IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 6, NOVEMBER 1993

1887

A Queueing Theoretic Approach to the
Delay Analysis for the FCES 0.487
Conflict Resolution Algorithm

George C. Polyzos, Member, IEEE, and Mart L. Molle, Member, IEEE

Abstract—We apply our queueing theoretic delay analysis
methodology to several variations of the FCFS 0.487 Conflict
Resolution Algorithm. In our approach, the main component of
the packet delay is viewed as a queueing problem where each
window selected by the channel access algorithm is a customer
requiring conflict resolution as its service. In the past, we have
shown that the method can give exact expressions for the
steady-state distribution of the packet delay for other window
access protocols satisfying a separability condition. This condi-
tion, not satisfied by the FCFS 0.487 Algorithm, requires the
algorithm to resolve each conflict completely, without leaving
any part of the associated window unexamined, so that service to
one customer in our queueing model does not induce regression
in subsequent arrival times. We now extend our methodology to
handle all the features of the full FCFS 0.487 Algorithm, includ-
ing variable-size windows, arrival-time addressing (and hence
true FCFS scheduling), and biased interval splitting. Some of
these extensions involve approximations, but they allow us to
obtain the Laplace transform and moments of the packet delay.
We also present an exact analysis for the Three-Cell Algorithm,
which is the 0.487 Algorithm with a few modifications to satisfy
our separability condition that reduce its capacity to 0.48. Com-
parisons made with other analyses (which provide bounds on
the mean delay) and with extensive simulations show that our
results for both the mean and variance of the packet delay are
extremely accurate.

Index Terms—Random access, collision channel, tree algo-
rithms, delay distribution, decomposition method.

1. INTRODUCTION

ONFLICT resolution algorithms (CRA’s) allow a set
of stations to communicate over a common channel
under distributed control.! These algorithms rely on group

Manuscript received September 1, 1991; revised September 22, 1992.
This work was supported in part by the Regents of the University of
California through a Chancellor’s Faculty Fellowship and by the Natural
Sciences and Engineering Research Council of Canada under Grant
A5517.

G. C. Polyzos is with the Department of Computer Science and
Engineering, University of California at San Diego, La Jolla, CA 92093.

M. L. Molle is with the Computer Systems Research Institute, Univer-
sity of Toronto, Toronto, Ont., Canada M55 1A4.

IEEE Log Number 9213106.

"Various CRA’s have been introduced in [11), [32], [3], [16], [6], [33],
[21], [36], and [23]. The book by Bertsekas and Gallager [1] provides a
very good introduction into this field. The March 1985 special issue of
the IEEE Transactions on Information Theory [31] includes many im-
portant contributions and perspectives to the field. In particular, [35]
provides an excellent survey of Russian contributions to the area.

0018-9448 /93$03.00

testing? to resolve scheduling conflicts among the sta-
tions. The actions of such an algorithm consist of a
sequence of “steps” at which access permission is granted
to some subset of the participants, as determined by the
feedback at the present step together with the current
state.” Because the feedback is assumed available to all
participants,’ they are able to keep a consistent view of
the channel history. Thus, all participants can run individ-
ual copies of the algorithm to create a distributed access
control scheme.

Although CRA’s have been studied extensively, the
novelty in the present work lies in the following areas.
First, unlike most of the literature on the subject (which
concentrates on capacity and/or stability analysis), our
results are in the area of delay analysis. These results
allow us to find the steady-state distribution of the packet
delay exactly for a number of interesting configurations.
Second, unlike other work in the area of delay analysis
(e.g., [34], [5], (171, [12], [13], [7), (18}, [8], [9], and [10D), we
derive these results by modeling the channel access algo-
rithm as a queueing system, which both increases the
intuitive understanding of the mechanics of the system
and puts at our disposal the results and the methods of
the vast queueing theoretic literature. And finally, these
results both complement and extend our study of finite
population systems in [25], which focused on the Standard
Tree Algorithm (STA) with deterministic addressing in
combination with the Simplified Window Algorithm. That
is, we now focus on the infinite population Poisson model
and concentrate on the nonsimplified version of the Win-
dow Algorithm. ,

In the remainder of this section, we discuss the model,
the STA, and the channel access algorithms, and we
present our assumptions. In Section II, we present a
summary of our delay analysis methodology for “sep-
arable” protocols, i.e., those that have a conflict resolution
algorithm which completely resolves the set (of potential)
contenders, as supplied by the channel access algorithm,
before terminating. In Section III, we introduce the

2§ee [37] for an introduction to group testing and its relationship to
CRAs.
3The execution of many of these algorithms may be conveniently
viewed as the traversal of a tree, hence the name “Tree Algorithms.”
4 L I .
We concentrate on full sensing CRA’s in this paper.

© 1993 IEEE

1888

Three-Cell Algorithm (3CA) and analyze its performance.
This algorithm is a simplified version of the FCFS 0.487
Algorithm with capacity equal to 0.48, that retains almost
all the essential features of the original algorithm, but
does not induce regression in time.

Finally, in Section IV, we analyze the full FCFS 0.487
Algorithm with addressing (splitting) based on packet
arrival times—giving a true FCFS system. This protocol
uses “tree pruning” and induces regression in time. In our
analysis, we introduce a new transformation that counter-
acts the effects of the regression of the window in the
0.487 Algorithm, thereby making all transformed windows
within a busy period to be of constant length. This trans-
formation greatly simplifies the problem of obtaining the
statistics of the lag by using our queueing theoretic
methodology since it decouples the service time for a
customer (i.e., the transformed epoch length) in the corre-
sponding queueing system from the interarrival time up to
the next customer (i.e., the transformed window size). In
solving this system, we make the approximation that the
transformed window sizes are bimodal (i.e., either one slot
or w slots, and never any intermediate values). This,
together with an approximation we introduce in the solu-
tion of the queueing system, means that our results are
not exact for the 0.487 Algorithm. Nevertheless, by com-
paring our results with bounds on the mean delay ob-
tained via other techniques and with extensive simula-
tions, we show that our method is extremely accurate in
terms of the mean and variance of the packet delay.

A. The Model

We start with the usual assumptions about the environ-
ment. There is a single, error-free, synchronous (slotted),
broadcast channel. The packets are of fixed length, equal
to the slot size, which is taken as the time unit. For
simplicity, and easy comparisons with previous results, we
neglect propagation delays and assume that errorless
feedback is available to all participants at the end of each
slot.> We assume a large number of independent stations,
modeled as an infinite population, generating packets
according to a Poisson process with aggregate rate A
(packets per slot). Thus, with a window of size w, the
number of packets in a window is Poisson distributed with
parameter x = Aw. We denote by ®(x), ¥(x), and F(x)
the probabilities of idle, success, and no-conflict. That is,

d(x)=e¢", W(x) =xe™™, and

F(x)=®(x) + ¥(x) =1 +x)e ™.

"Among the CRA’s considered in this paper, the Standard Tree
Algorithm requires at least binary feedback of the type “conflict—no-
conflict,” while the Modified Tree Algorithm and all others using “level
skipping,” such as the Three-Cell Algorithm and the 0.487 Algorithm
require at least ternary feedback of the type “idle-success—confict.” We
consider channels with memoryless feedback errors in [28].

®This is the usual traffic model, adopted in most performance studies
in the area. In [28], we show that a slightly more general model for the
arrival process can be adopted, if desired.

TEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 6, NOVEMBER 1993

In this paper, we focus on three CRA’s. First, in Section
II, we use the well-known binary, preorder traversal, Stan-
dard Tree Algorithm (STA), referred to as the Capetanakis
CRA in [16]. Its simplicity allows us to illustrate the
fundamentals of our method. Then, in Sections III and
IV, we present and analyze the Three-Cell and the FCFS
0.487 Algorithms, respectively, introducing additional
techniques to handle the new features in these algorithms.
The STA operates as follows:

If a conflict arises, the active set is partitioned into two
subsets according to an addressing scheme. All conflicts in
the first subset, if any, are resolved first, recursively, and
then, those of the second subset, if any, are resolved
(recursively).

The partitioning can be on the basis of random “coin
tosses” (random addressing), or packet arrival times
(arrival-time addressing), or on the basis of station ad-
dresses (deterministic addressing). It is well known from
the work of Capetanakis [2] that in the finite population
case, a deterministic addressing scheme performs better,
and we have followed this approach in [25]. In the infinite
population model, however, random and deterministic
addressing become indistinguishable. Arrival-time ad-
dressing, on the other hand, leads to the same mean
packet delay, but with reductions to the variance and
higher moments of the delay, as would be expected since
it enforces the FCFS rule [28]. We consider random
addressing in Sections II and III, and treat arrival-time
addressing in the case of the FCFS 0.487. Algorithm in
Section IV.

In addition to a conflict resolution algorithm, a com-
plete random access system must also have a channel
access algorithm to specify when packets may join the
conflict resolution algorithm. We consider two variations
of the window algorithm, both of which fit the following
general description:

Assume that at time 6 (measured in slots), the conflict
resolution algorithm has just completed the transmission(s)
of all packets that arrived before 7. Initially, we set 8 < 0,
7« 0. Then, at time 6’, the channel access algorithm
permits all packets that arrived in the window (7, 7 + w']
to be transmitted. After all of these packets have been
transmitted successfully (with the aid of the conflict reso-
lution algorithm) using [slots (/ = 1), we repeat the
process after setting § < 6’ +/and 1< 7+ w'.

The two algorithms differ only in the specification of 6’
and w’'. The first, called the Window Algorithm (WA),
specifies that

=0 and w’' =min{6 — 7,w}, (WA)

i.e., windows of size w are formed, except when this is
not possible because the time from the beginning of
the window until the current time is less than w. In this
case, a smaller window is chosen. The WA was first
used by Gallager [6] in connection with the FCFS 0.487
Algorithm, although he did not explicitly mention the
channel access scheme. Gallager’s protocol also uses a

POLYZOS AND MOLLE: DELAY ANALYSIS OF FCFS 0.487 CRA

“tree pruning” inference rule, which sometimes leaves
part of a window unresolved. To handle this case, the
update to 7 in the above algorithm description should be
replaced by 7« 7 —r + w’ where r is the part of the
previous window that remained unresolved.

The second, called the Simplified Window Algorithm
(SWA), is a slightly modified version of the WA that
simplifies the analysis, but has the essential characteristics
of the Window Algorithm. Here,

0 =max{f,7+w} and w' =w, (SWA)
i.e., windows of size w are always selected, even in the
cases when the difference between the beginning of the
window and the current time is smaller than w, by intro-
ducing a “rest” period, i.e., delaying the decision until
such time that would permit the formation of a window of
size w. Massey [16] explicitly discussed the distinction
between the WA and the SWA, and took advantage of the
latter to simplify the capacity analysis of the STA—it is
shown in [16], and will be obvious in later sections of this
paper, that the WA and the SWA have the same capacity.
An illustration of the operation of a random access proto-
col using the STA in combination with either the SWA or
the WA is shown in Fig. 1.

