TinkerNet: A Low-Cost Networking Laboratory

Mike Erlinger, mike@cs.hmc.edu
Computer Science Department
Harvey Mudd College
301 East 12th Street
Claremont, CA 91711

Titus Winters, tdw@cs.hmc.edu
Computer Science Department
Harvey Mudd College
301 East 12th Street
Claremont, CA 91711

Mart Molle, mart@cs.ucr.edu

Computer Science and Engineering Department
University of California Riverside

SURGE Building, room 310
Riverside, CA 92521

Chris Lundberg, cdl@cs.hmc.edu
Computer Science Department
Harvey Mudd College
301 East 12th Street
Claremont, CA 91711

Roy Shea, rshea@cs.hmc.edu
Computer Science Department
Harvey Mudd College
301 East 12th Street
Claremont, CA 91711

Abstract

The 2002 SIGCOMM Workshop on Educational
Challenges for Computer Networking [Kur02a] ex-
posed many issues related to teaching computer net-
working with the need for a laboratory in parallel with
lecture a recurring theme. We have created Tinker-
Net, a low cost (mostly throw-away PCs), laboratory
environment for networking experiments focused on
the Build-Your-Own-Stack (BYOS) activity. This pa-
per describes the hardware and software environment
that is TinkerNet together with a set of student exper-
iments. We discuss our plans for formal assessment
to determine how the addition of laboratory experi-
ments affects student learning. Finally the status and
availability of TinkerNet is noted.

1 Overview

The 2002 SIGCOMM Workshop on Educational
Challenges for Computer Networking [Kur02a] ex-
posed many issues related to teaching computer net-
working with the need for a laboratory in parallel with
lecture a recurring theme. We, (Computer Science
at Harvey Mudd College and Computer Science at
University of California, Riverside) have created Tin-
kerNet a low-cost, flexible, stand-alone laboratory for
running networking experiments and assignments fo-
cused on the Build-Your-Own-Stack (BYOS) activity.

Copyright (©2004, Australian Computer Society, Inc. This
paper appeared at Sixth Australasian Computing Education
Conference (ACE2004), Dunedin, New Zealand. Conferences
in Research and Practice in Information Technology, Vol. 30.
Raymond Lister and Alison Young, Ed. Reproduction for aca-
demic, not-for profit purposes permitted provided this text is
included.

63

TinkerNet allows students the opportunity to expe-
rience networking protocols by having direct access
to an Ethernet network, with raw frame data arriv-
ing and simple functions for sending raw data out.
The experiments are focused on students building and
testing pieces of the network protocol stack, from OSI
layer 2 (Link) up to layer 7 (Application). Because
all of the nuances of kernel design are hidden from
students, they can concentrate on the particular task
at hand: building a network stack.

TinkerNet, Figure 1, is a stand-alone laboratory
consisting of an array of back-end nodes, two net-
works, and a controller. The back-end node array
is a set of machines onto which students load their
OS kernels. These machines have limited physical re-
quirements - in our prototype the backend nodes are
all Pentium 200s cast off by other departments as ob-
solete. Back-end nodes each contain a CPU, RAM,
and two 10/100Mbit Ethernet interfaces (no moni-
tors, keyboards, or disks), and are accessed entirely
via their network interfaces. One of these interfaces
is attached to the test network (e.g., 192.168.100/24).
The other interface is connected to the admin network
(e.g., 192.168.200/24).

The admin network provides connectivity to each
of the nodes and provides the services needed to ad-
minister those nodes, i.e., sending kernel images, re-
mote control of the bootloader, etc. The test net-
work provides students with a network to evaluate
their network kernels, i.e., a network where student
packets flow. An important security feature of Tin-
kerNet is that neither the admin network nor the test
network is connected to the institution’s production
network and/or the public Internet.

The TinkerNet controller connects to both the test
and admin networks, just like a back-end node, but

Internet

test network

I I

I]

controller back-end

node

back-end
node

back-end
node

back-end
node

admin network

Figure 1: TinkerNet Architecture

also connects to the institution’s production network
on a third interface. The controller provides a home
for the students and for all the software to make Tin-
kerNet operational.

