 
formiy in [0,w ). The expectation of the initial delay is thus 

To =A E l  to } = -~-. (10) 

Since, however, we deal with discrete time models for all other 
measures, it is convenient to have a discrete version of the disiIibu- 
don of to. The discrete uniform distribution over [0,w) may there- 
fore be used, providing the generating function for to, seen as a 
discrete random variable 

O , ( z ) = ! w  n ~ z " .  (11) 

Unfortunately the analysis for the second and third com- 
ponents of the delay is not as obvious. We apply the "Moving 
Server" technique to obtain tl,  and solve a functional equation to 
obtain t2. 

5.1. The Lag Between the Departure and the Arrival Time 
Axes 

We have defined t i to be the time from the end of the window 
of arrival of the packet until the beginning of the epoch generated 
by this window. This time is clearly the waiting time in a discrete 
time queueing system with arrivals at the end of each window and 
service times equal to the corresponding epoch lengths. Since 
there is an arrival at the end of each window, the system can be 
described as a discrete time D/G/I queue with interarrival time w 
and service time dislyibufion given by the generating function of 
epoch lengths, Q(Xw/a) .  The distribution of the waiting time for 
such a system is lmown ([18]) but to compute it one needs to find 
the w complex roots of Q ( X w / a ) - z  w (which is usually a high 
order polynomial or a series (!) in the infinite population case) that 
lie inside (or on) the unit circle. We have applied this method in 
[16]. Here we avoid this tedious approach and instead we apply 
the "Moving Server" technique ([19]) to obtain the distribution of 
t l .  
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Figure 3: 

• . . W a i t i n g  

• Time 
The Transformation to obtain a discrete time M/G/1 
model from a D/G/1 queue. 

The main idea is to transform the discrete time D/G/I queue- 
ing system to an M/G/I system which is much easier to solve. 
Since we only need the (waiting) time in queue (and not also the 
time in service) to compute t,,  we can take advantage of the fol- 
lowing transformation, as illustrated in figure 3. Notice that if we 
"shorten" both arrival and service time axes by removing one 
minislot from the interarrival time between customers i and i+ l  
and from the service time for customer i ,  the waiting times for  
every customer remain exactly the same. Therefore, since every 
service time and interarrival time is at least 1 minislot long, we can 
apply this transformation everywhere. The result is a new system 

with service times ~ = / - 1 ,  and constant interarrival times 

~ , - -w-1 .  However, some service times (i.e., those corresponding 
to empty windows) are now zero after the transformation, so we 
can "e rase"  them if we like. In this case we find that the remain- 

ing customers exhibit geometric interarrival times (in units of ~) 
and independent service times. The question is now whether this 
system is any easier to analyze than the original one. In some 
interesting cases, the transformed system can be analyzed as a 

discrete time M/G/1 queue• The only condition is a restriction on / 
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( 1 -  1) rood ( w - l ) = 0 .  (12) 

An example of this transformation applied to a D/G/I system, for 
which the above condition holds, and the resulting M/G/I system is 
shown in figure 4. 

T 2 l t 4 I 2 I 
6 

1 
- i i i 

2 1 
4 

1 2 
8 

4 

Figure 4: The Transformation of the D/G/I Model to an M/G/1 
Model. Busy Periods and Waiting Times for the origi- 
nal and the transformed systems. Arrivals #3 and #5 
of the original system have been "erased" since their 
service time was just 1 time unit (minislot). 

The properties of d-ary trees guarantee that the condition for 
the equivalence of the D/G/I and the (resulting from the transfor- 
mation) M/G/I model (i.e., condition (12)) is satisfied when 

( a - l )  mod ( w - l ) = 0  and ( b + d - l ) m o d  ( w - l ) = 0 .  (13) 

This condition is sufficient but not necessary. It is obtained 
through the following argument. If there are m collision slots in an 
epoch, corresponding to internal nodes of the d-ary tree, there 
should be ~a-1)m + 1 terminal nodes, corresponding to n success- 
ful slots and ( d - l ) m  + 1 - n  idle slots. We have then the follow- 
ing equation 

l = m b  + n a  + ( d - l ) m + l - n  or l - l = m ( b + d - l ) + n ( a - 1 )  

with m and n integers. This equation together with requirement 
(12) lead to condition (13). 