Note that in the case of the SWA, the window size w' is
constant (=w). This property is crucial for modeling part
of the system as a D/G /1 queue; this was the approach
we used in [25]. There is, however, an obvious improve-
ment in delay if the WA is used since it uses the time that
would have been wasted in a “rest” period to start an
epoch from a “small” window. The difference in mean
delay at light loads between the two algorithms is one or
two slots for the most common values of the window size
(e,w=23).

II. A QUEUEING THEORETIC DELAY ANALYSIS
METHODOLOGY

In this section, we briefly present our delay analysis
methodology for “separable” protocols using random ad-
dressing. This methodology is then applied to the Three-
Cell Algorithm in Section III, and is extended in order to
analyze the FCFS 0.487 Algorithm in Section IV.

We define the random variable ¢ to be the total delay
experienced by a randomly selected packet, from its mo-
ment of generation at its source until the end of its
successful reception at its destination. In order to find
expressions for the total delay, we find it convenient to
express ¢t as the sum of three component random vari-
ables t,, t,, and ¢,, which we shall evaluate using different
techniques. In particular, we treat the operation of the
CRA as a bulk-service queueing system, where all packets
whose arrival times fall within the same arrival time
window join the same bulk, and their collective service
requires one epoch of service by the CRA. Thus, with
reference to Fig. 1 and our earlier discussion of channel
access algorithms, we consider a “tagged” packet that
arrives at time % and departs at time n’. If (7,7 + w']

1889

[x . o‘:’AlB,cl |a. Is.cl ls' o Jofs I Ix l
=7 A 4 Departure
: Epocn(S : : Time
Window L 2 S e f
e | | - : } _
TR A R N v
Addresses: B: 1101... —_—
C: 1100... Do F
(a)
O,
®» O OO
(:)8(:) O—® 90000000
o[- P oo [l =] BENBAEE
= A Depart
z Bpoch S e
' - ; oo
Window i T o
1 1 i 1 } 1
I'TT r T TI T It‘ Arrival
Time
AB [
A:0...
Addresses: B: 1101...
C:1100...

()

Fig. 1. Example of a random access system. Binary STA for conflict
resolution and (a) SWA or (b) WA for channel access. The same
scenario is presented to both protocols for comparison.

represents the window in which the “tagged” packet de-
parts from the system, then we define

thb=7+w — 19
=0 —1—-w
tb=m'"—0
and, of course,
A _ r
t=S L+ =En 1.

In other words, t, represents the residual life of the
window generation process, ¢, represents the lag between
the generation of a completed window and the start of its
associated epoch, and ¢, represents the age of the epoch
at the moment of departure for the “tagged” packet. Note
also that all packets belonging to a particular window
share a common value for t,.

We devote most of this section (and, indeed, this paper)
to describing how we can obtain the statistics of the lag ,,
which is the most important component of the delay.
However, in order to achieve this, our queueing theoretic
methodology requires knowledge of statistics of the epoch
length of the CRA under consideration, which plays the
role of the service time in our queueing model. We

1890

present the necessary notation and briefly describe tech-
niques for obtaining statistics of the epoch length in
Section II-A below. Finally, in order to characterize the
total delay, in addition to ¢,, we need the statistics of the
other two components of the delay ¢, and ¢,.

The initial part of the delay ¢, is merely the residual
life of the current window at the moment when a packet is
generated. For example, with Poisson arrivals, the initial
delay is uniformly distributed in [0,w). Depending on
whether we assume a continuous- or discrete-time model,
we use either the Laplace transform of ¢,, denoted by
O*(w, 5), or the probability generating function (PGF) of
t,, denoted by O(w, z).

The PGF for the delay in the epoch of transmission,
denoted by G(x, z), can be obtained by solving a func-
tional equation similar to that obtained for the epoch
length. In Section III, we use the standard way of obtain-
ing statistics for metrics such as the epoch length and the
delay of a packet in the epoch of transmission, i.e., we
condition on the number of packets in an epoch. Then, in
Section IV, we use the functional equation approach
again, but this time we obtain functional equations on
statistics of the sum of ¢, and ¢, in order to deal with the
dependence between them.

After obtaining the transforms of the distributions of
the components of the delay for a (tagged) packet, we
obtain the transform of the distribution of the total delay
as their product. Notice that with random (and determin-
istic) addressing, the components of the delay, condi-
tioned on a given window size, are independent random
variables since

t,: depends only on its relative position within the
window of arrival, which is independent of all other pro-
cesses in the system,

t,: depends only on traffic generated before its window
of arrival, and

t,: depends only on the number of packet arrivals within
the window of arrival.”

The final result (in the all discrete-time model), the
PGF of the total delay D(z) can then be obtained as the
product of the PGF’s of the three components of the
delay in the case of the SWA (which uses constant size
windows):

D(z) = O(w, 2) W(2) G(x, z).

If the continuous-time model is adopted for the initial
delay, the Laplace transform of the total delay D*(s) can
be obtained as

D*(s) = ©*(w,s) W(e™) G(x,e™).

With the WA, where the window size varies, the above
equations hold only when conditioned on a specific win-
dow size; therefore, an additional unconditioning step is

"Arrival-time addressing, which is critical for the operation of the
FCFS 0.487 Algorithm, introduces a dependence between ¢; and ¢,.
However, even in this case, the lag ¢, is independent of the sum of ¢,
and t,. We handle this complication in Section IV.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 6, NOVEMBER 1993

required in that case (for example, see (6) in Section
I1-O).

A. Epoch Length and Capacity

One of the basic metrics that characterize the efficiency
of a conflict resolution algorithm is the epoch length, i.e.,
the time required to resolve a conflict, which we denote
by the random variable /. We are particularly interested in
the epoch length distribution in the case of a set of initial
contenders (i.e., packets), coming from a Poisson distribu-
tion with parameter x. A convenient way to handle epoch
lengths is through their PGF, Q(x, z), which is defined as

Q(x,2) 2 Y Pr{l =nlx)z".

n=0

Functional equations on Q(x, z) and other epoch length
statistics for various CRA’s have been obtained and solved
in many previous papers (for example, see [36], [17], [5],
[26], [28], and others).

If only the mean delay is of interest, then only the first
two moments of the epoch length are required. Therefore,
instead of solving the functional equations in Q(x, z), we
may obtain and solve functional equations in the moments
under consideration, which are functions of a single vari-
able. We denote the first two moments of the epoch
length as

L(x) £E[l|1x] and H(x) £ E[I*|x],

respectively.

Since we deal with an infinite population model and the
separable CRA’s guarantee that by the end of an epoch
all packets involved in the original conflict have been
successfully transmitted, the average throughput and in-
put rate A coincide as long as the system is stable. To find
the capacity of the protocols, we have to consider the
conditions under which there is no long-term backlog in
the system.® Intuitively, it is easy to justify the following
condition for stability:

L(wA) < w. 1)

This condition simply states that the system is stable as
long as the mean time to resolve a conflict is less than the
time between successive requests.” To be rigorous, we
have to show that this condition is sufficient for enough
moments of ¢ to be finite. Assuming the above decompo-
sition ¢ = t, + ¢, + ¢,, and observing that ¢, is bounded
by w, and also that all the moments of ¢, are bounded for
bounded x, we can identify stability with bounded mo-
ments of ¢,. But as we will see from the queueing models
developed below, when the condition of (1) holds, all the
moments of the lag ¢, are finite.

8The standard approach to obtain capacity results for CRA’s is through
the use of Pakes’ lemma [22]. However, we believe that the alternate
technique presented here is interesting and intuitive.
This condition (or similar ones) were presented by several authors,
e.g, [6], [36], [19], [24].

POLYZOS AND MOLLE: DELAY ANALYSIS OF FCFS 0.487 CRA

B. Constant Size Window Access—The Simplified Window
Algorithm

We begin the analysis of the statistics of the lag with
the SWA, in which w' = w for every epoch. Even though
this case is of less practical interest than the WA case
analyzed next, it serves as an introduction to our later
models and transformations, making them more natural
and helping intuitive understanding. ’

1) Modelingt, as a D /G /1 Queueing System. Since all
packets belonging to the same window share a common
value for ¢,, and under the SWA the number of packets
found in each window are i.i.d. random variables, it makes
no difference whether we evaluate the statistics of ¢, in
terms of what is “seen” by a randomly chosen individual
packet or by a bulk arrival of packets belonging to a
randomly chosen window. Therefore, we look at the sys-
tem at the window level, and model it as a queueing
system. We regard all windows as customers that require
service in the form of conflict resolution. Service time is
then, clearly, the length of the epoch generated by the
window, with known (steady-state) distribution B(z), which
is given by Q(x,z) under the Poisson arrival model.
Because of our assumption of constant window size, the
arrival process is deterministic and service times are iid.
Thus, if only integer values are assumed for the window
size (and since this is clearly the case for the epoch
lengths), the system can be modeled as a discrete-time
D/G/1 queue. We have presented this approach to the
delay analysis in [25]. Some additional treatment required
for the case of rational window sizes is presented in [29].

An analysis of the discrete time D/G/1 queue can be
found in [30], and generally involves the numerical com-
putation of the complex roots of a polynomial in the unit
circle. When many roots have to be found numerically,
the suggested approach is through an iterative search
around values of the form pe’® with p=1, 8 = 2mwn/
(w—1),and n =0,1,---,w — 2 (see [30] for more details).

2) Modeling t, as a Moving Server M /G /1 Queueing
System: Let us take another look at the calculation of the
lag, i.e., t,, for the system we considered above. This time,
however, in contrast to the D/G /1 queue of the previous
section, we now use a different approach that can be
extended to accommodate the (nonsimplified) Window
Algorithm (WA). The approach we are adopting here is a
special case of the “Moving Server” technique [19], [20].

