
IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-33, NO. 9, SEPTEMBER 1985 919

Virtual Time CSMA: Why Two Clocks Are Better
than One

MART L. MOLLE, MEMBER, IEEE, AND LEONARD KLEINROCK, FELLOW, IEEE

Abstract-A new carrier sense multiple access (CShiA) algorithm,
called virtual time CSMA, is described and analyzed. This algorithm uses
a novel approach to granting access to the shared broadcast channel based
on variable-rate clocks. Unlike other CSMA algorithms, the operation of
virtual time CSMA reduces to the ideal case in the zero propagation time
limit: a work-conserving, first-come first-served M/G/1 queueing system.
The algorithm does not appear to be difficult to implement, but offers
better throughput-delay performance than existing CSMA algorithms. A
simple closed form technique for estimating the mean message delay is
presented. This technique is of independent interest because of its
applicability to certain “sliding window” tree conflict resolution al-
gorithms. Extensive numerical results for the algorithm are presented,
including comparisons with simulation and with other CSMA algorithms.

I. INTRODUCTION

0 NE simple way to design a communications network is to
allow the stations to exchange messages over a shared

broadcast channel. The channel is monitored by all the
stations, providing a direct communications path between
every pair of stations in the network. However, no more than
one message at a time can be transmitted successfully over
the channel. Whenever the reception of several messages
overlap at a station, we say that a collision has occurred and
assume that none of the transmissions are received correctly
by the station. Thus, for the network to operate successfully,
the stations must abide hy a common set of rules governing
access rights to the channel, called a multiple access
protocol.

The difficulty in designing a good multiple access protocol
arises from the spatial distribution of the stations. Since no
additional communication paths are provided between the
stations, there can be no observable network-wide queue.
Thus, no protocol can arrange a perfect schedule for the
message transmissions. Instead, the actions of a protocol
simply specify a mapping from the time axis into (possibly
empty) subsets from the set of all possible waiting messages.
A message is transmitted whenever the protocol specifies a
subset to which it belongs. Only those subsets may be
specified for which each station can determine whether or not
it has a message belonging to that subset. Thus, for example,
either the oldest remaining message at station N o r the set of

Paper approved by the Editor for Computer Communication of the IEEE
Communications Society for publication without oral presentation. Manu-
script received January 27, 1981; revised February 21, 1985. This work was
supported by an Operating Grant from the Natural Sciences and Engineering
Research Council of Canada, and by the Defense Advanced Research Projects
Agency under Contract MDA903-77-C-0272.

M. L. Molle is with the Computer Systems Research Institute, University of
Toronto, Toronto, Ont., Canada M5S 1A4.

L. Kleinrock is with the Department of Computer Science, University of
California, Los Angeles, CA 90024.

I Here we assume that stations may observe the outcome of past
transmission attempts at no cost, but that no other “free” information
exchange is provided. This model corresponds to networks sharing a
transponding satellite channel and to local networks in which all stations
monitor the channel to detect idle periods and collisions.

messages generated between times 71 and 7 2 could be
specified, but not the oldest remaining message in the entire
netwmk. In particular, subset selection can depend on
p@busly selected subsets through observation of the
history of activity on the channel.

If the network were to contain few stations (or be very
heavily loaded), such fixed scheduling algorithms as round-
robin TDMA would work well. Successively inviting each
station to transmit any single message clearly could not cause
collisions. It would also avoid long idle periods in +e
presence of waiting messages because there are few stations
to examine. Below, however, we consider protocols for
networks with very large numbers of stations, each of which
rarely generates a message. Here it becomes difficult to find
individual stations having a message to transmit, so random
access protocols that grant access to the channel on a demand
basis are more efficient. ALOHA [l] is perhaps the simplest
possible random access protocol. Here stations are permitted
to transmit new messages at will (or at the start of any slot in
the synchronous, or “slotted” version [22]) . Should a
collision occur, each affected station waits for a random time
interval and then blindly retransmits its message, and so on.

In this paper, we introduce a new carrier sense multiple
access (CSMA) protocol that offers better performance than
existing CSMA protocols. CSMA protocols are extensions of
ALOHA that take advantage of how short the propagation
time across a local network is, compared to a message
transmission time. Here stations monitoring the channel can
determine whether or not the channel is idle through carrier
sensing (and thus can defer to other stations’ transmissions
when it is busy, preventing an inevitable collision). Some-
times it is also possible for stations to determine whether
ongoing transmissions are colliding (so that the duration of
collisions can be reduced) through collision detection-see
1161.

The operation of CSMA protocols can be either asyn-
chronous (unslotted) or synchronous (slotted). In asynchron-
ous protocols, each station runs its local copy of the protocol
independently, using local observations of the evolution of
the channel state. In synchronous protocols, all stations run
their local copies of the protocol in lock-step. Time is divided
into a sequence of slots. Transmissions are not allowed to
cross slot boundaries: stations can only begin transmitting at
the start of a slot; the start of next slot takes place only when
it is clear that the reception of all those transmissions (if any)
must be complete at every station.

We model collision detection, when it is available, in the
following way. Shortly after the start of the first interfering
transmission reaches a transmitting station, that station
recognizes that a collision is taking place. Thereafter, the
station stops transmitting the remainder of its message,
briefly “jams” the channel (by transmitting a strong burst of
noise) to ensure that all stations consistently recognize the
collision, and then remains silent until the channel becomes
idle once again. In the asynchronous algorithm, we must
follow the model described above exactly: the duration of
each colliding transmission is the sum of the transmission
time up to the arrival of the first interfering transmission and

0090-6778/85/0900-0919$01.00 0 1985 IEEE

920 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-33, NO. 9, SEPTEMBER 1985

the collision recovery time, c , a constant that includes the
times for collision recognition and jamming the channel. In
the synchronous algorithm, we simply choose the duration of
slots where collisions take place so that they can handle the
worst cast, namely, where the duration of each colliding
transmission is some fraction b of the message transmission
time.