Condition (13) is not very easy to satisfy. There are, how- 
ever, combinations of parameters that do satisfy it. One of the 
most interesting examples is the case with no carrier sensing or 
collision detection, i.e., a = I and b = 1, for which the optimal 
parameter choices are d = 2 and w = 3 (which ironically is easy to 
solve explicitly by the D/G/I queue method). Another interesting 
combination is: a = 11, b = 11, d = 5, and w = 6 where d and b 
are the optimal values leading to maximum throughput of 0.705. 
Of interest are also suboptimal combinations which differ so little 
from the optimal that they are practically equivalent; for example 
the combination: a = 106, b = 106, d = 15, and w = 16 leads to 
maximum throughput equal to 0.880, which is only 0.032 % below 

the optimal figure. Also, for a = 101 and b = 101, which 
corresponds to examples given in the literature ([5,4]), choosing 
d = 10 and w = 11 satisfies equation (13) and gives maximum 
throughput 0.870, just 0.88 % below the 0.878 optimal figure 
obtained through d = 11 and w = 16. Of more practical impor- 
tance is, however, the fact that the results obtained through this 
method, although not exact for all cases, are very good estimates 
as has been determined through simulation (for the mean delay - -  
see figure 6). 

We proceed now to the calculation of statistics of t t. The 
distribution of the delay for a discrete time M/G/I queue is given 
by 

, ( 4 ) =  6 1_ ~ P pB i (~ ) (~ . - I  ~ (14) 

where B (4) is the (transform of the) distribution of the service time 
and p is the probability of an arrival. B '(4) denotes the derivative 
with respect to 4. In our casep = 1 - e -x where x = kwla and 

I ' ' 1  

(15) 

Q(F)(x,z) is the conditional generating function of epoch lengths 
for non-empty windows. This last equation is nothing inore than 
the application of the transformation we have described, and is 
meaningful when and only when condition (13) is satisfied. The 
final result for the distribution of t t is obtained by changing the 
time unit to the original one, the rninisiot, by 

W(z ) = n(~" ' - I ) .  (16) 

The expectation of the waiting time can be obtained from the 
discrete time M/G/1 queue as 

if=P-- P ( I + C 2 ) - P  (17) 
p 2 ( l - p )  

where O is the utilization factor given by 

p= L(kwla)w - 1 -  I (18) 

and C 2 is the squared coefficient of variation of the service time. 
C 2 can be expressed in terms of the first two moments of the epoch 
length as 

C2 = ( l _ e - X ) [ H ( x ) _ e - X  ] _ [ L ( x ) _ e ~ r  ]2 (19) 
[ L ( x ) -  1 ]2 

while p = 1 - e -x . The final result, in minislots, is 

T I = (w - l) W.  (20) 

5.2. The Delay in the Epoch of Transmission 
In the same way we obtained a functional equation for 

Q(x,z) we can obtain such an equation for the generating function 
of the delay in the epoch of transmission, G(x,z) ,  based on the 
recursive nature of the conflict resolution algorithm. The equation 
is 

1 Qd(x /d , z ) -  ! 
G(x ,z )=z  b G(xld,z)-~ Q ( ~ , z O - - I  

-~-z- I- (21) 

and is obtained in Appendix B. 

Differentiating equation (21) we obtain the following func- 
tional equation for T2, the expectation of t2 

with solution 
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, n > 1 . ( 2 3 )  

T2(x) = n~ On X n 

o. = ( d - l )  d ~ ~ _ ( ~ - ~ - 1 )  ( - I F  
2 ( l - d  ~ ) n! 2 ( l - d  ~ ) 

2 

1 
0 

$.3. The Total Delay 

In the previous sections we have obtained the generating 
functions for the components of the delay. Notice that these com- 
ponents of the delay are independent random variables since 

to: depends only on the arrival process in the current win- 
dow 

t i: depends only on traffic generated before the window of 
arrival of the (tagged) packet and thus does not depend 
on t o or t2, and 

t2: depends only on other packets generated (indepen- 
dently) during the window of arrival of the packet and 
does not depend on the lag of the algorithm (t]), or the 
exact arrival moment of the packet in the window (to), 
since the participants are determined as soon as the 
window completes and random "coin tosses" are used 
for conflict resolution. 