We first need to make the following observation. Con-
sider the standard, gemeral, queueing system equation
(see, for example, [4])

@

w,,; = max{o, +1, — a,,,0}

where w, is the waiting time for the nth customer, , is
the service time for the nth customer (the length of the
nth epoch in our case), and a,.; is the interarrival time
between the nth and the (n + 1)st customers. Observe
that there is no effect on the waiting times if both the
service times and the interarrival times are each de-

1891

creased by one unit (for all customers). This observation
permits us to make our first transformation (leaving the
waiting times, as random variables, unaffected):

[=1-1 and w=w—1.
Note that ! is the random variable for the epoch length.
and that the interarrival time is always w, i.e., equal to the
window size. The service-time distribution is now

O(x, z)

z

As a result of this transformation, some customers of our
(transformed) queueing system require exactly zero ser-
vice time. These are windows that result in no-conflict,
with probability p = F(x) 2 (1 + x)e . Since these
«“customers” do not require any service, we can just ignore
them and consider as customers only conflict windows.
Notice that a window is a conflict window with probability
p = F(x), independent of all other processes in our sys-
tem.'® This last change of viewpoint changes the service-
time distribution for our system to

_ L 09, 2) B Q(x,z) — zF(x)
B & =———=""F%n

What we have now is the following situation. Every
w — 1 slots, we either get a customer arrival (.e., a
conflict window) or not, with respective probabilities p
and p. In other words, we have a memoryless geometric
interarrival time distribution in discrete time. Further-
more, the service times for these customers are i.id. (and
also independent of the operation of the system) with
(discrete) distribution whose PGF is B(z). Thus, if we are
lucky, our transformed system can be modeled as a dis-
crete time M/G/1 queue, with the transformed window
(i.e., w — 1 slots) as its elementary time unit. Therefore,
we are led to the following transformation:

~t

1-1 W w—1
= and W 2 = =1

A = =
w—1 w—1 w—1

Su

~~u

w—1

From the point of view of the service-time distribution,
this last transformation can be expressed as

B(z) = B({)lg1-z.

For this last transformation to be possible (i.e., exact), we
must have

(I -1 mod(w — 1) =0. 3)

This last condition is obviously satisfied for w = 2. In
addition, for the binary STA, the condition is satisfied for
w =3 as well since epoch lengths are odd integers."!
Furthermore, if we attempt to apply the results of this
technique even when (3) is not satisfied, we discover that

0Wwe use the notation f £ 1 — f.

This condition is satisfied for many more interesting system parame-
ters when one considers more general environments, where the duration
of idle, success, and conflict slots might be different [27], [28].

1892

we obtain extremely good approximations to the true
metrics, which can be obtained through the D /G /1 anal-
ysis [28]. Therefore, this is a viable technique, and its
practicality is not limited to a few interesting window
sizes. The reason for this serendipitous success is dis-
cussed below.

With this last transformation, we have obtained a true
discrete-time M /G /1 queue. We are interested in the
distribution of the waiting time in such a system, which
can be easily obtained (for example, see [14]). This distri-
bution can be put in the form of

R(D)

B —
aez) = X B2) -1
V4

R(z)=1-p —

where B(z) is the service-time distribution and p is the
arrival probability. The inverse transformation only re-
quires that we reinstate the old unit of time. The final
result can then be obtained as

R(1)
= wely —
W(z) = Q(z""") R
with
B w—1y _ 1
R(z”"l) =1 71’(;71)—
FARES |
O(x,z) — zF(x)
= F(x)
=1-F(x) zj_lx_l

1 —
;[Q(x,z) —zF(x)] — F(x)
vl -1
L Q(x,z) —z - Q(x, z)

W

¥ -z ¥ -z

Thus, with both the D /G /1 model [25] and the “Mov-
ing Server” M /G /1 model, the waiting time distribution
is of the form

R(D)
(z) = R
with
¥ — Q(x, z)
w—1 ’
z I_[(z—z)
R(z) =1{z"-Q(x,z) z"—Q(x,2)
z(zw—l _ 1) = Tl ,“M.S.”
z[1(z—e)
i=1
M/G/1.

Notice that the two expressions for R(z) differ only in the
way the roots of the denominator are defined. Where the
D /G /1 expression uses the w — 1 nonzero roots of z* —

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 6, NOVEMBER 1993

Q(x, z) that are inside or on the unit circle, the “M.S.”
M /G /1 expression uses the roots of unity of order w — 1.
As we have mentioned, the second expression approxi-
mates the first one very well in cases where it is not exact.
The reason is that the roots required in the first expres-
sion are close to the (w — 1)st roots of unity. This is the
case exactly when x — 0, but even for values of x close to
the capacity of the algorithms, the difference is small [28].

C. Window Access with No “Rest” Periods—The Window
Algorithm

Our technique of modeling ¢, as the waiting time in a
discrete-time M /G /1 queue can be extended to accom-
modate the WA as well. The WA and the SWA differ only
when there is no backlog in the system, where the WA
selects a small window while the SWA insists on waiting
(i.e., a “rest” period) until a window of the normal size
can be selected. This is exactly the setting of the “gener-
alized busy period” M/G/1 queue. It is an M/G/1
queue, with the only difference that the first customer in
each busy period is different from the customers that
come in the middle of a busy period, having different
arrivals and service-time distributions.'> The transforma-
tions we need to model the WA as a discrete-time “gener-
alized busy period” M/G/1 queue are illustrated in
Fig. 2.

An analysis of the discrete-time “generalized busy pe-
riod” M /G /1 queue is provided in [28, Appendix] follow-
ing the methodology presented for the continuous-time
case in [15]. The conditional PGF for the waiting time for
customers that arrive within (and hence do not initiate) a
busy period is given by

1-p PO[B[;(f) - 1]

W) = B 1

where By({) and B({¢) are the (transforms of the) distri-
butions of service time and p, and p are the arrival
probabilities for the first customer in a busy period and a
“normal” one, respectively. The parameters p and p, are
defined by p, £ p,B,(1) and p £ pB'(1), where By(1) and
B'(1) are the mean service times.

In our case, py=1—(1+ Ve p=1—>1+wd)

e—w)\’

D/G/1
B()(g) =

9
=g

Q“)()\, z)
zZ

(c) /\’
B({) = [——Q (j Z)]

log

"2 We should point out here that for the cases where we can get exact
results, i.e., with w = 2 for all algorithms and w = 3 for the binary STA,
there are only two categories of packets: those that arrived during a
“small” window, of size 1, and those that arrived during a “large”
window, of size w.

POLYZOS AND MOLLE: DELAY ANALYSIS OF FCFS 0.487 CRA

EXPAND CUTHERE

f— |

P 7 Departure Time

S N

Arrival Time

—_—
o —

Waiting
.« o 2 4 Time
... RESULT:
1 2 34
A A
! ! i
¥ ¥ 7 7
}) L . ’:’ Departure Time
. H ’/ L S/
' ' J L Vi
I ' . . ;
I ! / - K
' ' , - R
} '
4\ T T l.\ T Arrival Time
' |
1 2 3 4 5
2.
Waiting
2 4 Time
. . ———— e e e m e -

Fig. 2. The transformation to obtain ¢, as the waiting time in a
generalized busy period, discrete time, M /G /1 queue.

and thus,

L) -1

L(wA) = 1
po = —

w—1

4)

and =
w—1 p

The distribution of ¢, (for packets arriving in large win-
dows) is obtained by changing the time unit back to slots:

W(w,z) =W,(z"").
The final result can be expressed as

1—p QA 2) -2
po 2" — O(wA, z)’

W(w,z) = 5)

The PGF for ¢, needs to be combined with correspond-
ing PGF’s for ¢, and ¢, to obtain a PGF for ¢. If we focus
on windows of a given size (large, say), the components of
the delay are, again, independent random variables. How-
ever, all of them are correlated to the window size. In
particular, ¢; = 0 for small windows, and so is ¢, if we
assume a discrete-time model of the arrival process. Thus,
the PGF of the total delay’ can then be obtained as the

BSince the existence of small windows has no effect on the bounded-
ness of ¢, and the finiteness of the moments of ¢,, once again, stability
of the protocol is determined by ¢,. As before, the moments of r; are
finite, and the discrete-time queue is stable, whenever p < 1, which is
equivalent to the stability condition of (1), as (4) shows.

1893

product of the PGF’s of the three components of the
delay for packets of large windows, and is just the PGF of
t, for packets of small windows. The overall delay distri-
bution is then given by

D(2) = vO(w, 2I)W(2)G(aw, z) + (1 — »)G(A, z) (6)

with v the proportion of packets that arrive in large
windows, which is obtained from the following equation:

By(1)
~ 1— pw B wp, B wL(A) —w
TTTB(D 1-p+wp, wL(D) —LOw)
— + w
Po 1-p

@)

where Bj(1)/(1 — p) can be recognized as the expected
length of a generalized busy period and 1/p, as the
expected length of an idle period.

In Fig. 3, we plot the distribution of the packet delay
for a system with the STA /WA combination with w = 3.
Notice that the mass of the distribution (for light loads) is
concentrated at ¢ = 1, as desired, in contrast to the SWA
case where the mass is distributed (equally at zero load)
among ¢ = 1, 2, and 3. We assume a discrete-time model
for the initial delay here and in Fig. 4. Figure 4 shows the
mean, standard deviation, and percentiles of the packet
delay for the above system. The importance of the avail-
ability of percentile results for system design decisions
should be obvious.

Finally, in Fig. 5, we provide cumulative distribution
curves for various throughput values for the same proto-
col and parameters; these are more easily readable than
the three-dimensional results of Fig. 3. Also shown are
simulation results for the same system, except for a win-
dow size of 2.5 slots for comparison with [10, Fig. 31."* We
observe strong agreement between our analysis and simu-
lation, indicating the results are not very sensitive to the
window size. Furthermore, it is interesting to note that
w = 3 actually gives better results, except under very
heavy load.

III. THE THREE-CELL ALGORITHM

The methodology described in Section II above applies
directly to protocols with a conflict resolution algorithm
which completely resolves all conflicts in a window. In that
case, there is no overlap between the initial windows in
successive epochs. We call the class of these windowed

" Because w = 2.5, we used a continuous-time model for the packet
arrival process in the simulator. Thus, for compatibility, we incorporated
an additional uniform (0, 1) term into our previous results for w = 3 to
account for the initial delay distribution over a slot. We use simulation
because the data from [10, Fig. 3] are both difficult to read and seem to
be unreliable for A > 0.2. We attribute the discrepancy to numerical
problems encountered in the computation of the distribution in this last

paper.

1894

Fig. 3. The distribution of the delay for the WA (w = 3) with the
binary STA.
100 : r ;
Mean: w——
50 Std. Dev.: —
Percentiles: - ---- r
201 .
z
3
[T -
e
w
4
Q
<
o
sk _
! : T T T T
0 01 02 0.3 0.4 05
THROUGHPUT

Fig. 4. Statistics of the packet delay for the binary STA with WA
(w = 3). Random addressing, infinite population, Poisson arrivals, dis-
crete-time model for the initial delay.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 6, NOVEMBER 1993

1
0.8
— : analysis (w=3)
T . simulation (w = 2.5)
0.6
=
> _
&
0.4
0.2
0
0
Fig. 5. Cumulative distribution of the packet delay for given through-

put for the STA /WA (continuous-time model for the initial delay).

protocols separable.'> In Section II, we have used the STA
to illustrate our methodology. Here, we will introduce and
analyze the Three-Cell Algorithm (3CA). This algorithm
is quite similar to (but less complicated than) the limited
stack depth algorithms introduced by Tsybakov and
Likhanov in {36]. The most fundamental difference be-
tween the STA and the Modified Tree Algorithm (MTA)
[16] on one hand, and the CRA in the FCFS 0.487
Algorithm on the other, is in the characteristics of their
respective conflict resolution stacks. In the former algo-
rithms, the set of contending users is partitioned using
recursive binary (in general, d-ary) splitting until no ele-
ment of the partition is found to contain more than one
packet. Consequently, the stack depth increases by d — 1
after each conflict, and thus can potentially grow arbitrar-
ily large. Conversely, the 0.487 Algorithm only retains
information about those contending users that were in-
cluded in the most recent previous conflict—all others are
dropped from the current epoch by “regressing” the end
of the window. As a result, it is well known that its stack
depth never exceeds two cells.