At present, there are three well-known CSMA protocols
[lo]. In nonpersistent CSMA, only those messages that
arrive when the channel is sensed idle are transmitted. This
transmission takes place immediately in the asynchronous
version, and at the start of the next slot in the synchronous
version. All other messages are immediately rescheduled as
if a collision had occurred. In the I-persistent CSMA
protocol, all messages are transmitted as soon as possible. In
the asynchronous version, messages are transmitted immedi-
ately if they arrive when the channel is idle, or as soon as the
channel becomes idle otherwise. In the synchronous version,
messages are transmitted at the start of the next slot. The p -
persistent CSMA protocol is a generalization of 1-persistent
CSMA, in which a message that arrives when the channel is
busy is transmitted only if the length of the next idle period
exceeds a geometrically distributed random value with
parameter p .

11. WHY NOT AN INFERENCE SEEKING TREE ALGORITHM?
Before launching into the details of our new CSMA

protocol, it may be helpful to explain why CSMA protocols
in general are of interest for local networks. Two general
classes of random access protocols can be found by examin-
ing the reaction of the protocols to the history of events on
the channel. We call the first class “inference avoiding”
protocols because they try to operate as if the past history of
events on the channel did not matter. This class includes the
ALOHA protocol [11 and various CSMA protocols [101-see
[26] for a survey. The basic idea here is to simplify the
problem by modeling inference avoiding protocols as two
separate algorithms: channel access and retransmission feed-
back. A channel access algorithm selects the subsets for
transmission as if the distribution of the number of messages
in those subsets depends only on the subset specified (e.g.,
the particular range of generation times), independent of the
previous channel history. Typically, the performance of such
channel access algorithms is found under the assumption that
the total traffic, and hence the distribution of messages in
each selected subset, is Poisson. Should some subset selec-
tion result in a collision, the channel access algorithm carries
on as if the affected messages were lost. If the network.is not
a loss system,* a retransmission feedback algorithm
(sometimes called a “backoff algorithm”) is invoked follow-
ing each collision to select, independently and at random, a
new “generation time” for each of the affected messages.
Care must be taken in designing a retransmission feedback
algorithm or an inference avoiding protocol may become
unstable [13], 141, [3], [28].

We call the second class of random access protocols
“inference seeking” protocols (or “tree conflict resolution
algorithms,” as they are usually called-see [7], [2], 1273).
These protocols apply various statistical inference techniques
to the channel history information to improve the subset
selection process. (The name “tree conflict resolution
algorithm” arose because these protocols can be modeled as
decision trees.)

It is well known that inference seeking protocols offer
some important advantages over inference avoiding proto-

In some applications, such as packetized voice, it makes sense to drop
colliding packets, because the systems are more tolerant of the loss of some
packets than of either unordered delivery of packets or long and variable
Dacket delavs.

cols in a friendly environment. First, inference seelung
protocols can be made inherently stable without the imposi-
tion of controls on the feedback of collisions. Second,
inference seeking protocols can use the channel more
efficiently than can inference avoiding protocols, because
they exploit rather than ignore the channel history informa-
tion in their scheduling decisions. This advantage is most
apparent when the channel history information is only made
available to the stations after some delay (as is the case in a
satellite channel), and declines significantly in local net-
works where rapid idle- and/or collision-detection is
possible-see [171.

In a more hostile environment, such as a mobile packet
radio network [8], the behavior of the channel is far from
ideal. The capture effect allows some stations to correctly
receive a strong signal even when it is colliding with a
weaker signal. Since signal strength decays with distance,
relative signal strength (and, hence, the channel history) is
position dependent. A packet radio network may also be
partitioned from time to time because the stations are mobile
and could pass through a tunnel, say. Finally, atmospheric
effects occasionally may render the history information
incorrect at some or all of the stations.

Inference seeking protocols can suffer two kinds of failure
when the channel history information is unreliable. First,
Massey [5] has shown that consistent but incorrect informa-
tion can cause deadlocks when certain inferences are at-
tempted. In his example, a noisy channel made an idle period
appear to be a collision-thereby sending the protocol on an
endless search for some nonexistent messages. However, this
same “missing message” deadlock condition could also
occur whenever messages are lost after they have been
involved in a collision. Such message loss could clearly
happen when a station leaves the network (possibly due to
failure of the station or through disruption of the channel).
However, a more serious cause of this deadlock is the
interaction of various protocol layers. After some prear-
ranged “timeout” period has elapsed, it is common for
higher level protocols to stop trying to transmit a message.

The performance of inference seeking protocols also
suffers when there are inconsistent data at the different
stations. If the stations are not aware of this situation,
coordination among the stations is lost, degrading the
performance. If the stations are aware of this situation (say,
when a new station is trying to join an operating network, or
when a station is trying to rejoin after a channel disruption),
those stations that do not know the “correct” state of the
protocol may be forbidden from accessing the channel until
they can determine it, which could take some time.

It should be clear from the discussion above that CSMA
protocols are useful for certain typeq of local networks (such
as packet radio networks) because they are inference
avoiding and, thus, potentially more robust when faced with
misleading, incorrect, or inconsistent channel history infor-
mation. The study of CSMA protocols is also of importance
because of their use in actual networks, such as the Ethernet
[16] coaxial cable network and the Department of Defense
PRnet packet radio network [8].