The final result, the generating function of the total delay can 
then be obtained as the product of the generating functions of the 
three corrq~onents of the delay:. 

rw(L,z)=Ow(z)  W(z) G(7~w/a,z). 

The mean packet delay is, of course, 

T =To+ Ti + T= 

where the terms are taken, respectively, from equations (10), (20), 
and (23). 

It is now easy to prove that equation (9) is the stability condi- 
tion. Such a system is said to be stable if the expectation of the 
delay is finite. In our case we have only to investigate Ti, since To 
is bounded and the finiteness of T2 is guaranteed by the conver- 
gence of the series solution (equation (23)).t But Ti is finite, and 
the discrete time queue is stable, whenever p < 1, which is 
equivalent to condition (9). 

6. RESULTS 

Figure 5 presents exact throughput-delay curves obtained 
analytically for some values of the parameters a and b for which 
the optimal schemes are solvable exactly. The curve for the case 
with no carrier sensing or collision detection (a=l ,  b= l )  is identi- 
cal to the curve obtained with a discrete time D/G/I model for Ti 
(which in this case is easily solvable). In figure 6 exact results are 
shown again but not for the optimal values o f d  and w. 

In figure 7 we plot analytical and simulation results to verify 
the accuracy of the method when the results are not exact. We 
have particularly tried to validate the curve with a = 100 and 
b = 2 since these are common values for the parameters and condi- 
tion (13) is far from being satisfied. At the time when the sinmla- 
tion was developed we were considering only binary splitting. This 
is the reason why simulation results are shown only for the case 
d = 2. The agreement of analysis and simulation is very good, as 

T The e~ ies  convenes  since it is alternating and the sequence of its terms, 
for any given x ,  has limit z e r o .  
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Figure 6: Throughput-Delay Curves. Exact Analytical Results 
for Suboptimal Schemes. 

seen in figure 7. In figure 8 we plot throughput-delay curves for 
the optimal, under the described protocol, schemes for some 
interesting values of the carrier sensing and collision detection 
time parameters. Figures9 and lO provide a comparison of 
throughput-delay perfornmnce with previous results for other pro- 
tocols. 
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Comparison of Analytical with Simulation Results 
when condition (13) is violated. 95 % Confidence In- 
tervals on the a = 100, b = 2 Curve and (single run) 
Point Estimates on the a = 10, b = 2  (o) and the 
a = 100, b = 100 (4) Curves. All these results use 
binary splitting (d = 2) and the optimal window size 
which is w = 83, 10, and 12 respectively. 
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Throughput-Delay Curves for Optimal Schemes. Only 
curve " A "  is exact. 

7. CONCLUSIONS 

We have presented a method to obtain the throughput-delay 
performance curve for Windowed Tree Conflict Resolution Algo- 

rithms in a Local Area Network environment where carrier sensing 
and/or collision detection might be available. We used a standard 
preorder traversal tree algorithm for conflict resolution and a con- 
stant size window algorithm for channel access. Although more 
efficient algorithms can be used (e.g. "level skipping" and the 
"Par t -and-Try"  algorithm), their use is not so important in this 
case because the cost of some wasted slots is much lower when car- 
rier sensing and/or collision detection is possible, while the corn- 
plexity of the more efficient algorithms is much higher for both 
implementation and analysis. 
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Compar ison with previous results for C S M A  
(a = b = 101). Non-Persistent'  l-Persistent '  and op- 
timal p-Persistent CSMA curves are reproduced fi'om 
[3], the virtual time CSMA curve comes ffi'om [4]. 

A modification that comes at no cost for implementation but 
cannot be handled directly by our analysis is the avoidance of the 
" res t  periods" through the use of a variable window channel 
access algorithm. However, the importance of this modification is 
diminished in the LAN environment, since the optimal window sizes 
obtained for most cases are smaller than the packet transrrfission 
time (some times moch more smaller) and the same is true for " res t  
periods".  The main consequence of the use of the " res t  per iod"  
algorithm is that with an empty channel a packet has to wait on the 
average for ha l fa  window before attempting transmission. 