In this section, we consider other algorithms with lim-
ited stack sizes. Unlike the 0.487 Algorithm, these algo-
rithms work by combining (rather than eliminating) cer-
tain nodes in the conflict resolution tree used by the STA
and the MTA. Thus, they retain our “separability” condi-

5The analogy with the class of separable queueing networks comes
from the fact that the structure of the solutions to both classes can be
factored into products of independent terms. However, the actual model
solutions are unrelated.

POLYZOS AND MOLLE: DELAY ANALYSIS OF FCFS 0.487 CRA

tion of completely resolving all conflicts among the initial
set of contenders. The Two-Cell Algorithm (2CA), intro-
duced in [23], is a variation on the STA where only the top
node on the conflict resolution stack is distinguished from
the others. The resulting algorithm can be viewed as
iteratively invoking a binary search to isolate the first
packet from the remaining ones, until all have been
transmitted successfully. The main attraction of the 2CA
is its robustness; under window channel access, it attains
about the same capacity as the STA on a noiseless chan-
nel, but as the channel error rates increase, it performs
much better, achieving nonzero throughputs even for very
high error rates.

The Three-Cell Algorithm (3CA), which we introduce
in this paper, is a variation on the MTA where only the
top two nodes on the stack are distinguished from the
others. Since the nodes being accumulated in the third
cell are exactly the ones that would be dropped from the
current epoch by the 0.487 Algorithm, the resulting algo-
rithm is almost identical to the 0.487 Algorithm. The only
difference between the 3CA and the 0.487 Algorithm
occurs at the point where the latter terminates after
having dropped some of the nodes from the conflict
resolution tree by regressing the window. (Recall that,
under the Poisson traffic model, the dropped portion of
the window is effectively unexamined.) Where the 0.487
Algorithm would attempt to augment the regressed win-
dow with newer arrivals, restoring its length to w before
restarting the CRA (and thereby causing the initial win-
dows in successive epochs to overlap, violating our separa-
bility condition), the 3CA is simply restarted on the re-
gressed window. As a result of starting some epochs from
a suboptimal window size, the 3CA is less efficient than
the 0.487 Algorithm. Nevertheless, the loss in capacity is
quite small (less than 0.5%), and the algorithm retains the
essential features of the 0.487 Algorithm. Thus, since the
3CA also satisfies our separability conditions, it can be
analyzed exactly by using our queueing theoretic method-
ology. The resulting performance estimates can be used to
approximate the performance of the 0.487 Algorithm—but
with the approximation taking place in the protocol speci-
fication instead of the model solution.

A. Epoch Length and Capacity

To apply our methodology, we begin by finding the PGF
of the epoch length. In this case, it is more convenient to
condition on the number of packets included in the inter-
val under consideration because of the additional memory
in the algorithm used to avoid the regression on the
arrival time axis. Therefore, we define the following two
families of conditional PGF’s. First, we denote by Q,(z)
the PGF of the epoch length of a “fresh” interval contain-
ing exactly n packets. Second, we denote by 0, .(2) the
PGF of a subepoch with a primary interval containing
exactly n packets, but also including a secondary (right)
interval including exactly m packets (n,m = 0,1,2,).
The subepoch is assumed complete after both the primary
and secondary intervals are resolved completely.

1895

From the definition of the algorithm, we obtain the
following recursions for the PGF of the epoch length:

n<l:

Qn(z) =2z

n>1:
0,(2) =20,(2)B, , +2°Q,_(2)B,

+z Z Qj,nfj(Z)Bn,j

j=2
Zan—l(Z)Bn‘l +z Z Qj,nfj(z)Bn,j
_ B
- 1 -2zB,,
n<l:
Qn,m—n(z)
=20, ,(2)
where
n>1:
Quom-n(2)
=2Qn.m—n(z)Bn,0
+22Qn—l,mfn(z)Bn,l
n
+z Z Q;‘,m—j(Z)Bn.j
j=2
n—1
Zan—],mfn(z)Bn,l +z Z Qj,m—j(Z)Bn,j
_ j=2
a 1-2B,, -8B, ,
where

B, % (’]’.)Trf?r"*f,

i.c., the probability of j of the n packets ending up in the
left subset, when each packet chooses randomly to join
the left subset with probability = (or the right with
probability 7). Note that the mean conditional epoch
length for the 3CA is shorter than that of the MTA with
biased splitting, but only for epochs containing six or
fewer packets [29]. However, using the window algorithm
for channel access makes sure that epochs with few pack-
ets are the most probable, and thus the 3CA has a higher
capacity than the MTA. The unconditional PGF of the
epoch length can then be obtained as

O(x;2) = Y. 0 (2)P(x)
n=90

where P(x) = e *x"/n! for Poisson arrivals.

From (1), we obtain 0.4799 as the capacity of the
algorithm, with an optimal window size w* = 2.7 and
optimal splitting bias 7* = 0.46. With unbiased splitting,
the maximum throughput is 0.478 (at the same w*). With
w =2 and 3, the maximum throughput is 0.4674, and
0.4792, respectively (with 7 = 0.46).

B. Delay Analysis

Unfortunately, unlike in the case of the STA, the epoch
length is not necessarily an odd integer. Thus, with the

1896

D /G /1 model, we will in general require numerical com-
putation of roots in order to get an exact expression for
the distribution of the lag. Fortunately, such root-finding
can be avoided completely for w = 2 (which leads to a
capacity of 0.4674 with 7 = 0.46), and for w = 3, only the
third root need be found numerically.'® With w = 3, the
capacity is 0.4792, i.e., within 0.16% of the optimum for
this algorithm.

The last component needed is the delay in the epoch of
transmission, which can be obtained in the same way we
obtained the statistics of the epoch length. We denote by
G,(2) and G, ,(z) the conditional PGF’s for the delay in
the epoch of transmission of a randomly selected packet
analogously to the definitions of Q,(z) and Q, ,(2). Then,
we obtain the following recursions:)

n=1:
G(z) =z
n>1:
G(z) =2G(2)B,
1 n-—1
+ ;l—zz + 2?G,_(2)|B, ,
n
tz E Gj,nfj(Z)Bn,j
j=2
52
7[] + (n - l)G,z~1(Z)]Bny]
+z Z Gj.n—j(z)anj
j=2
B 1-2B,,
n=1:
Gn,mvn(z)
1 m-n
=—z+ 2G,,_(2)
m
n>1:
Gn,m—n(z)
=2G, ,,_.(2)B,
1 m-—1
+ _22 + Z2Gn—l mfn(z) Bn 1
" , .

+z 3, G, (2)B,;
j=2
22
—[1+ (m— 1)G,,_1 m,n(Z)]B,, 1
m , .

1-z(B,,+B,,)
n—1

z Yy Gjym,j(z)Bn‘j
j=2

+ .
1-2z(B,,+8B,,)

1%We do know, however, that this root will be real and less than or
equal to one in absolute value, which makes the search easy. Further-
more, we can easily prove that this third root lies in (—1,0). We can get
bounds on the mean delay that are only half a siot apart without even
bothering to find this root [30}, [29]. Furthermore, a rational window size
of w = 8/3 leads to a capacity of 0.4798 when = = 0.46, and requires
numerical computation of two pairs of complex conjugate roots (three
more roots are equal to zero, and one is equal to one).

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 6, NOVEMBER 1993

The unconditional PGF of the delay in the epoch of
transmission can then be obtained. Differentiating, we
obtain expressions for the mean T,(x) and the variance
Var[t, | x] of the delay in the epoch of transmission."”

In Fig. 6, we present comparative performance results
for the STA, the MTA, the optimally biased MTA (MTA™),
the 3CA Algorithm, and the (unbiased) FCFS 0.487 Algo-
rithm, all combined with the Simplified Window Algo-
rithm (SWA) for channel access. All the results are analyt-
ical; the first four are exact, and the FCFS 0.487 curve is
an extremely good approximation.’® In Fig. 7, we provide
results for the standard deviation of the packet delay for
the same configurations and random addressing for the
STA, MTA, and MTA*, and arrival-time addressing (as
required) for the FCFS 0.487 Algorithm.

I1V. Tue FCFS 0.487 ALGORITHM

We now turn our attention to the celebrated FCFS
0.487 Algorithm. Here, we have to address a number of
additional complications compared to the 3CA. First, we
have to deal with the regression on the arrival time axis.
This regression occurs whenever a conflict is observed
within the left subset of an earlier conflict. In this case,
the 0.487 algorithm does not attempt to resolve the right
subset (because no information about its contents has
been obtained, i.e., it is equivalent to a never examined
set and its size is suboptimal). Instead, part of the original
window is left unexamined at the end of the epoch, to be
included as part of the next window. Should this happen
during the ith epoch, then a comparison of the initial
windows (1;, 7, + w;] and (7, , 7, + w,,], which were
enabled at the beginnings of two successive epochs, would
reveal an overlap, i.e., 7;,; < 7; + w;. In this case, we say
that the right-hand end of the ith window has regressed
during the epoch.

This type of regression is problematic for our queueing
theoretic methodology because it induces a correlation
between the service times and interarrival times in the
queueing system we use to obtain waiting time statistics.
Thus, eliminating this correlation by introducing an aug-
mented (by the amount of the window regression) epoch
length as the service time in the queueing system is
probably the most important contribution of this paper.
This augmentation allows us to construct an equivalent
system (with respect to waiting time statistics) where cus-
tomer arrival points are regularly spaced within a busy
period. It is interesting to note that the Poisson traffic
assumption—which motivated the window regression rule

'"Expressions for the conditional means and standard deviations of
the epoch length and the final delay are provided in [29].

¥ With the SWA, the only approximation we make in the analysis of
the FCFS 0.487 Algorithm is in using discrete- rather than continuous-
time models for the queueing systems from which we obtain the statistics
of the lag. The service time for these queues is the augmented epoch
length (as we will see in Section IV), which, in addition to the length of
the epoch generated, includes time equal to the size of the part of the
window that has been left unexamined, and therefore, it is not necessar-
ily an integral number of slots. An alternate approach would be to
obtain numerical bounds to the solution to this queueing system using a
“relaxation” method, such as [7].