2 Implementation

The TinkerNet hardware infrastructure is based on
our own experiences and interpretation of designs
found in the literature. Comer’s [Com02] network-
ing laboratory description (discovered after we had
prototyped TinkerNet) is similar to TinkerNet, but
differs in significant ways. The most significant differ-
ences being Comer’s need for special hardware (Con-
sole Multiplexor and Reset Controller) and his use
of an operating system with limited features and
accessibility, XINU [Com84]. TinkerNet is based
on commodity hardware and the readily-available
OSKit[F1u02][For97], Linux, and GNU software. Our
software choices are more widespread within the com-
puting community, and thus TinkerNet will both ben-
efit from the symbiotic relationship with these other
projects and have more acceptance because it involves
well known and easily available technology. An addi-
tional advantage of the TinkerNet approach is that
it is accessible even to those institutions (e.g., un-
dergraduate institutions) that do not have on-going
research in the area of computer networks. Our proto-
typing effort and Comer’s laboratory description in-
dicate that the TinkerNet design is reasonable and
fully implementable.

Although students never have to be aware of it,
their kernels are built using OSKit. OSKit is a project
from the University of Utah’s Flux group [Flu02],
[For97] which makes prototyping and development of
operating systems and OS kernels easier by provid-
ing a set of component libraries that can be added
or removed from the kernel as necessary. TinkerNet
uses the OSKit libc implementation, network drivers,
and memory manager. TinkerNet does not need most
of the features common to fully functional operating
systems (file-system, TCP/IP stack, etc), so most of
the OSKit provided modules are not utilized or linked
into the student kernels. However, the presence of
these modules does mean that TinkerNet can be eas-
ily expanded to teach principles based on these addi-

64

tional modules, e.g., Operating System fundamentals.

In prototyping TinkerNet we found the need for
some custom code: a simple network stack, an ARP
table, a simple scheduler, initialization functions, and
a printf function that works over a network connec-
tion instead of to a terminal. All of these modules
have been prototyped and are functional.

2.1 Administrative Network Stack

The administrative network stack is used for commu-
nicating information between a back-end node and
the controller without interfering with traffic on the
test network or relying on the proper implementation
of test network protocols. This stack supports remote
debugging, messages to boot and release kernels, as
well as providing control over auxiliary devices, such
as power distribution units and terminal servers. The
administrative network stack, in essence, replaces the
traditional I/O interface for the back-end nodes.

2.2 ARP Table

Proper implementation of a network stack implies
that ARP requests will not be made for every outgo-
ing packet. MAC addresses are stored in a hash table
keyed on IP address for quick access. This ARP ta-
ble is only used in the administrative portion of the
kernel code; students must still implement their own
ARP table for the test network.

2.3 Scheduler

To reduce the chances that student projects create
infinite loops or crash their kernel so that the ma-
chine does not reboot properly, all student code is
executed outside of the networking interrupt struc-
ture. The frames read by the test network are sched-
uled by a primitive scheduler and placed in a queue.
When the task execution function (the only portion
of the project running outside of interrupts) gets to
this packet, it will dequeue it and call the ethrecv
function. This scheduler is a non-interrupting sched-
uler in that it will never terminate a task. However,
system level interrupts are capable of interrupting the
scheduled tasks. Thus, it is still possible to reboot the

machine remotely, query for debug output, etc., us-
ing the admin network. This approach has the added
benefit of providing debugging information even if the
student’s code is buggy and has crashed.

2.4 netprintf

This function is used to print debugging output from
the back-end node over the admin network rather
than to the console. It functions exactly like printf,
since it is implemented using the same [ibc internals
and argument lists.

3 Operational Overview:

When using TinkerNet, students are provided with
a skeleton source tree containing the function proto-
types they must implement, as well as a GNU Make-
file preconfigured: to build the student’s source, to
link the student object code to the existing object
code for handling the admin network, and to prepare
the image to be sent to a back-end node. Using tools
on the controller, students can have their kernel re-
motely booted and view output from it. At no time
does the student have to be aware of the existence of
the admin network or the infrastructure in place to
support it. Finally, when the student is done testing a
particular build of their kernel, they can simply push
a button on the controller and have the node their
kernel was booted on reboot and rejoin the pool of
available nodes.