The main part  of the delay for the syste~m is obtained through 
the use of the "Moving Server" technique. The technique provides 
exact results if a condition on the lengths of idle, successful, and 
collision slots, and the window size (condition (13)) is met. In par- 
ticular it gives exact results in the case of a conanon slot size (no 
carrier  sensing or collision detection). If, however, the condition is 
not met, although the results cannot be regarded as exact, it has 
been found through sinmlation that they are very accurate. 
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APPENDIX A 
In this Appendix we obtain equation (1), the functional equation for the generating function of epoch length. We first prove a recursive 

relation between the generating functions of epoch length at levels j and j - I  of a finite homogeneous population system with Bernoulli arrivals 
with probability n per station per window and then we get infinite population results by taking the limit of the expressions as the population size 
increases without bound but the total traffic remains constant. 

We define the following events: 

i : i d l e  , s :success  , c :col l is ion , * : i o r s o r c  , and ~ : thecomplement  of e , 

and the probabilities 

mr(n) g. Prlsl j } = ( l - n )  2~ , ~ j (n )  =A Prlsuccessl j } = 2 J n ( l - n ~  -t , and /~j(n) __A Prlcl j }= I - O j ( n ) - ~ j ( n ) .  

The relationship between the generating functions at levels j and j - I  can be obtained through an exhaustive enumeration of possible events at 
level j -  1. 

Qj(n,z)  = 
Conditional generatinl~ function x Pr{ Event } 
z cj(n)  

+ z ° ~j(n) 

+ z b [z %_l(n)+zO ~j_,(n)] Q ~  m.~) ?±_~(n) [Q~_[(~.z)]d-~ 
+ Z b [g ~j-I  (n)-1"2 a tpj_ 1 (n)] 2 Qj~_c ~ (n,z) F j_ I(~) [QJ-I (rid)]d-3 

Event @ level 
j j - I  

+ z b ,,=~ ( d )  [za~Pi_l(n)],,  [zCj_m(n)ld_, ,  

3 c :  

C',C ,* , • • • ,* 
F ,F,c ,* ,  • • • ,* 

c , ' ' ' , c , c  
- ~ ¢ :  

n x s  a n d ( d - n ) x i  

Collecting terms we get 

Qj (~q,z ) = Z ¢ j (X)  + Z a ~IJ j(n)  + Z b Q/_C~ (~,z ) Fj_[(n) n~  [z~J-l(X~za~IJ j-l(~)]n [QJ-l(X'z )~-|-~ 

'+ 2b n~= (d)  [zaVff j_l(n)] n [ZOj_l(~)]d.-n 

Recognizing, however, that 

* j - , o o -  z° + j - , o o  

substituting in equation (A2) and summing we get 

QyOr.,z) = z ~ j ( n )  + z a ~Pj(n) + z b [ Q j _ l ( n , z ) - z e j _ l ( ~ ) - z ° X P j _ l ( n ) ]  [Q./-l(n'z)]d - [ z ~ i - I ( n ) + z ~ P i - t O c ) ] d  
[Qj-i(n.z )-z~i-l(n)-z°~ j-~(n)] 

But 

thus 

tI~j(n) = [¢l~j_l(n)] d and tPj(n) = d ~I~j_l(~) [Oj_l(n)] d-I 

(Al)  

(A2) 

(A3) 

Qi(n,z) = ( z - z  d)  o j ( n )  + ( z a - z  b+°+a-[) ~ j ( n )  + z b [Qj_l (n ,z ) ]  a - z b [ z % _ l m ~ z ° ' P / _ j ( n ) ]  a + z b [ z e j - i ( n ~ z " q / i - l ( n ) ]  d 

and finally we get the recursion 

Qy(~, z ) = zb  Q~-I (~,z  ) + ( z - z b+a ) ¢ j O t )  + ( z a - z b + a ~ - t  ) ~ j ( g )  . (A4) 

The infinite population Poisson model is the limit of the finite population Bernoulli model as the population tends to infinity with th~ total traffic 
remaining constant, say x packets per window. It is then natural to define the (infinite population) generating function of epoch length as 