POLYZOS AND MOLLE: DELAY ANALYSIS OF FCFS 0.487 CRA

100

50

SWA, w=3 i

----i8TA
e MTA (1=0.5)
MTA" (x=0418) [
20 —~—:3CA (n=046) ;i
:0.487 (n.=0.5) ;o

MEAN PACKET DELAY

T T T
02 03
THROUGHPUT

04 0.5

Fig. 6. Throughput—delay curves for the STA, the MTA, the optimally
biased MTA (MTA*), the 3CA, and the FCFS 0.487 Algorithm.

100

50
SWA w=3 /

STA i
e MTA (m=0.5) i
—— I MTA" (x=0418)

—— :3CA (r=046)
s 1 0.487 (= 0.5)

20

STANDARD DEVIATION OF DELAY

075 T T T T T T T T T
0 0.1 0.2 0.3 0.4 0.5
THROUGHPUT
Fig. 7. Standard deviation of the delay for the STA, the MTA, the

optimally biased MTA (MTA*), the 3CA, and the FCFS 0.487 Algo-
rithm.

1897

in the FCFS 0.487 Algorithm in the first place—also helps
us solve the queueing systems we construct via our aug-
mentation technique since it guarantees the indepen-
dence of the service times.

In addition, we have to deal now with arrival-time
addressing (to obtain a true FCFS system) which requires
joint treatment of the initial and final components of the
delay, and the nonsimplified Window Algorithm, to avoid
the unnecessary “rest” periods.

A. Epoch Length

The standard approach in the literature for obtaining
epoch length statistics for the FCFS 0.487 Algorithm has
been to condition on the multiplicity of the initial conflict.
as we did in Section III for the 3CA. However, here we
follow our functional equation (FE) approach, ie., we
construct a FE for the PGF of epoch lengths, conditioned
on the enabled set being Poisson distributed with parame-
ter x 2 Aw. We consider it appropriate to show (at least)
the initial steps in the construction. We actually consider
the extension of the 0.487 Algorithm in the case of static'’
biased splitting, i.e., if the interval (7, 7 + w] of the arrival
time axis is considered for splitting, the two subsets will be
(r,7+ ww] and (7 + 7w, 7+ w], of length 7w and
7w = (1 — 7)w, respectively. The analysis of this varia-
tion comes essentially at no “cost” in derivation effort,
and actually clarifies the method. Also, the extension
leads to slightly higher capacity than the algorithm in [6].

We denote by Q(w, z) the PGF of epoch lengths, and
the conditional PGF’s for epochs starting with a conflict
and nonempty epochs by Q“/(w, z) and Q“X(w, z), respec-
tively. Considering the two subsets in a possible splitting,
the set of all possible events is {i, s, c} X {i, s, c}, where
denotes no busy points in the set (idle), s denotes a single
busy point (success), and ¢ denotes two or more busy
points (conflict). By inspection, we obtain the following
recursion:?!

Q(w, z) = Pr{(i,i) or (i, s) or (s,i)}z
+ Pri{(i,c)zQ(Fw, 2)
+ Pr{(s,s)or (s,)Nz°QV (7w, 2)
+ Pr{(c,i) or (c,s) or (¢, c)}zQmw, z
=F(x)z + ®(mx)F(7x)z0“ (7w, 2)
+ W(rx)®Fx)220(Tw, 2)

+ F(mx)zQW (7w, z).

¥ Unlike the dynamic optimization described in [21].

“'Because we will need w as a parameter separate from A, we usc w
instead of x as the first argument of Q(, z) and the other transforms
used in this section, with A implied. Note also that we use w as both a
“free” variable denoting the current size of an interval under examina-
tion (window), and as the size of the (maximum) initial window which is
constant (and subject to optimization).

2'Recall that, in the case of a conflict in a left subset, the FCFS 0.487
Algorithm leaves the right subset unexamined (to be part of the next
interval).

1898

We can obtain unconditional PGF’s by using the identities
F(x)Qw,z) = Q(w, z) —zF(x) and
B(0QV(w, 2) = Q(w, 2) — z®(x).

After substitutions, we obtain the FE sought:

Q(w, z) = z2Q(7ww, z)
+[2®(7x) + 2 V(7 0)Q(FTwW, 2)
+(z — 2?)F(x)
+(z =)V (7 x)P(7x)

— 22F(mx). (8

This FE can be solved by substituting a power series
expansion for Q(w, z) and equating coefficients. Further-
more, by differentiating this FE with respect to z and
setting z = 1, we obtain a FE for the mean epoch length:

Lw) =1+ L(mw) + F(mx)L(7w) — F(x) — ®(7x)
— P(rx)P(Fx) 9)

which can again be solved with the power series method.”?
Similarly, we can obtain the following FE for the second
moment of the epoch length H(w):

H(w) =1+ H(zw) + F(mx)H(Zw) + 2L(7w)
+ 2[®(7x) + 2¥(mx)]L(7w)
—3F(x) = 3®(mx) — 5¥(mwx)P(7x). (10)

Notice, however, that we are not yet ready to obtain the
statistics of the (unconditional) epoch length in the case
of the WA because we need the proportions of epochs
generated by windows of various sizes. We will be able to
compute these proportions after the development of a
queueing model for the system in Section Iv-C.

B. Capacity

The capacity of a CRA is the same with ecither the WA
or the SWA, since for throughputs close to the capacity,
all windows are “full size.” Therefore, we can concentrate
on the SWA for this investigation. We will use the stan-
dard renewal argument to obtain the throughput of the
algorithm as the ratio of the mean number of successful
transmissions per epoch to the mean epoch length. We
have just computed the latter above. For the former, we
have to essentially repeat the work to obtain FE’s on the
PGF and the expectation of packets transmitted during an
epoch, denoted by M(x, z) and N(x), respectively (always,
assuming an initial interval with busy points Poisson dis-

> Actually, one can numerically solve FE’s of this form quite easily, by
recursive application of the equation, stopping when the argument has
become small enough to use the boundary condition, in this case,
L) = 1.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 6, NOVEMBER 1993

tributed with parameter x).” Following the above defini-
tions, we have

M(x,z) = Pr{(i,)}z° + Pr{(i,s) or (s,i)}z
+ Pri(s, s))z? + Pr{(i, IM(7x, 2)
+ Pr{(s,¢)}zM(7x, z)
+ Pr{(c,i)or (c,s) or (¢, NIMmx, 2)
which, after some manipulations, takes the form

M(x,z) =M(mx,2)
+[®(rx) + V(@) MFTx, 2) - 1].

Differentiating, we get the FE for the mean:

11

The throughput of the protocol can then be expressed
as the ratio of the expected useful work per epoch to the
expected length of the epoch, i.c., as N(x)/L(x). Maxi-
mizing this ratio with respect to x for 7 = 0.5, i.e., the
original algorithm with symmetric splitting, we obtain as
capacity A* = 0.4871 at x* = 1.266. Note that x* = A*w*,
and thus the optimal window size is w* = 2.6. However,
we can also optimize over 7. In that case, A* = 0.48757 at
¥* =~ 1271 and 7* = 0.475. In [21], the current window
size is optimized at every step, through dynamic program-
ming, which improves the capacity to A* = 0.48776. This
last variation of the FCFS 0.487 Algorithm, with capacity
rounded to three decimal places of 0.488, is the most
efficient multiple-access protocol.**

N(x) = N(mrx) + F(mx)N(7x).

C. Delay Analysis

We are now going to present a model of the protocol as
a queueing system, which not only will provide the analy-
sis for the statistics of the lag, i.e., the main component of
the packet delay, but also the statistics for the relative
proportions of epochs generated (and packets transmit-
ted) from “large” and “small” window sizes in the case of
the WA.™ In Fig. 8, we define the following three compo-
nents of the packet delay, the initial delay ¢,, the lag ¢,
and the delay in the epoch of transmission (or final delay)
t,. Notice that now, because of the overlap of the initial
windows, we must be careful with packets that are part of
more than one initial window; they must be included in
the window that leads to their successful transmission; ¢,
is then the time until the right end of the initial size of
that window. For example, for the packet shown in Fig. 8,
even though its arrival falls within the initial size of the
ith window, it is really part of the (i + 1)st window.

2 Recall that the algorithm, after a conflict in a left subset, “drops”
the right subinterval, and therefore not all packets of the initial interval
get transmitted successfully. Thus, the method for calculating the capac-
ity that we have used in Section II does not directly apply. To apply that
method, we need to substitute the mean augmented epoch length instead
of the epoch length in (1).

2 gut check [35] for additional schemes and commentary.

B Except for certain cases, such as w = 2, this is an approximation
because a small proportion of the windows will have an intermediate size
—see Fig. 9.

POLYZOS AND MOLLE: DELAY ANALYSIS OF FCFS 0.487 CRA

n+l Packet
T Departure

n
Service Points T

a1t

Departure Time

—_— Arrival Time
: M . i
- - - Waiting Times
a, Window
Arrival Points
n n+l
! ' | \
Packet n . !
Arrival to K 0 L
(a)
Departure Time
Arrival Time

}Waiting Times

Window
Arrival Points

(b)

Fig. 8. The transformation used to model the lag as the waiting time in
a D/G /1 queue. (In addition, the definitions of the components of the
delay are illustrated.) (a) Original queueing system (interarrival times
a, <w). (b) Transformed system (interarrival times &, = w). Dashed
lines show the corresponding metrics in the original system.

Otherwise, the definitions of the components of the delay
are identical to those used for algorithms that resolve the
full window, i.e., as presented in Section II.