4 Laboratory Experiments

In developing our prototype we have created sketches
of a semester-long set of laboratory experiments fo-
cused on student development of a fully functional
network protocol stack. In this set of experiments,
each new experiment builds on the previous experi-
ments and is keyed to lecture material. Currently we
use Peterson and Davie [PD03] as the course text, but
having previously used Comer, [Com03] we believe
the experiments can be easily matched to almost any
computer networking text.

We begin with an experiment to review some is-
sues around programming in C!, and then work our
way up from raw Ethernet packets to fully functional
IP and then UDP. Later assignments build on what
students have already experienced in the course by
having them create some new protocols to handle is-
sues in networking, e.g., finding other hosts support-
ing a protocol. We believe that there are many other
experiments which could be created, e.g., a protocol
to handle parts of TCP such as recovering dropped
packets. We also believe a full implementation of
TCP would require much more time then is available
in a semester. We envision TinkerNet being used in
advanced courses to implement application protocols
and/or network devices, such as a router.

n our standard undergraduate curriculum the majority of the
programming is in C4+4 and many students will be unfamiliar with
the differences between C and C++.

65

4.1 Example Set of Laboratory Experiments

e Lab 1: The goal of this assignment is to gain pro-
ficiency with C programming, and to (begin to)
learn the differences between C and C++4-. There
are also a few exercises that address networking
in general.

e Lab 2: The goals of this assignment are: to gain
familiarity with the lab environment, to success-
fully compile a TinkerNet kernel, and to imple-
ment functions that send and receive Ethernet
packets.

e Lab 3: The goals of this assignment are: to gain
more familiarity with the lab environment, to
successfully compile a TinkerNet kernel, and to
implement functions that send and receive ARP
packets.

e Lab 4: In this assignment a simple, end-host ver-
sion of the Internet Protocol is implemented. TP
is the most basic protocol for transmitting data
across heterogeneous networks.

e Lab 5: In this assignment sending and receiving
of UDP datagrams is implemented, as well as a
simple service to test this functionality.

e Lab 6: In this assignment the opportunity to de-
sign, create, and implement a peer-to-peer pro-
tocol is provided. In particular, this protocol can
be used to locate other hosts on the network run-
ning the same protocol. Using this protocol, two
machines will simultaneously boot on TinkerNet,
locate each other, and then transmit data be-
tween themselves.

4.2 Detailed Description of a Laboratory Ex-
periment

In this assignment, students gain an understanding of
how a data transport protocol can be used to transmit
more advanced network protocols from point to point.
In particular, they are given raw Ethernet frames off
of an Ethernet network. They then need to examine
and to correctly categorize these frames.

In the sample file experimentl.c there is
a function ethrecv which you must write.
Your function must keep the same declaration
(name, return value, and parameters) or the
project will not link properly. This function is
given two parameters, a pointer and a length.
This pointer points to a full Ethernet frame
of the given length. All fields in this frame
remain in network byte-order.

You are to perform the following tasks:

1. Check the frame to see if it is addressed
to your system, or to Ethernet broadcast.
If the frame is not destined for either ad-
dress, discard it. (For this project, dis-
carding a packet involves returning from
ethrecv without processing the packet.)

2. Check the protocol type field of the Eth-
ernet frame. If the protocol contained in
this Ethernet frame is IP or ARP, print
out an appropriate message. If the en-
capsulated protocol is not ARP or IP, dis-
card the frame.

3. Implement a function that takes a hard-
ware address (array of 6 bytes), a pointer
to some data, length of that data, and
a protocol number. The function should
then compose the proper Ethernet frame
and send it on the network using the
function ethsend.

Notes

The Linux kernel source
(1inux/include/linux/if _ether.h)
contains both a struct that captures the fields
of the Ethernet frame, as well as numeric con-
stants for demultiplexing the encapsulated pro-
tocol.