111. DESCRIPTION OF THE VIRTUAL TIME CSMA CHANNEL
ACCESS ALGORITHM

In virtual time CSMA, messages are assigned transmis-
sion times through a 1-1 mapping that compresses the entire
“real” time axis (including the arrival times for all mes-
sages) until it fits onto a “virtual” time axis consisting of the
union of all idle periods on the channel. To understand how
this is done, it is best to start with an example-see Fig. 1. In
the initial state of the algorithm (before the first channel
busy-time is observed), the transmission time for a message
is the same as its arrival time. Eventually the first transmis-

M O L E AND KLEINROCK: VIRTUAL TIME CSMA 92 1

CHANNEL
ACTIVITY

TIME

1 2 3 4 5

ARRIVALS

Fig. 1. Compressing the time axis onto the channel idle periods.

sion(s) occur, and thereafter the stations sense the channel
busy over some interval, say from B,(’) to 4(z) at the jth
station.3 Because of carrier sensing, the algorithm must
suspend further transmissions during that busy interval, even
though new messages continue to arrive. When transmissions
resume at Z(2), the backlog (i.e., the amount by which
transmissions have fallen behind arrivals) has grown to -
l?(l). Thus, as the algorithm begins “clearing” this backlog
(by transmitting any messages in the network chronologi-
cally, starting with those that arrived at Et(’)), the transmis-
sion time for a message has become the sum of its arrival
time and the backlog at Z o . Obviously, something must be
done to reduce this backlog over time. Otherwise messages
arriving after Zck+ I) would be delayed by at least X f= (Ifi+ l)
- which grows without bound as k + 00. To prevent
this, whenever the algorithm is trying to clear a backlog, it
compresses the time axis by a factor of q , q > 1 . In this
case, two distinct points on the time axis, say 7 1 and 7 2 , will
be mapped into distinct transmission times, 7 1 ’ (during the
j th channel idle period) and 7 2 ’ (during the kth channel idle
period), respectively, such that

Should the algorithm ever clear the backlog completely, it
returns to its initial state. Thus, messages are always
transmitted when the algorithm has cleared the backlog (if
any) up to their arfival times. Note that 1-persistent behavior
can be obtained by choosing q = 00. For finite q , the backlog
is a nonnegative random walk which increases at a rate of
unity while the channel is busy, and decreases at a rate of q
- 1 while the channel is idle.

The virtual time CSMA channel access algorithm is simple
to implement, even though, in general, the transmission time
for a message can depend on channel activity that takes place
both before and after its arrival. Assume that each station is
equipped with two “clocks,” measuring the passage of
“real” time and “virtual” time, respectively. Without loss
of generality, both clocks are initialized to zero. Thereafter,
the real-time clock runs continuously at constant rate, while
the virtual-time clock runs as follows. When the channel is

In general, because signal propagation is not instantaneous, these times
(and even their difference in the case of collisions) will vary from station to
station. However, their dependence on the identity of the station is
unimportant for our example.

sensed busy, the virtual clock stops (retaining its current
reading); when the channel is sensed idIe, the virtual clock is
allowed to run (in the manner described below). In the
asynchronous (unslotted) version, the virtual clock runs
contiauomly at a constant rate, either q times faster than the
real-tim.clock if it has fallen behind the real-time clock, or
in l o c k - s i otherwise. In the synchronous (slotted) version,
all virtual clocks advance by one “step” at the beginning of
each Each step advances their readings by the mini-
mum of the current backlog, Q, and the constant w P aq, so
that idle periods, consisting of slots of duration a, are
compressed by a factor of q when there is a backlog. Once we
set the clocks operating, the rule for transmitting messages
becomes obvious. Each message is tagged with the reading of

.,&e real-time clock when it arrives, and is transmitted when
the virtual clock reading passes the tagged value-see Fig. 2.
(Were we to observe the stations in virtual time-i.e., only
when the virtual clocks are allowed to run-we would
conclude that they were following the ALOHA protocol.) It
should be clear that the clocks need not be synchronized
between stations. In fact, “real time” can advance at a
d i f f i t rate at every station without affecting the algorithm,
as long as the same clock speed ratio is maintained. (The
algorithm will still operate if the clock speed ratios vary from
one station to inother, but stations with higher clock speed
ratios will receive higher priority.)

Virtual time CSMA can also be described in terms of a
collection of concurrent processes 1121. Assume that each
station has available a single “real-time” clock and a
programmable interrupt timer; the virtual-time clock is
simulated by remembering the most recent value of virtual
time and the (real) time at which it was last updated. Stations
must also maintain a sorted transmit queue, and record the
current state of the channel. The channel monitor process
runs whenever the state of the channel changes. Whenever
the transition from busy to idle channel takes place, the
current virtual time reading is marked up to date (since it
must have remained stopped since the last update) and a timer
interrupt is set to take effect when the first message in the
queue would be sent if no other channel activity were
observed in the mean time. (It is set to infinity if the transmit
queue is empty.) Whenever the transition from idle to busy
channel takes place, the virtual clock reading is updated,
reflecting the fact that it has been running since the last
update. If the transition to busy channel occurred before the
timer interrupt (because of some other station’s transmis-
sion), the timer interrupt is cancelled. The transmitter
process transmits the message at the head of the transmit
queue whenever a timer interrupt occurs. The scheduler
process runs each time a new message arrives or a colliding
message must be rescheduled. Each message is tagged with
the current value of real time (plus the retransmission delay
in the case of collisions) and inserted into the sorted
transmission queue. If the channel is idle and the insertion
took place at the head of the transmission queue, the timer
interrupt is set to take effect when the newly inserted
message should,be transmitted. If there is collision detection,
a collision process is run whenever the station discovers that
its current transmission is part of a collision. This process
cancels the transmission of the remainder of the message and
then jams the channel for a collision recovery time [16].