1) The Transformation for the Lag: The first step in
obtaining the statistics of the lag is to view it as the
waiting time in a queueing system where windows are the
customers and their conflict resolution epoch lengths are
their service times. If there were no regression on the
arrival time axis, and the windows were all of constant size
(i.e., the SWA were used), then this would have led to a
D/G /1 queue, as in the case of [25]. Let us concentrate
on the SWA for now to simplify the description of the
transformation.

a) Simplified Window Access—The Unenhanced FCFS
0.487 Algorithm: Recall that in our discussion of window
algorithms, we defined the nth window to be the interval
(7,, 7, + w,]. Up to this point, we have assumed that our
separability condition 7, , = 7, + w, holds. We now ad-
dress the window regression feature in the 0.487 Algorithm
that makes it nonseparable according to our definition.
That is, in accordance with Fig. 8, we now assume that
T,.1 = T, +w, —r,, where r, represents the portion of
the nth window that is left unexamined at the end of the
epoch. We note that the distribution of r, is nonnegative,

1899

and that it is positively correlated with the epoch length /.
This complicates the approach of modeling ¢, as the
waiting time in a queueing system since we are faced with
a queueing problem which has both an irregular sequence
of interarrival times «, = w, —r,, and dependence be-
tween one customer’s service time [/, and the next cus-
tomer’s interarrival time «,,,. These complications can
be avoided by transforming our system into an augmented
queueing problem, in which we use [, £1, + r, as the
augmented service time, and &,,; £ @,., +r, as the
augmented interarrival time. Substituting these aug-
mented quantities into (2), we see that

Wy 4 max{wn + lll - an+l’0}

max{w, + (U, +1,) — (a,,y +71,),0}

max{w, +{, — a,,,0},

so it is clear that this transformation does not introduce
any approximations into our analysis. Furthermore, since
@&, = w, it is clear that the transformation has decoupled
the customer interarrival process from the service time
process. The “cost” of this change is that we must now
solve for the joint statistics of /; and r,. In the Appendix,
we obtain the following FE for the transform of the
augmented epoch length:*®

Ow,z) =2"" ™ O(mw, 2)
+[z®(7x) + 22V (7 0)]10FwW, 2)
+(z = 2 F(x) + (z = 2)V(7x)P(7x)
— 22 TF(7x). (12)

b) Window Access—The Enhanced FCFS 0.487 Algo-
rithm: Just as we saw in Section II-B2) for the STA, an
alternate approach to finding the waiting time statistics is
to apply the “Moving Server” transformation, in which we
consider only conflict windows as the customers in an
M/G /1 queue. And, just as we saw in Section II-C for
the STA, the “Moving Server” approach can be extended
to accommodate the Window Algorithm, which leads us to
consider an M /G /1 queue with “generalized” busy peri-
ods. As before, the technique is exact only under some
very specific conditions, but has proven to be extremely
accurate in almost all cases.

To use this approach, we need to specify the statistics of
the window that initiates the Generalized Busy Period
(GBP). This is always going to be a one slot long window.
On the other hand, all windows of the GBP, except
possibly the last, are of the maximum size w. The only
intermediate window sizes can appear at the end of the
GBP, as the GBP is completing, but the lag has not grown
to w yet. The windows in this last category (and the
packets that are transmitted during their epochs) are a
very small proportion of all windows, as can be seen from
the area between the two curves in Fig. 9. A basic approx-

*Note that even though we present Q(w, z) as a PGF, it is really a
Laplace transform because the r’s are not integers. A more detailed
discussion is provided in the Appendix.

1900
1 1 1 1 0
081 <3 w2 0.2
AN
AN
0.6 w=l \\ Ho4
| N
041 —0.8
0.2 -Hos
0 . I L | N L . 1
0 0.1 0.2 0.3 0.4 0.487
THROUGHPUT
(a)
1 |
0.8
0.6
0.4}
0.2
0 L 1 2 1 L I ' |
0 0.1 0.2 0.3 0.4 0.487
THROUGHPUT
(b)

Fig. 9. (a) Simulation results for the proportion of epochs generated
from windows of various sizes (FCFS 0.487 Algorithm, WA). The dashed
line shows the analytic approximate dichotomy between “small” and
“large” windows. (b) Simulation results for the proportion of packets
transmitted during epochs generated from windows of various sizes
(FCFS 0.487 Algorithm, WA). The dashed line shows the analytic ap-
proximate dichotomy between “small” and “large” windows.

imation we make in the analysis is to assume that windows
are either of size 1 or w. The result of this extremal
window approximation, as obtained from the analysis that
follows, is the dashed line shown in Fig. 9, introducing a
dichotomy for the window size. The final result for the
transform of the lag is

w—Lw) 0U,2) -z

~ - . (13)
L) -1 z¥—Q0w,2)

Ww,z) =

The mean T(w) and the second moment of the lag
T®(w) can be obtained by differentiating W(w, z). They
can also be obtained by referring to the metrics of the
GBP discrete-time M /G /1 queue. For example, the mean
can be expressed as

1
T(w) = E[bo(l +cd - 1]

P

_r 2y _
+2(1_p)[b(1+c) 1]

where b, and b are the means and Cj and C 2 are the
squared coefficients of variation of the service time of the
first customer of the GBP and a typical customer, respec-
tively.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 6, NOVEMBER 1993

2) The Statistics of the Sum of the Initial and Final Delay:
There is an additional complication in the analysis of the
FCFS 0.487 Algorithm because of its use of arrival time
addressing (which makes it FCFS in the first place). The
problem is that under this addressing scheme, the initial
packet delay in the window of arrival ¢, and the final
packet delay, i.e., the delay of the packet in the epoch of
transmission ¢,, are correlated, and thus we cannot obtain
distribution or higher moment results by treating them
independently and then multiplying the PGF’s or the
Laplace transforms.

In order to obtain the exact statistics of the packet
delay 1 21, +1, +t,, we first obtain the statistics of
ty., =ty + 1,5 then, because ¢, is independent of ¢ ,, the
statistics of the total delay can be obtained by multiplying
the transforms. We denote? by J*(w,s) the Laplace
transform of ¢, assuming a window of size w and traffic
intensity A. In a way very similar to the derivations of FE’s
for the PGF’s of the epoch length and the augmented
epoch length, we obtain, in the Appendix, the following
FE:

N()JT*(w, s) = ¥(x)(z — z22)U*(w, 5)
+[@(7x)z + U(mx) 2 IN(TFx)T*

(Fw,s) + 2 TN(rx) T *(rw, s)
(14)

where z = e~ and U*(w, s) is the transform of a uniform
distribution in [0, w). Notice that a solution for the prod-
uct N(x)J*(w, s) is obtained which, combined with the
solution for N(x) from (11), provides the Laplace trans-
form of t,,. By differentiation, we obtain the following
FE’s for the first and second moments of the final delay,”
T,, 2 Elty, | wland T3(w) 2 E[15 , | w), respectively:

w/2 + W(x/2) W)
Ty o(w) = 14 Ty o(w/2) + 1+ F(x/2) N
15)
T (w) = 1+ TH(w/2)
w/2 + W(x/2)
i LR ry el LR
w2/4 +w + 3%(x/2))‘I’(X)
TFa O T NG
(16)

3) The Total Delay: To obtain statistics for the system
that are not conditioned on the size of the window, we
need the proportion of epochs generated from “large”

2We decided to not make the dependence on A explicit in order to
simplify the notation.

%To simplify the expressions, we consider the unbiased splitting case,
where 7= 7 = 0.5.

POLYZOS AND MOLLE: DELAY ANALYSIS OF FCFS 0.487 CRA

windows u given by
by
1-0p Py
u = =
1 by 1—p+op

Po 1-p

a”n

where p and p, are given by (4), but substituting LO)
for L(). Notice that 1/p, is the mean idle period and
bo,/(1 — p) is the mean (generalized) busy period, both
measured in windows. The proportion of packets transmit-
ted in epochs generated from “large” windows v is ob-
tained by weighing the above proportion with the mean
number of packets successfully transmitted from a window
of the respective size, i.e., N(wA) for a window of size w:

poN(wA)

YT = PN + pgNwA) (18

The Laplace transform of the total packet delay can then
be obtained as

D*(w,s) = vW(w,e s)J*(w,s) + vJ*(1,s) (19)
and the mean as

T(w) = v[T, ,(w) + T(W)] + 7T, ,(1). (20)

D. Results and Comparisons

Given that our solution involves approximations in the
case of the 0.487 Algorithm, we have also performed an
extensive simulation study to determine the accuracy of
our methodology.?® The results are particularly encourag-
ing. In Fig. 9, we show with solid lines the proportions of
epochs generated [Fig. 9(a)] and packets transmitted [Fig.
9(b)] from windows of the minimum and maximum size
(i.e., w =1 and w = 2.6, respectively) as a function of
throughput. The area between the two solid lines repre-
sents windows of intermediate size. Dashed lines show the
split induced by our extremal window approximation, i.e.,
our assumption that only windows of sizes w = 1 and 2.6
are used. Both the small size of the area between the solid
lines and its closeness to the predicted dichotomy accord-
ing to our extremal window approximation (especially
viewed on a packet basis) support the use of this approxi-
mation.

In Fig. 10, we plot the mean and the standard deviation
of the epoch length, and compare them to simulation
results (the small horizontal lines show 95% confidence
intervals). The agreement is extremely good. Notice that
these are unconditional measures, and that the extremal
approximation for the window sizes has been incorporated
into the analytical results. An interesting observation is
that the standard deviation of the epoch length is consis-

1n [10], the Part-and-Try Algorithm is analyzed, but with binary
rather than ternary feedback. Thus, the results obtained there are not
directly comparable with the results we obtained here. This delay distri-
bution methodology has also been presented and applied to other
systems in [8] and [9].

1901

EPOCH LENGTH

s
.7 Std. Dev. 4
-

s L n | n 1 "
[0.1 0.2 0.3 04 0.5

THROUGHPUT

Fig. 10. Comparison of analytical with simulation results for the mean
and standard deviation of the epoch length for the FCFS 0.487 Algo-
rithm (w = 2.6). The effects of the “extremal window size” approxima-
tion are almost unnoticeable for the epoch length statistics.

tently lower than the mean, even for throughputs close to
the capacity of the algorithm.

We compare analytical with simulation results for the
mean and the standard deviation of the packet delay (and
its components ¢, , and ¢,) in Figs. 11 and 12, respectively.
Our analysis for #,, is exact, apart from the weighing of
the conditional results (i.e., we use the extremal window
size approximation instead of the full window size distri-
bution). The simulation results shown in this figure com-
pletely support our analytical results (and the extremal
window size approximation). More interestingly, and im-
portantly, we obtain similarly good results for the mean
lag. Notice that in this case, more approximations are
involved. The extremal window size approximation does
not only specify the weighing now, but also characterizes
the queueing system; furthermore, the solution for the
queueing system is only approximate because the aug-
mented epoch length we use as service time for our
queueing systems (which is not an integer, in general)
does not satisfy the conditions we need for the “Moving
Server” technique to produce exact results. However, the
accuracy of the approximation, as shown in this figure, can
be judged as excellent. Therefore, it is not surprising that
we obtain excellent results for the total mean packet
delay.

Numerical results and relative error estimates are pro-
vided in Table I for the mean and in Table II for the
standard deviation of the packet delay. From these, we

1902

MEAN PACKET DELAY

o5k ST «
/
/
’/
1/,
0.2h = 4
0.1 T T T T T T T T T
0 04 02 03 04 05
THROUGHPUT

Fig. 11. Comparison of analytical with simulation results (95% confi-
dence intervals) for the total mean packet delay 7 and its components
Ty, and T; for the FCFS 0.487 Algorithm (WA, w = 2.6). (The T} curve
has been limited for clarity.)

see that the maximum error is less than 1.3% for the
mean and less than 6.6% for the standard deviation, and
both appear at very high loads (for throughputs of 0.48
and above), which suggests that the simulation estimate
might be suspect. Furthermore, the errors are in both
directions, suggesting that they are probably due to ran-
dom variations in the simulation estimates, rather than
systematic analytic bias.