Also, you should include the header file ma-
chinelnfo.h. Information that is specific to the
back-end node your kernel boots on will be
filled in here automatically. This struct in-
cludes strings containing the node name, MAC
address, and |IP address.

5 Analysis: Practical and Pedagogical

At the 2002 SIGCOMM Workshop, Jorg Liebeherr
presented 10 Thoughts on Networking Labs [Kur02b].
As a way to position TinkerNet within the myriad of
proposals for computer networking laboratories, we
present Jorg’s list modified with comments related to
TinkerNet as well as three additional thoughts of our
own. These comments reflect our views related to the
focus of a networking laboratory and student learn-
ing. Our comments on student learning are currently
anecdotal. Section 6 describes our plan for doing for-
mal assessment of the TinkerNet Laboratory.

1. Try to make education in computer net-
working more concrete. Lectures cannot ever
fully convey to the student the complexity and
interactions of a system. TinkerNet provides the
access needed for concrete experiences in net-
working. A key TinkerNet objective is to make
this access inexpensive, easy to use, and easy to
maintain.

2. Don’t teach a vendor-specific course on
router configuration. TinkerNet focuses on
basic networking functionality. It provides a ve-
hicle for a non-vendor approach to experiencing
network development. While the current exper-
iments emphasize TCP/IP, there is no reason
other protocols could not be investigated and/or
students could develop their own protocols.

3. Use science labs as model. TinkerNet pro-
vides an infrastructure around which experi-

66

10.

ments can be organized. Students create, ob-
serve, and measure using existing tools such as
tcpdump and ethereal.

. Build on prior knowledge. TinkerNet as-

sumes a certain level of programming expertise
which is usually obtained in earlier courses. Also,
the experiments are keyed to lecture activities.
Students have a certain knowledge from lecture
that is put into practice using TinkerNet.

. De-emphasize skill - emphasize learning.

The primary purpose of TinkerNet is to study
networking protocols, in particular, those imple-
mented by the student. The ability to configure
any particular network subsystem, e.g., a Cisco
router, is not part of the activity. However, we
do foresee future experiments where certain op-
erational aspects of routing are implemented as
a TinkerNet experiment.

. Students should feel in control of the

equipment. One of the purposes of TinkerNet
is to give students total control over their ker-
nels. They build these kernels, upload them, and
control their execution. The TinkerNet software
hides many of the details of student kernel man-
agement, but the primary aspects of building the
network protocol stack are under the student’s
control.

Keep it real. TinkerNet is as real as it gets.
Students build their own protocol stack, execute
that stack on their own machine, and measure
and evaluate the results. All this happens in an
environment which is well controlled for the ben-
efit of students.

. Organize a lab in 3 phases: Prelab, lab ses-

sion, lab report. Prelab consists of discussion
of the experiment in class - during the lecture
on that specific area. Lab sessions are then held
at a later time. All students are presented with
help in the laboratory in the form of student as-
sistants. Fach experiment requires a lab report,
the contents of which are well defined.

. Leverage time investment. “Designing, writ-

ing, and testing a single lab are a substantial in-
vestment of time. Therefore a lab course should
stay relevant for several years.” TinkerNet will
last as long as there are operating systems and
network protocol stacks. The material covered
in TinkerNet experiments is timely now and will
be timely for many years in the future.

Control the need for supervision. Tinker-
Net, like all laboratory environments, will require
some supervision. This supervision can be at
the level of student assistants rather then fac-
ulty. There are two time frames for TinkerNet
experiments. First, there is a common labora-
tory time for all students. It is during this period
that the majority of the experiment is completed.

Second, since TinkerNet is a dedicated environ-
ment, there is no reason why students could not
use the laboratory at off hours to complete their
experiments.