Q(x,z) =a li_.~m Qj(n,z) (~ )  
M~)p =x 

where M =a M (j)  =a dY is the population size at level j .  It then follows that 

tim-~ QJ-I(l~'z)=std-l~'~=,ldl'm Q j _ l ( X , 2 ) = Q ( x l d , z ) .  (A6) 
MU~= x 

We also need the following two limits: 

lim O j ( n ) = ~ i _ ~  (l-n) M =Aim (1 - - ~  )M = e - ~  (A7) 
Mz= 

2o,2 



and 

]irn ~j(x)= ?Jim._~ MX(I--x)M-I= ~im_.w~ (I __~)M =X e - x  . 

Taking the limit of both sides of equation (h4) and substituting (A5-A8) we obtain 

Q (x  ,z ) = z b Q d  (x ld  ,z ) + ( z a - z b ~  ) e -x + ( z a - z b ~ + a - I  ) x e -x 

which is equation (1). 

(AS) 

[] 

APPENDIX B 
Hem we obtain equation (21), the functional equation for the generating function of the delay of a packet in its epoch of transmission. We 

follow the approach of Appendix A, developing a recursive relation between the generating functions at levels j and j - I  of a finite homogene- 
ous population system. In this case, however, it is given that there is at least one transmission in the epoch (the tagged packet), and the recttrsion 
involves not only Gj  Or,z),  the generating function of the delay in the epoch of transmission, but Qj  Ot,z ) as well. We define a modified • fune- 
tior4 

O'j(x) = Prl  no transmission except the tagged packet in this subtree } = ( l -x )  ~-I . 

Also, we denote by A j - i  the result of the "coin toss" for the tagged packet in the case of a collision at level j .  Thus, G) aj-' =" )(x,z ) is the gen- 
erating function of t2 under the condition that if there is a collision at level j ,  the packet will choose the n th subtree. 

Event @ level 

Gj(A~_, -n )(~,z ) = 

Conditional genemtinB function x Pr{ Event } 

z ¢rj(~) 

Z b Gj(_c~ (X , z )  ~ ' j - I ( X )  [ O j - I ( X , z  )1 n 

Z b Qj(_c? (Ir,,z)Fj_l(x)2 ,a **j.?l(~)[Qj=i(x,z)] n-I 

z b [z e j _ l ( n ) + z a ~ p j _ l ( l O ]  Qjt_el ( n , z )  Fj-I(X ) Z a ~ j - I ( = )  [QJ-I(X,Z )]n-2 

j j - I  

$ 

c 3 c @ n :h tree: 
WW . . . .  ,WW t t ,* ,C ,* ,  " " 

- 3  c @ n 'h tree: 

C , * ,  " " ' , *  d , * ,  " " " ,*  

C ' , C , * , ' ' ' , * , S , * , ' ' ' , *  

+ zb  [ Z ~ j - l ( ~ ) + Z a ~ j - l ( ~ ) ]  " - I  ~ f - ¢ l  (~,,Z) Fj-l(~) 2 "a ¢~fj-l(~) 
+ Z b [Z¢]g)j_l(ll~)+g'aklIj_l(n)lrt Z a ¢][)*j_l(n)  ~ j - - l ( ~ )  

+ z b [ z* j_ tO O +zaW j_ t ( r c ) ]  n z a ep'j_]O 0 0 j _ l ( X ) [ F j _ t O t ) ]  d-2-n 

z/' [zOj_10t)] n z a ep'j_](x) [ [F j_lOt)] d - t ~  - [~j_10t)] d-l-n ] 

zb (m) [zaVJ -l(=)]m [2¢~J -i(l¢)]n'-m 2a ¢I:fJ - t(n)  [FJ -I(x)]d-l-n 

C', " • • ,C',C ,S , * ,  • • " ,*  

F, - • • ,~,s ,c ,*, - • - ,* 

C', " " " ,¢ ,3 ,C, • • • ,C',C 
-3cc  : 

0 x s before tagged 

m x s  

before tagged 
m = l , . . . , n  

Collecting terms we get 

Gj (Aj-' "" )('R,z ) = 

C --  -1  
+ zb Q/_C~ (~ , z )  F j - I  (~) z a ~ j - l ( = )  ~ [z ¢~j_l(g)+z a tPj-l(X)]m [Qj-I(~J. )]n-I-*n 