Virtual time CSMA offers several advantages over other
versions of CSMA. Unlike nonpersistent CSMA, every

In its synchronous version, our “virtual clock” abstraction is equivalent
to the “sliding window” abstraction described in the tree algorithms of
Gallager [5] and Tsybakov and Mikhailov [29]. However, the virtual clock
idea can be generalized to asynchronous operation. (Indeed, in [18] we
showed how to construct asynchronous tree algorithms from “virtual clock”
descriptions of their operation.)

922 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-33, NO. 9, SEPTEMBER 1985

TRANSMISSION
TIME

1 2 3 4

/ / / I ’

/
/

/

ARRIVAL TIME

Fig. 2. The mapping from arrival times to transmission times.

arriving message will be transmitted. Unlike p-persistent
CSMA, these transmission times are assigned in first-come
first-served (FCFS) order. Unlike both 1-persistent and p-
persistent CSMA, it is fair in the sense that when a message
is transmitted, its probability of success does not depend on
its arrival time. In addition, virtual time CSMA is a closer
approximation to the “ideal” channel access algorithm,
where only an unbroken train of successful message trans-
missions take place while there are undelivered messages in
the network (i.e., work-conserving FCFS single-server M /
GI1 queueing system). Obviously, this ideal behavior is not
realizable because the stations are distributed in space: even
though each station is quite capable of managing its own
queue of messages, finding the status of the queues at other
stations requires both time (making the information out of
date when it arrives) and channel bandwidth (adding over-
head to the system). However, in the limit as a + 0, the
overhead due to spatial distribution vanishes. Here it should
be possible to attain ideal behavior with a channel access
algorithm. For the other CSMA protocols described above,
this is known not to be the case [24]. For virtual time CSMA,
we attain ideal behavior when we let q --+ a as a + 0 such
that aq + 0. Assume that the aggregate arrival of messages
to all stations in the network is Poisson with intensity G per
unit time, 0 < G < 00. Then the average channel idle time
between transmissions is l/qG when there is a backlog
(which vanishes as q ---* a), while the probability that the
first transmission after an idle period is successful is at least
aqGe-aqG/(1 - e - O q C) in the synchronous version and e - O q G

in the asynchronous version (both of which converge to
unity). Thus, as a -+ 0, the normalized throughput S
converges to min { G , 1 } .

Iv . DERIVATION OF THE THROUGHPUT EQUATIONS

To find the throughput equations for virtual time CSMA,
we follow the standard assumption that the total traffic
(including new message arrivals and retransmissions) can be
approximated by a Poisson process with intensity G per unit
time. Furthermore, we make the pessimistic assumption that
the number of stations is infinite: all messages are certain to
be queued at different stations, and hence, stations cannot

prevent any collisions by the scheduling of their own
transmissions.

We view virtual time ’ CSMA as having two modes of
operation. We say that the algorithm is “backlogged” when
the virtual clock is allowed to run at rate q. and “caught up”
when the virtual clock is allowed to run at rate unity. When
the virtual clock is stopped, the mode is determined by the
rate from the last time the virtual clock was allowed to run.
Thus, to find the throughput equation, we need only find the
conditional throughput equations for each mode separately
and then average them in proportion to the time spent in each
mode.

It is impossible for an observer who is only permitted to
monitor the channel when a single mode of operation is in
effect (say, corresponding to virtual clock rate r) to distin-
guish virtual time CSMA with traffic intensity G from
nonpersistent CMSA protocol with traffic intensity rG. Both
protocols disable new transmissions when the channel is busy
(either by blocking messages in nonpersistent CSMA or
delaying them in virtual time CSMA). Both protocols enable
new transmissions to take place when the channel is idle, and
the time until the next transmission begins is exponential with
parameter rG. Thus, the conditional throughput equations
can be found in the same manner as for nonpersistent CSMA

Under synchronous (slotted) operation, the throughput S
[lo].
can be expressed as

s = ErHsI/E[LI, (2)
the ratio of the expected amount of useful work (i.e., the
number of successful transmissions) performed in a random
slot to the expected duration of a random slot, respectively.
Because stations monitor the channel during each slot, the
duration of a slot depends on the channel activity in that slot.
Idle slots last for the end-to-end propagation time a, so that
all stations can be certain that it is idle. In addition to the
propagation time, busy slots must also allow for some
transmission(s) to take place. Recall that the transmission
time for messages is unity. However, because of collision
detection, we define the transmission time for colliding
messages to be 6, b I 1, the fraction of each message that
gets sent before the collision is detected (if at all). Thus, each
busy slot lasts for either 1 + a if it contains a successful
transmission or b + a if it contains a collision.

Because of our Poisson total traffic assumption, the
number of messages transmitted in each slot is Poisson. By
neglecting the boundary effect described above, the mean of
this distribution must be either aG or aqG, say with
equilibrium probabilities T O and T I , respectively. Clearly,

E[H,IrG] = arGe-ad (3)

and

EIL,IrG]=ae-a~+(l+a)arGe-ad

+ (b + a)[1 - (1 + arG)e -“&I (4)

for r E { 1, 7). Thus, to find the throughput in equilibrium,
it remains to find { T ; } so that E[WJ and E[L,] can be
determined. Assume that the value of q is large enough for
the backlog to remain finite with probability one. (Otherwise
?rl = 1 and message delays would be infinite.) In this case,

Actually, a boundary effect can occur as the virtual clocks catch up to real
time. In the synchronous algorithm the clocks could advance by an
intermediate value at a step, while in the asynchronous version the clocks
could slow down to rate unity during the vulnerable period for some
transmission. The probability of success for messages transmitted at such a
boundary will be between the values of the two separate modes. It can be
shown that ignoring this boundary effect is pessimistic.