11. Control the costs of creation, operating,
and maintenance. The TinkerNet environ-
ment is inexpensive with respect to hardware,
as most of it is available for free. We believe
that costs are less than $1000 for all parts other
than the controller. The controller can be a rea-
sonably configured PC. Once TinkerNet is devel-
oped, operation and maintenance are again in-
expensive because the majority of the software
modifications can be done by students and in re-
ality will be available from the community (i.e.,
open source CVS tree). Overall TinkerNet is
also inexpensive, because it can provide a ma-
chine for each student without dedicating that
machine. The back-end node pool of machines
is dynamically assignable to students as needed.
Of great value is the fact that our initial experi-
ence with TinkerNet indicates that n nodes are
sufficient for 2n students under average working
conditions, and perhaps as much as 2.5n if stu-
dents are aggressively reminded to not needlessly
leave nodes booted while developing code.

12. Create a laboratory environment that can
be used by multiple courses. TinkerNet is
described as an environment for teaching com-
puter networking, but there is no reason it can-
not be expanded to teach other subjects, e.g.,
Operating Systems. Once the TinkerNet envi-
ronment is created, additional experiments will
require few changes to TinkerNet.

13. Create a laboratory environment that is
isolated from the normal computing ac-
tivities. TinkerNet can be both physically and
logically isolated from department computing re-
sources. This is particularly advantageous as stu-
dents are given access to read all network traffic,
and it is possible for students to accidently ”de-
stroy” the performance of a network. The iso-
lated nature of TinkerNet eliminates any admin-
istration concerns with possible campus network
or operating system accidents. Basically, Tin-
kerNet allows student code to ”crash and burn”
without affecting computing resources outside of
TinkerNet.

6 Status and Availability

We have prototyped TinkerNet by prototyping both
the hardware and software environments. We have
successfully used TinkerNet in one course offering at
Harvey Mudd. We believe that TinkerNet has many
advantages for teaching networking both pedagogical
and administrative. In terms of pedagody we cur-
rently only have anecdotal evidence - student course
comments indicate that students have been excited

67

and enthusiastic about the laboratory and the amount
of synthesis with material presented in lecture.

We are just beginning a formal assessment pro-
cess. At HMC (where the networking course is taught
once a year) we are developing a set of questions re-
lated to each experiment to be provided to students
prior to the laboratory and after the corresponding
lecture material. After the experiment students will
be asked to reply to the same questions and to pro-
vide comments on how the experiment increased their
knowledge (also any suggested changes to the exper-
iment). At UCR where a number of sections of the
networking course are taught each semester, it will be
possible for TinkerNet use to be isolated to certain
sections. UCR will then use a questionnaire given to
all students taking networking to determine whether
the TinkerNet experience has provided students with
a better understanding of networking.

;From the administrative viewpoint, TinkerNet is
cheap to purchase and cheap to maintain. We have
applied to the NSF (National Science Foundation)
for support in developing and making available a full
TinkerNet implementation - hardware design, robust
software, and complete experiment set. Those inter-
ested in using TinkerNet in its current state can con-
tact either Mike Erlinger (mike@cs.hmec.edu) or Titus
Winters (tdw@cs.hmec.edu).

References

[Com84] Douglas E. Comer. Operating System De-
sign, The XINU Approach. Prentice Hall,
1984. ISBN 0-13-637539-1.

[Com02] Douglas E. Comer. Hands on Networking
with Internet Technologies - Part V, Protocol
Stack Implementation in A Special-Purpose
Lab. Prentice Hall, 2002. ISBN 0-13-048003-
7.

[Com03] Douglas E. Comer. Computer Networks and
Internets. Prentice Hall, 2003. ISBN 0-13-
143351-2.

[Flu02] Flux Group. Utah The OSKit Project, June
2002.

[For97] .et .al Ford, Bryan. The Flux OSKit: A Sub-
strate for Kernel and Language Research, Oc-
tober 1997.

[Kur02a] et. al. Kurose, J. Workshop on computer
networking: Curriculum designs and educa-
tional challenges, August 20 2002.

[Kur02b] J. et. at Kurose. Workshop on computer
networking: Curriculum designs and educa-
tional challenges, August 20 2002. Comments
of Jorg Liebeherr.

[PDO03] Larry L. Peterson and Bruce S. Davie. Com-
puter Networks, A Systems Approach. Mor-
gan Kaufmann, 2003. ISBN 1-55860-832-X.