(BI) 

+ z b [z~j_l (n)+za~IJj_l (X)]n  z a l ~ t j ' _ l ( n )  [ 1 -[Fj_i(~)] d - ] ~  ] 

+ Z b [ z ( l ) j _ l ( T I ) ]  n Z a ( I ) t j _ l ( ~ )  [ [ F j - i ( g ) ]  d - l - n  - [ ( I ) j _ l ( ~ ) ]  d - I ' - t ' l  ] 

+ Z b Z a ~ j _ l ( ' / t )  [Fj_l(~)]  d-I' 'n m~=l (m n )  [za~lJ j_ l (X)~ [ g ~ j _ l ( ~ ) ]  n - 'm 

Recognizing, however, that 

~f_c  I ( ~ , g ) ~ _ 1 ( ~ )  = ~ j _ i ( ~ , X .  ) - -  Z ~ [ ) j _ l ( ~ ) -  2 a t~lj_,(~) arid ~ j ( c ) ( ~ , 2 ) ~ f j ( ~ ) =  G j ( ~ # ) -  2a (~ f j (~ )  

substituting in equation (B2) and summing we get 

(B2) 

(B3) 
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G)AJ_ ,  = n ) (7~,z ) = 

But 

thus 

z "  o ' j  (~)  + z b [ Gj_~(rc,z  ) - z ~ 0'i_~(7t) ] [Qj_~(Tt,z )]" 

+ z a Q/C~(rt ,z)/Yj-l(rO z ~ dO'j_lOz) [Qi-l(~,z)]" - [zO)-1(Tt)+zaVgi-l(n)]" 
Qj - l  (•,z ) - [z O j - i  (l"l:)+z a ~Yf~j-I (11:)] 

+ Z h [Z ~j_l(rt)+Z a Wj_l(n)]  n Z a 'l)'j_l(lt ) [ 1 - [Fj_l(It)] d-l-n ] 

+ Z b [Z (I)j_l(/l:)]n Z a tI)'j_l(/l: ) [ [Fj_ l (1~)]  d - l - n  - [di)j_l(l~)] d - l - n  ] 

+ Z b Z a (1)'j_l(~) [Fj_i( i"[)]  d - l - n  [ [ Z ( ~ j - I ( T C ) - F z a ~ I ' t j - I ( ~ ) ] n  - [ z ( I ) j_ l ( l l ; ) ]  n ] 

Otj (n) = [(I.)j_I(/'C)] d-I (.I)'j_i(R) 

Gj(A, , =n )(~,Z) = ( Z a - Z b+a+n ) O'j(l"O + Z b Gj_l(rt,z ) [Qj_l(TC,z )] n . 

Now, since the tagged packet chooses fairly one of the d subtrees, 

d - I  (A i ~=n) . 

1 [Qi-l(It ,z)] d - 1 +do~(~)[ ~ - 2  b 1 
= Z b G j - l ( X , z  ) - ~  Q j _ l ( ~ , z  ) - 1 [ " d 

] 
Z ad --  1 ] 

A z ~ - 1 

where M 

and 

We define the (infinite population) generating function of the delay in the epoch of transmission as 

G (x,z) =A !im Gj  (Tt,z) 
x 

__A M ( j )  ~ dJ is the population size at level j .  Again 

!im Gj_l(It,z ) = lim Gj_l(Tt,z ) = G (x /d ,z  ) 
M~)1~ = x j - l - - - )~  M ( j - l ) ~  = x /d  

!im qb'j(rt)= lim (I--ToM-I= lira ( 1 -  x ) M - l =  e-X. 

Taking the limit of both sides of equation (B5) and substituting (B6-A8) we obtain 

~- [ Q ( x , z ) ] d - 1  e-X [ - z  b 1 z a d - I  ] 
G ( x , d ) = z  b G ( x , z )  Q ( x , z ) - I  + z d z a - 1  

which is equation (21). 

(B4) 

(B5) 

(B6) 

(B7) 

(B8) 

[] 
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