MOLLE AND KLEINROCK. VIRTUAL TIME CSMA 923

{q} can be found by equating the average duration of a slot
(i.e., E[L,]) with the average advance of the virtual clock pe-f
slot, namely ?r@ + alaq. Since T I = 1 - T O , we find

min (0, E[L,lrlGl - m)
E[L,lrlGl-~rl-H~,IGl+a *

T o = (5)

Fig. 3 shows the throughputs as a function of total traffic
for synchronous virtual time CSMA with q = 3, slotted
nonpersistent CSMA, and slotted 1-persistent CSMA. (We
assume that a = b = 0.2, which corresponds to a 10 km long
Ethernet-like local area network where the data rate is 10
Mbitds, the propagation speed is 200 m / p , and all packets
are 256 bits long [24].) Notice that the curve for virtual time
CSMA dominates the curve for 1-persistent CSMA, and tlqt
the throughput curve for nonpersistent CSMA also representg ’’
the conditional throughput for virtual time CSMA, given
that q = 1. Both curves attain the same maximum through-
put, but with q = 3 the peak occurs at one-third the traffic
intensity. It should also be clear that as G increases,, we can
always decrease q to ensure that the product qG is invariant,
and thus attain the same maximum throughput. Although this
would result in unbounded message delays in steady state,
dynamic adjustments to the virtual clock rate are a “natural‘“
way to control the algorithm under transient overloads.

Under asynchronous (unslotted) operation, the through-
put can be expressed as

the ratio of the expected amount of useful work performed in
a random “transmission cycle” (described below) to the
expected duration of a random transmission cycle, respec-
tively. Recall that with asynchronous operation, each station
runs its copy of the algorithm independently using local
observations of the channel state. Thus, the performance of
the algorithm is sensitive to such characteristics of the
network as ‘the normalized propagation time between each
pair of stations, {ai j} , and the traffic matrix. Here we follow
[lo] in assuming aij = a, the worst case, for all stations.
(This assumption correctly models a “star” topology, e.g.,
[21].) The details of the traffic matrix are unimportant, as
long as we can neglect the probability that a single station
transmits several messages in rapid succession. (Recall that
we have already made the assumption that the total traffic is
Poisson with intensity G.)

We shall describe the operation of the asynchronous
algorithm as a sequence of transmission cycles. The jth
transmission cycle runs from I(’) until I (]+ I), consisting of the
jth channel idle period followed by the j th channel busy
period. Since in continuous time the exact channel history
depends on the observation point, we shall always monitor
these state transitions from the “hub” of ‘the star.

A key step in the throughput calculation is illustrated in
Fig. 4. By neglecting the boundary effect as the backlog is
cleared, we can partition the time axis into two virtual time
axes, corresponding to virtual clock rates q and unity,
respectively. By separately modeling operation of the al-
gorithm over the two virtual time axes, we face a simpler
task. Were we to model the operation of the algorithm over
real time, we would have had to analyze “multimode”
transmission cycles where the virtual clock rate drops from q
to unity part way through an idle period. But by following the
operation of the algorithm over the virtual time axis at a time,
we need consider only “single-mode’’ transmission cycles
where the virtual clocks run only at some fixed rate r, say,
during each idle period. This decomposition does not affect
the observed behavior of the algorithm over a transmission
cycle because of the memoryless property of Poisson
arrivals.

I h PERFECT UTILIZATION OF SLOTS

“t I
VIRTUAL TIME CSMA

(DYNAMIC CLOCK RATE)

NON-PERSISTENT CSMA

.VIRTUAL TIME CSMA

1-PERSISTENT CSMA

0 2 4 6 S

TOTAL TRAFFIC (G)

Fig. 3. Throughput curves for synchronous CSMA algorithmns on an
Ethernet-like network.

1 2 3 4 5

ARRIVAL TIME

Fig. 4. Partitioning channel activity into two virtual time axes.

In Fig. 4, we have redrawn Fig. 2 to show how the two
virtual time axes corresponding to clock rates q and unity,
respectively, are interleaved on the real time axis, and how each
virtual time axis can be divided into a sequence of “single-
mode” transmission cycles. In the r = 1 virtual time axis,
each transmission cycle consists of a single connected
component in real time that begins when the backlog is
cleared part way through some idle period and lasts through
the following channel busy time (e.g., messages 1 and 5) . In
the r = q virtual time axis, transmission cycles could be split
into several components by transmission cycles from the r =
1 axis (e.g., 5’s transmission cycle separates the beginning of
the last r = q transmission cycle from the rest of that cycle).
Note that a transmission cycle on the r = q virtual time axis

924 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-33, NO. 9, SEPTEMBER 1985

always includes one complete transmission cycle on the real
time axis, and possibly also the beginnings of some earlier
channel idle periods up to the point were the backlog was
cleared.

Consider a single-mode cycle with virtual clock rate r. At
some time t, the cycle begins as the channel changes state
from busy to idle. At time t + a/2 , all stations that had not
just been transmitting sense this same state change. Thereaf-
ter, the channel remains idle everywhere for an exponential
interarrival time (with mean l/rG) until the next transmission
begins. Following the start of this first transmission, a
further time of a/2 elapses before we observe the transition
from idle to busy at the hub. Note that this first transmission
will be successful (and hence, one unit of useful work will be
accomplished in this cycle) if no other station subsequently
decides to transmit a message before it detects the start of the
first transmission. Because of our worst-case star topology,
each of the other stations has the opportunity to cause a
collision for time a, so that

E[N,(rG] =e-ufi. (7)

If this cycle contains a successful transmission, the channel
will remain busy for one time unit, so that EILclrG, success]
= 1 + a + l/rG. If this cycle contains a collision, the
length of the busy period (and, hence, of the cycle) depends
on whether or not the stations can detect collisions, but the
expected length of the idle period is still l / rG + a.