In Table I and Fig. 13, we compare our results with
bounds on the mean delay for the FCFS 0.487 Algorithm
obtained by Tsybakov and Likhanov [34], by Huang and
Berger [13), and by Georgiadis et al. [7]. Our results agree
very well with those of Georgiadis et al., with the differ-
ence between our estimate and their midpoint less than
0.5% apart throughout the throughput range (Table I),
and also with the upper bound of Tsybakov and Likhanov
(Fig. 13). For large values of throughput, the results of
Huang and Berger are inaccurate.

V. CONCLUSIONS

We have briefly presented our queueing theoretic
methodology for analysis of random access protocols by
first concentrating on the “separable” class. “Separable”
protocols consist of a conflict resolution algorithm (CRA)
in combination with a window algorithm for selecting the
initial set of contenders at the beginning of each conflict
resolution epoch. A key characteristic of protocols in this
class is that the CRA does not terminate before the entire

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 6, NOVEMBER 1993

100+ -

50 -

STANDARD DEVIATION OF DELAY

T M T T T T
0 0.1 0.2 0.3 04 0.5
THROUGHPUT

Fig. 12. Comparison of analytical with simulation results for the stan-
dard deviation of the packet delay (and its components) for the FCFS
0.487 Algorithm (WA, w = 2.6). (The o, curve has been limited for
clarity.)

window has been examined. This is a less general class of
protocols than can be treated using the regenerative
method of Georgiadis e al. [7], [10]. However, what is
interesting about this methodology is that, when it applies,
the information obtained from the performance analysis is
essentially complete since we get the (steady-state) distri-
bution of the packet delay exactly, from which, of course,
all other statistics can be derived. This permits us to see
the effects of minor differences between protocols, such
as random versus arrival-time addressing, or the use of
biased and/or d-ary splitting, and also to easily incorpo-
rate changes in the environment due to channel errors,
variable message lengths, carrier sensing, and collision
detection in a unified way.

There are, however, other window algorithms, notably
the FCFS 0.487 Algorithm, which do not satisfy the condi-
tions for separability. Due to the importance of the 0.487
Algorithm, we have followed two different directions in
order to analyze its delay performance. We first introduce
an approximate algorithm, the Three-Cell Algorithm
(3CA), for which we are able to obtain exact results
(under many circumstances) and which provides pes-
simistic bounds for the performance of the 0.487 Algo-
rithm. In particular, we obtain the distribution of the
packet delay, and thus moments and percentiles. Our
results are exact for the SWA (with any window size, but
free of any numerical component for w = 2), and also for
the WA with w = 2. Although w = 2 is not the optimal

POLYZOS AND MOLLE: DELAY ANALYSIS OF FCFS 0.487 CRA

1903

TABLE 1
COMPARISON OF RESULTS FOR THE MEAN DELAY FOR THE FCFS 0.487 ALGORITHM (WA)
Analysis Simulation Comparisons
Huang and 95% Confidence % Difference Between
Our Georgiadis et al. [7] Berger [13] Interval Our Method and ...
Method Lower Upper Lower Upper Dev. [7] Simulation
A (Approx.) Bound Bound Bound Bound Mean +/-) (Midpoint) (Midpoint)
0.01 1.525 1.5253 1.5255 0.000
0.05 1.637 1.6348 1.6388 0.000
0.10 1.805 1.796 1.8130 18 1.8 1.807 0.004 -0.055 0.111
0.20 2311 2.270 2.352 2.29 2.3 2312 0.005 0.000 0.043
0.25 2.732 2.66 2.80 -0.073
0.30 3.395 3.270 3.525 3.33 3.43 3.384 0.026 0.059 -0.325
0.35 4.581 4.358 4.8151 0.131
0.40 7.224 6.779 7.670 6.53 7.31 7.191 0.160 0.000 —0.459
0.42 9.433 8.801 10.11 791 9.3 9.440 0.223 0.243 0.074
0.44 13.57 12.584 14.63 9.94 12.6 13.46 0.35 0.272 -0.817
0.45 17.34 16.030 18.754 0.299
0.46 2392 22.043 25.95 14.00 19.2 23.78 1.03 0.317 —0.597
0.48 92.91 85.086 101.452 22.4 38.5 94.09 13.11 0.385 1.252
0.487 5691. 5200. 6228. 0.403
TABLE 1I 50 T T T T T T T T T
COMPARISON OF RESULTS FOR THE STANDARD DEVIATION
OF THE PACKET DELAY FOR THE FCFS 0.487 ALGORITHM B
Analysis Simulation
% Difference 95% Confidence Interval . Our Analysis 4
from Deviation (+ /—) i,
Our Method ~ Simulation Midpoint % of 20 .Geof"i:z?:a " Sk
A (Approx.) Midpoint Value Absolute Midpoint | ; Huan% & Berger S
0001 0302782 264 0205 0004 136 e Tekerd Hnanoy R
0.1 1.056721 -0.31 1.060 0.011 1.04 :
0.2 1.796372 0.81 1.782 0.016 0.90 %
0.3 3.134142 0.00 3.134 0.030 0.96 o T
04 7.343612 0.64 7297 0.097 1.33 £
0.41 8.352253 1.01 8.269 0.181 2.19 4
0.42 9.657946 0.01 9.657 0.233 2.41 E
0.43 11.416115 -1.35 11.572 0.320 2.77 z
0.44 13.914207 1.76 13.674 0.451 3.30 g 4
0.45 17.749131 -220 18.149 0.907 5.00
0.46 24.398088 —1.51 24.771 1.426 5.76 T
0.47 38.789444 4.53 37.108 2.836 7.64
0.48 93.548870 —6.52 100.071 22.702 22.69]
window size in terms of capacity, it is nevertheless a
reasonable choice and, indeed, the one suggested by Gal-
lager in [6].
Then, we consider the “full” FCFS 0.487 Algorithm
(including the minor extension to static biased splitting, 10 T o2 | os | o4 | o5
THROUGHPUT

which raises the capacity to 0.48757), with both simplified
and nonsimplified window access (i.e., both the unen-
hanced and enhanced versions of the 0.487 Algorithm
using the terminology of [13]). Our main contribution
here is the introduction of the augmented epoch length
transformation, i.e., we add to the epoch length the part
of the window that the 0.487 Algorithm “drops™ in order
to counteract the regression on the arrival time axis that
would result. Then, in the case of the SWA, the lag of the
algorithm is equivalent to the waiting time in a D/G/1
system which has windows (of the initial size, typically
w = 2.6) as customers, interarrival time the (initial) win-
dow size, and service time the augmented epoch length.
This transformation is exact. However, the D /G /1 queue
is not a discrete-time system anymore (unlike that for the
3CA) because the augmentation of the epoch length is

Fig. 13. Comparison of our analytical results for the mean packet delay
for the FCFS 0.487 Algorithm (w = 2.6) with the bounds provided by
Tsybakov and Likhanov in [34], Huang and Berger in [13], and Geor-
giadis et al. in [7].

done by various fractions of the window size. (If we were
in a position to obtain the solution for this queueing
system exactly, our analysis for the unenhanced 0.487
Algorithm would be exact.)

In the case of the nonsimplified Window Algorithm, the
situation is further complicated by the existence of various
intermediate window sizes between the minimum (w = 1)
and the maximum (typically, w = 2.6). Since, however, the
proportion of intermediate window sizes is very small, we
have introduced the extremal window approximation,

1904

which allows us to model the lag as the waiting time in a
“Moving Server” discrete time M /G /1 queue. This last
step involves an additional approximation since service
times for this last queue (i.e., the augmented epoch lengths
for conflict windows) are not exact multiples of w — 1, as
is required. However, the accuracy of our results is excel-
lent for both the mean and variance of the packet delay.
In combination with our results for the unenhanced 0.487
Algorithm and for the 3CA (which provide upper bounds
for the delay), they provide a comprehensive system of
analytic results.

APPENDIX
FunctioNnaL EqQuations For THE FCFS 0.487
ALGORITHM

We derive here a functional equation (FE) on the
transform of the augmented epoch length /, ie., the
length of an epoch generated by a window of (initial) size
w, augmented by the length of the part of the window that
remains unexamined at the end of the epoch, if any.
Notice that the augmented epoch length is not necessarily
an integer anymore, and thus a Laplace transform is the
appropriate transform:

_ £ d -
O*(w,s) & /+ e’“a Pr{l <1t} dr.

-

However, it is convenient to define an intermediate form
Q(w, z), very similar to a PGF, so that

O*(w,s) = O(w,e™*).

We follow the approach we used in Section IV-A to
obtain a FE for the PGF of epoch lengths, conditioned on
the enabled set being Poisson distributed with parameter
x £ Aw. Again, considering the two subsets at a candidate
level of splitting, the set of all possible events is {i, s, ¢} X
{i, s, c}, where i denotes no busy points in the set (idle), s
denotes a single busy point (success), and ¢ denotes two
or more busy points (conflict). By inspection, we obtain
the following relation:

Qlw, z)

=Pr{(i,0) or(i,s)or (s5,0)}z
+Pr{(i,)20 (7w, 2)
+Pr{(s,s) or (s,c)} 220V (Tw, 2)
+Pr{(c,i) or (c,s) or (c,0)}zQNmww, 2) 27"
= F(x)z + ®(7x)F(7x)20)(Fw, z)
+ ()P (7 x) 22 0V(Ew, 2)

+F(mx)09(mw, z)z' 7%,

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 6, NOVEMBER 1993

We can obtain expressions for the unconditional PGF’s by
using

F(x)0(w, z) = O(w, z) — zF(x) and
D(x)0D(w, z) = 0w, z) — zB(x).

After substitutions, we obtain the FE sought:

Ow,z) =2 0(ww, z)
+[20(rx) + 22 V(710G w, 2)
+(z = 2H)F(x) + (22 = 2)W(7x)P(7x)
— 22 TYF(mrx).

Differentiating this FE with respect to z and setting
z =1, we obtain the following FE for the mean aug-
mented epoch length:

Lw) = A + 7#w)[l = F(rx)] + L(mw)
+ F(rx)L@w) - F(x)
- V(7x)[1 — ®(Fx)].

Similarly, we can obtain the following FE for the second
and third moments of the augmented epoch length H(w)
and V(w), which are required for the computation of the
mean and variance of the packet delay. For simplicity, we
present the unbiased splitting case only:

Hw) =1 +w/2" + [1 + F(w/2)1H(w/2)
+2+w+20(w/2) + 4¥(w/2)]L(w/2)
- 3F(w) = 3d(w/2) — S¥(w/2)D(w/2)
—(W2/4 + 2w)F(w/2)

Viw) = +w/2) +[1+ F(w/2)IWV(w/2)

+ 3[1 + ; + F(w/2) + \If(w/z)]ﬁ(w/z)

+3[+w) + D(w/2) + 4¥(w/D| LGw/2)
— TF(w) — T®(w/2) — 19V (w/2)D(w/2)
—(w3/8 + 3w2/4 + 6WIF(w/2).