If collision detection is not available, the channel remains
busy for the union of the busy periods due to each colliding
transmission. Thus, the average busy period duration given
that a collision occurred is simply 1 + E[y1, where

a-(1 - e - 9 / r G
1 - e-aG

is the average time between the beginnings of the first and the
last colliding transmissions. If collision detection is availa-
ble, we assume that it operates instantaneously, and thereaf-
ter the station stops transmitting the remainder of the
message, jams the channel for a collision recovery time, c,
and then remains quiet until the busy period ends. Once again
the busy period at the hub begins a /2 time units after the first
station to start begins transmitting, and ends a /2 time units
after the last station to stop ends transmitting. However, for
the star topology, it can be shown [121 that the first station to
begin transmitting is the last to detect the collision (a time
units after the second station starts transmitting; all other
stations detect the collision a time units after the first station
starts transmitting) and, thus, also the last station to stop
transmitting. Note that the third and subsequent transmis-
sions (if any) have no effect on the duration of a collision
busy period. In this case, the average busy period duration
given that a collision occurred is a + E[Y'] + c, where

represents the average time between the beginnings of the
first and the second colliding transmissions. It follows that

E[L,(rG]=1+2a+e-uG/rG (8)

if collision detection is not available, and

E [L , I r G] = ~ + 2 a + (2 - e - ~ ~) / r G + e - ~ ~ [l - 2 a - c] (9)

if collision detection is available.

To complete the throughput calculation, we must deter-
mine E[W,] and E[L,I. Let ?ro and ?rl be the equilibrium
probabilities that r = 1 and r = 7, respectively, for a single-
mode cycle chosen at random. A virtual clock situated at the
hub would run (at rate r) whenever the channel was sensed
idle. Since the average idle time in a cycle is l / rG + a, the
average advance of the virtual clock per cycle is 1/G + ?r@

+ *lag. Equating this with the average duration of a
transmission cycle, namely E&], and recalling that al = 1
- TO, we find

min (0 , EILcIvG] - av - 1/G\

v. EVALUATION OF CAPACITY
Having now derived the throughput equations for virtual

time CSMA, it remains to show how to find its capacity as a
function of the network parameters a, b, and c and the
algorithm parameter 7. (Because of the Poisson total traffic
assumption, we can ignore the effect of the retransmission
feedback algorithm on capacity.)

By the capacity of a channel access algorithm, we mean
the supremum over all attainable values of throughput for
which the expected message delay is finite. It is common
practice in CSMA to assume that the retransmission feedback
algorithm only delays messages for a finite time between
transmissions, and, thus, that the capacity of the algorithm is
simply the supremum over G of the throughput equation.
With virtual time CSMA, however, there is also another
constraint limiting its capacity, namely, that the backlog
remain finite with probability 1. Thus, to find the capacity of
virtual time CSMA, we must restrict G to those values for
which ?rl < 1.

Fig. 5 shows capacity for synchronous virtual-time CSMA
as a function of the virtual clock rate 7, when a = 0.01 and
there is no collision detection. The maximum capacity of
0.8655 occurs at 7 = 13.5, but the capacity remains within 1
percent of this maximum for 10 I 7 5 20. Note also that as
7 + 100, the capacity approaches 0.53, which is well known
to be the capacity of slotted 1-persistent CSMA [lo]. Of
course, this is to be expected, since for 7 2 1 + a,
synchronous virtual time CSMA simply enables all the
arrivals during the previous slot-which is exactly how
slotted 1-persistent CSMA operates.

In Section IV, the throughput of virtual time CSMA with
virtual clock rate 7 for any G was shown to be a convex
combination of the throughput for nonpersistent CSMA
evaluated at G and at 7G. Thus, it should be clear that for a
given set of network parameters, the capacity of virtual time
CSMA can never exceed the capacity of nonpersistent
CSMA. However, it is also easy to show that there is an
optimal value of 7, say r]*, for which the capacity of virtual
time CSMA is the same as the capacity of nonpersistent
CSMA (which is the best possible for inference-avoiding
protocols under the Poisson total traffic model-see [17]). To
see this, we assume that for the given system, nonpersistent
CSMA attains its capacity as G -+ Go, namely So =
E[HI Go]/EIL I Go]. But whenever qG = Go, the conditional
throughput for virtual time CSMA, given that the algorithm
is backlogged, will also be So. Thus, we are done if we can
find r]*, satisfying both < 1 for all G < GO/q* and ?rl =
1 for G = Go/y*, Le., virtual time CSMA with virtual clock
rate T,I* attains its capacity (of So) as G approaches G* = Go/
v*. Using (5) and (lo), it is easy to see that this critical value
is

v*=E[L,IGO]/a (1 1)

for the synchronous algorithm, and

I M O L E AND KLEINROCK: VIRTUAL TIME CSMA

1 .o I . . _ I I . .

0.8

0.8

3
k
V

0.4 .

VIRTUAL CLOCK RATE (n)

Fig. 5 . Capacity as a function of clock rate.

t UNSLOTTED ALOHA / -l
0
-10 -8 -6 -4 -2 0

I I 1 . I I I I I I 1
LOG, NORMALIZED PROPAGATION TIME (a)

Fig. 6. Sensitivity of capacity to propagation time.

for the asynchronous algorithm. Fig. 6 shows capacity as a
function of the propagation time, a, for ALOHA and the
various CSMA algorithIfis.

VI. ESTIMATION OF DELAY
Here we use the standard equilibrium random access delay

model [1 11 to estimate the mean message delay T. Thus, we

Our curves for slotted ALOHA, slotted nonpersistent CSMA, and slotted
p-persistent CSMA differ slightly from the corresponding curves in [lo]. This
is because in slotted ALOHA, they neglected to include the propagation time
in the slot length, and in the two CSMA algorithms, the throughput equations
were not evaluated precisely at the points where maximum throughput is
attained-see [171.

assume that

925

where To is the initial delay from the arrival of a new
message until the start of its first transmission attempt (or
until the decision is made not to transmit the message in
nonpersistent CSMA), T, is the retransmission deiay from
the start of one unsuccessful attempt to transmit a message
until the start of its next transmission attempt, and the term 1
+ (I represents the transmission time and propagation delay
for the message during its final, successful attempt.

926 IEEE TRANSACTIONS ON COMMUNICATIONS. VOL. COM-33, NO. 9, SEPTEMBER 1985

The characteristics of To differ substantially between
virtual time CSMA and other CSMA protocols (where To is
little more than the residual life of the current slot) because
the operation of the virtual clocks causes the tilessages to
queue for access to the channel. Thus, to estimate T, we must
first understand how this queueing affects To. Fortunately, as
will become clear below, performance predictions for vir-
tual time CSMA based on this simple model are surprisingly
accurate (and seem much better than the comparable results
for the other CSMA protocols). This is because the major
cause of the inaccuracy in the model is in the accounting for
delay caused by retransmissions, and with virtual time
CSMA the expected number of retransmissions per message
is small. Thus, unlike other CSMA protocols (where the
initial delay is only a small part of the message delay), To is
the dominant part of the message delay in virtual time
CSMA, and we shall see below that good estimates for TO can
be found.

Recall that in the limit as a + 0, the performance of
virtual time CSMA approaches the ideal case, namely, a
nonpreemptive single-server FCFS M/G/1 queue. Thus, our
starting point for estimating TO will be the well-known M / G /
1 queue [9] . For any queueing system, we can find the
unfinished work at time t , U(t) , as the sum of the remaining
service times of all customers in the system at time t .
Assuming that the system is work-conserving, the server
performs useful service at the rate of one second of work per
second of real time, so that V(t) will tend to decrease towards
zero at rate unity. However, each time a new customer
arrives, he brings with him a quantity of work equal to his
service time, so that U(t) exhibits discontinuities as cus-
tomers arrive. Hence, the server is busy whenever U(t) > 0
and idle whenever V(t) = 0, and ’if no further customers
were to arrive, the server would become idle at t + V(t).
Note that U is sometimes called the “virtual waiting time,”
because a customer arriving at time t would wait for exactly
U(t) before entering service, assuming nonpreemptive FCFS
scheduling.

In virtual time CSMA, we make use of a generalized
definition of unfinished work. Here we say that the unfin-
ished work at time t is the time required to completely clear
the backlog present in the system at t , assuming no further
customers arrive after t . Note that here we define “cus-
tomer” to mean a set of one or more messages that are
transmitted concurrently (creating a continuous period of
channel activity); the arrival time of a customer is the arrival
time of the leading message in the set. (The arrival times for
any other messages are simply ignored.) We further define
the “work” that must be expended on such a customer, X , to
consist of two components, namely a resting component X,,
during which the virtual clocks remain stopped because the
channel is busy, and a scanning component Xs, during which
the virtual clocks are running at a rate of 7 in an effort to
regain the time lost while they were resting. In the asyn-
chronous case, the virtual clocks are stopped for exactly the
time that the channel is sensed busy, so that XR is simply
equal to the transmission time for the message(s). To find XR
in the synchronous case, we refer to Fig. 7. At the beginning
of a busy slot, the virtual clocks make an initial advance of w
that triggers the start of the transmission(s), which we shall
account for by defining the first a time units of each slot as
scan time. Since the virtual clocks never advance in the
middle of a slot, the remainder of the slot must be resting
time. Hence, X R = L, - a. But the duration of each slot
always exceeds the transmission time for any message(s)
transmitted in that slot by a , to account for the propagation
time. Thus, we have once again that X , is equal to the
transmission time. In either case, the virtual clocks must
regain this lost time of X R during the scan time. It is easy to
see that whenever the virtual clocks are running at rate 9, the

CHANNEL
ACTIVITY

t
COMPONENTS OF

SERVICE TIME

WORK CLEARED

\ t

INITIAL ADVANCE l a

I WORK BEGINS I

Fig. 7. The work associated with a transmission in synchronous virtual-time
CSMA.

backlog must be decreasing at the rate of 7 - 1, so that

X R X ,=-
11-1

and. hence, that

In Fig. 8, we illustrate the evolution of unfinished work in
virtual time CSMA. A new busy period begins at t(’) with the
arrival of the first “customer,” and the unfinished work
increases by XR(’) + XS(’). Because the system is empty
initially, this customer enters service immediately. The
resting (i.e., transmission) component of his service will be
completed at t(’) + XR(’); one propagation time later, the
corresponding messages either leave the network if they were
transmitted successfully, or else begin their retransmission
delay. If no further arrivals were to take place, the scanning
component of his service would be completed at t(’) + X,(’)
+ XS(’), ending the busy period. Suppose, however, that a
second customer arrives at t@). Because the virtual clocks
start running again at t(’) + XR(’) (and in virtual time CSMA,
this message will be transmitted when virtual time reaches
t(Z)), the resting component of the second customer’s service
will preempt part of the scanning component of the first
customer’s service. In Fig. 8, for example, the second
customer begins his resting component of service approxi-
mately halfway through the scanning component of the first
customer’s service, while the third customer begins his
resting component of service near the end of the scanning
component of the second customer’s service.