We obtain a FE on the product N(x)J*(w,s) by con-
sidering an exhaustive set of possible events at a candi-
date level of splitting, exactly as we obtained the FE for
the PGF of the epoch lengths Q(x, z). For convenience,
we use the z variable as the transform of one unit of time
instead of ¢ *. Since we concentrate on a “tagged” packet,
there is always at least one transmission in the sets
considered here.

POLYZOS AND MOLLE: DELAY ANALYSIS OF FCFS 0.487 CRA 1905

N(x)J*(w,s)
= Pr{(i,s) or (s,i)}zU*(w, s)
+Pr{(i,)}zNO(Tx)T*(Fw, s)
+Pr{(s, Hz2TTVU*(rw, s) + 22U*(Fw, 5)]

+Pr{(s,)2 U (7w, s)

+21*TYN(wx)J*(mw, §)
=W(x)z — zDHU*(w,s)
+[D(rx)z + ¥(mx) 22 INF)T*(Tw, s)
+2 T N(rx)T ¥ (arw, 5)
where we have used the identity
V(x)U*(w,s) = ®(rx)V(@)U*(Fw,s)

+ 2 NO(@x)T* (7w, 5)]

+Pr{(c,i) or (c,s) or (c,c)}z " T*N©(arx)

‘J*(”)(‘/rx, Z)
W(x)zU*(w, s)
+®(mx)F(7x)zN(@mx) T *N(Tw, 5)
+W(mx)V(@F)[22U (7w, s)
+ 22U*(7w, 5)]
+ W (ax)F(mo 22 ™ U*(7ww,s)
+ ZANOFZ)T* N (Tw, 5)]
+F(mx) 2! " TN O(mx)I* N mrx, z)
Y(x)zU*(w,s)
+®(mx)z[N(FTx)T*(Tw, s)
—W(mx)zU*(7w, s)]
+¥(mx)V (T[22 T U* (7w, 5)

+ 23U*(7w, 5)]

(1]
[21

[3]
(4]
(5

(8]

19

+ U(7x)®(@x)z"U*(7w, s).

REFERENCES

D. Bertsekas and R. Gallager, Data Networks, 2nd ed. Englewood
Cliffs, NJ: Prentice-Hall, 1992.

J. L. Capetanakis, “Generalized TDMA: The multiaccessing tree
protocol,” IEEE Trans. Commun., vol. COM-27, pp. 1476-1484,
Oct. 1979.

___, “Tree algorithms for packet broadcast channels,” IEEE
Trans. Inform. Theory, vol. IT-25, pp. 505-515, Sept. 1979.

J. W. Cohen, The Single Server Queue. Amsterdam: North-Hol-
land, 1969.

G. Fayolle, P. Flajolet, M. Hofri, and P. Jacquet, “Analysis of a
stack algorithm for random multiple-access communication,” JEEE
Trans. Inform. Theory, vol. IT-31, pp. 244-254, Mar. 1985.

R. G. Gallager, “Conflict resolution in random access broadcast
networks,” in Proc. AFOSR Workshop Commun. Theory Appl.,
Sept. 1978, pp. 74-76.

L. Georgiadis, L. F. Merakos, and P. Papantoni-Kazakos, “A
method for the delay analysis of random multiple-access algo-
rithms whose delay process is regenerative,” IEEE J. Select. Areas
Commun., vol. SAC-5, pp. 1051-1062, July 1987.

L. Georgiadis and M. Paterakis, “Delay distribution analysis of
window random-access algorithms,” in Proc. 26th Conf. Decision
Contr., Los Angeles, CA, Dec. 1987, pp. 703-707.

___, “Performance analysis of window type random-access algo-
rithms for packet radio networks, in Proc. IEEE INFOCOM 89,
Ottawa, Canada, Apr. 1989, pp. 505-511.

+W(mx)F(@mx)[227U (7w, s)] [10] ____, “Bounds on the delay distribution of window random-access
_ algorithms,” IEEE Trans. Commun., 1993.
+W(mx) 22 [NGEx)T*(Tw, s) [11] 7. F. Hayes, “An adaptive technique for local distribution,” IEEE
_ (= Trans. Commun., vol. COM-26, pp. 1178-1186, Aug. 1978.
-V (7x)zU*(7w, s)] [12] J. Huang and T. Berger, “Delay analysis of interval-searching
I contention resolution algorithms,” IEEE Trans. Inform. Theory,
+ZIPP[N(mrx)J*(mw, s) vol. IT-31, pp. 264-273, Mar. 1985.
" [13] , “Delay analysis of 0.487 contention resolution algorithms,”
-V (wx)zU* (7w, s)] IEEE Trans. Commun., vol. COM-34, pp. 916-926, Sept. 1986.
" [14] J. Hunter, Mathematical Techniques of Applied Probability Vol. 2,
P(x)zU*(w,s) Discrete Time Models: Techniques and Applications. New York:
— — Academic, 1983.
* 3
+®(7TX)Z[N(WX)J (WW’ s) [15] L. Kleinrock, Queueing Systems, Vol. 1, Theory. New York:
_ = (= Wiley-Interscience, 1975.
Y(@x)zU*(Tw, 5)] [16] J. L. Massey, “Collision-resolution algorithms and random-access
_ — 2+ FWT TR communications,” in Multi-User Communications, G. Longo, Ed.
V(mx)P(7x)z Ut(mww,s) New York: Springer-Verlag, 1981.
2NI(= (= [17] P.Mathys and P. Flajolet, “Q-ary collision resolution algorithms in
+W(mx) 2’ N(@x)T* (7w, s) random-access systems with free or blocked channel access,” IEEE
1+ 7w * Trans. Inform. Theory, vol. IT-31, Mar. 1985.
+z N(mx)J*(mw, s) [18] L. Merakos and C. Bisdikian, “Delay analysis of the n-ary stack
P * random-access algorithm,” IEEE Trans. Inform. Theory, vol. 34, pp.
(x)zU*(w, s) 931-942, Sept. 1988.
+®(mwx)zN(@x)T*(Tw, s) {191 M. L. Molle and L. Kleinrock, “Virtual time CSMA: Why two
2nrf—= (= clocks are better than one,” IEEE Trans. Commun., vol. COM-33,
+W(wx)z!NTx)*(Tw, s) Sept. 1985.
_ 2 _ [20] M. L. Molle, “Analysis of a class of distributed queues with
—O(mx)V(F7x)22U*(Tw, s) applications,” Performance Eval., vol. 9, pp. 271-286, Aug. 1989.
_ P [21] J. Mosely and P. A. Humblet, “A class of efficient contention
~W(rx)P(Fx)*H VU (mw, 5) resolution algorithms for multiple access,” IEEE Trans. Commun.,
B vol. COM-33, pp. 145-151, Feb. 1985.
+ZTYN(mx)T*(mw, s) [22] A. G. Pakes, “Some conditions for ergodicity and recurrence of
_ Markov chains,” Oper. Res., vol. 17, pp. 1058-1061, 1969.
2 £l
V(x)zU*(w,s) — 2 [@(mrx)U*(7w, s) [23] M. Paterakis and P. Papantoni-Kazakos, “A simple window ran-
_ = dom access algorithm with advantageous properties,” IEEE Trans.
+ W (mx)O(@x) 2™ U*(7w, 5)] Inform. Theory, vol. 35, pp. 1124-1130, Sept. 1989.
[24] G. C. Polyzos, M. L. Molle, and A. N. Venetsanopoulos, “Delay

+[®(mx)z + V(mx)z?INGTx)T*(Tw, s)

analysis of tree conflict resolution algorithms: The non-homoge-

1906

(26]

[27]

(28]

[29]

[30]

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 39, NO. 6, NOVEMBER 1993

neous case,” in Proc. IEEE GLOBECOM 85, New Orleans, LA,
Dec. 1985, pp. 1504-1509.

____, “Performance analysis of finite nonhomogeneous popula-
tion tree conflict resolution algorithms using constant size window
access,” IEEE Trans. Commun., vol. COM-35, pp. 1124-1138, Nov.
1987.

G. C. Polyzos and M. L. Molle, “A generalized busy period
approach to the delay analysis of window access tree conflict
resolution algorithms,” in Proc. IEEE ICC 87, Seattle, WA, June
1987.

___, “Delay analysis of a window tree conflict resolution algo-
rithm in a local area network environment,” in Proc. ACM SIG-
METRICS 87, Banff, Alta., Canada, May 1987.

G. C. Polyzos, “A queueing theoretic approach to the delay
analysis for a class of conflict resolution algorithms,” Tech. Rep.
CSRI-224, Comput. Syst. Res. Inst., Univ. Toronto, Toronto, Ont.,
Canada, Mar. 1989.

G. C. Polyzos and M. L. Molle, “Delay analysis for the FCFS 0.487
conflict resolution algorithm,” Tech. Rep. CS 90-179, Dep. Com-
put. Sci. Eng., Univer. California at San Diego, LaJolla, Oct. 1990.
L. D. Servi, “D/G /1 queues with vacations,” Oper. Res., vol. 34,
pp. 619-629, July—Aug. 1986.

[31]

[32]

[33]

[34]

[35]

[36]

[37]

IEEE Trans. Inform. Theory, Special Issue on Random-Access
Communications, vol. IT-31, Mar. 1985.

B. S. Tsybakov and V. A. Mikhailov, “Free synchronous packet
access in a broadcast channel with feedback,” Problemy Peredachi
Informatsii, vol. 14, pp. 32-59, Oct.-Dec. 1978.

____, “Random multiple packet access: Part-and-try algorithm,”
Problemy Peredachi Informatsii, vol. 16, no. 4, pp. 65-79, Oct.—Dec.
1980.

B. S. Tsybakov and N. B. Likhanov, “Upper bound for the delay in
a multiple-random-access system with a splitting algorithm,” Prob-
lemy Peredachi Informatsii, vol. 18, pp. 76—84, Oct.—Dec. 1982.

B. S. Tsybakov, “Survey of USSR contributions to random multi-
ple-access communications,” IEEE Trans. Inform. Theory, vol. IT-
31, pp. 143-165, Mar. 1985.

B. S. Tsybakov and N. B. Likhanov, “Some new random multiple-
access algorithms,” Problemy Peredachi Informatsii, vol. 21, pp.
69-89, Apr.—June 1985. (Also in Proc. Int. Symp. Inform. Theory,
Brighton, England, June 1985, p. 102.)

J. K. Wolf, “Born again group testing: Multiaccess communica-
tions,” IEEE Trans. Inform. Theory, vol. IT-31, pp. 185-191, Mar.
1985.