Define the synthetic queueing problem to be an ordinary
nonpreemptive FCFS queueing system that is given the
identical sequence of customer arrival times and service
times (including both resting and scanning components) as
our virtual time CSMA system. It should be clear from Figs.
8 and 9 that the unfinished work in both systems is identical
over all time, and hence, that the virtual time CSMA system
and the synthetic queueing problem will have an identical
sequence of busy periods. Below we make some key
observations about the relation between the waiting times in
the synthetic queueing problem and TO in our virtual time
CSMA system.

Consider the times 7 (j) and f (j) , measured with respect to
the start of a busy period, at which the jth customer enters
service in the synthetic queueing problem and the virtual
time CSMA system, respectively. In the synthetic queueing

MOLLE AND -ROCK: VIRTUAL TIME CSMA 927

to @, a little less t h p that required for the virtual clocks to
tu). Thus, being careful ,not to omit the resting

components of service for any of the customers 1, * * * , j -
1, we see that

TRANSMISSION
TIME

1 2 3

MESSAGE ARRIVALS

Fig. 8. A busy period in virtuat-time CSMA (note how preempts part
of X,(']).

UNFINISHED
WORK

4
b- BUSY PERIOD-+

1 2 3

CUSTOMER ARRIVALS

Fig. 9. The corresponding busy pericd in ,&e synthetic queueing system.

problem customers are served donpreemptively in FCFS
order, so that

i = l . I -1

~n the virtual time CSMA system, t h e m customer must still
wait until the resting component of, service for customers 1, - - a , j - 1 is completed, but he will preempt some scan time
because his ttansmission begins as sobd as fhe virtual c locb
advance to his arrival time. Thug,. assuming that he arrived
t (j) after the start of the busy period, he will have preempted
enough scan time to advance the virtual clocks from tu) to
7 (j) , namely

It remains to derive a more usable expression for Zu).
Suppose we find that 7 (j) < tu) s l), for some 1 5 i , <

j . Then we know frbm the way that the sphthetic queueing
problem was congt~cted that, in addition to the sum of the
resting components of service fot customers 1, 2, - * - , i, T (~)

also includes enough scan time to advance the virtual clocks

Similarly, we have

It should now be clear that

k-I+ I

and, indeed, we could get the exact result for Z(j) by
accounting for the time to scari across the residual service
time for customer i at customFrj's arrival. The final step is to
obaer+e that since these results relating the waiting times in
each system hold for each dustomer taken individually, the
same results'must also hold for the average waiting time in
the two systems. Thus, the average waiting time in the
virtual time CSMA system, W, is obtained from the average
waiting time in the synthetic queueing probleni, W, by
subtradting off E[q, where 2 is the sum of the scan times for
every customer in queue on its arrival plus the time to scan
across the residual service time of the customer in service.

Now suppose that the synthetic queueing problem were of
type M/G/ 1. Then the mean waiting time W is given by the
well-knowa Pollaczek-Khinchin mean value formula. Using
Little's result, the number in queue, Nq,. can also be
expressed in terms of Was Nq = wp/X. Similarly, it is well
known [9] for ihe M/G/l queue that W = Wo/(l - p) ,
where WO is the mean residual service time for the customer
(if any) found in service by a new arrival. Recalling that any
customers found in queue by a new arrival to an M/G/l
queue will have ordinaty service time requirements; we see
that if the synthetic queueing problem were of type M/G/l,
then the waiting time in the virtual time CSMA system would
be given by

1 1
rv= w-- tl (WO+N&= w-- B (W(1 - p) + Wp)

= w - . $ - 1

9

It is interesting to, note the symmetry in this last result: W is
obtained by in f rating the transmission time for each message
by a factor of q/ (q - 1) to account for the scan time
overhead, aid then defiatirtg the tesnlting waiting time
estimate by the reciprocal of that factor to account for the
premption of Some of that scan time by subsequent
transnilissions. To use this result, it remains to show how'to
map ihe syn,thetic queueing problem onto an M/G/1 queue.

Far synchronous (slotted) viitual time CSMA, we find TO
fr0.m the discrete time M/G/l queu&, with (3 as its
elementary time unit. Here we restiict all state changes to a
sequence of equally spaced arrivdpoints 0, w , 2w, 30, * * .
At each ai-rival point, either no customer or exactly one
customer arrives, independently and with probabilities (1 -
p) and p , respectively. Service times are independent with
mean 8 w and squared coefficient of vatiation Cb2, and each
one is a multiple of o (so that departures can only occur at 0,
w , 20, 3w, - .). It can be shown [17] that the mean waiting

928 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-33, NO. 9, SEPTEMBER 1985

time in a discrete time M/G/1 queueing system with
utilization p = p X is given by

The estimate for obtained from (18) and (19) can be
made exact, given the Poisson total traffic assumption, in the
following case. First, we assume that all service times (as
inflated to account for the scan time overhead) are evenly
divisible by the window size w . Second, we impose the
following modification to the protocol. Whenever the back-
log Q is less than w at the beginning of a slot, we shall insert a
“rest period” equal to w - Q so that the virtual clocks
advance by exactly w at every step (or, equivalently, that all
windows are forced to be the same size in a sliding window
tree algorithm). Obviously, this constant advance restriction
can only increase the delay compared to the original system,
because messages arriving when the backlog is small must
now wait for it to grow to w before being transmitted.
However, this modification drastically simplifies the analysis
by ensuring that both the arrival process and the service times
are independent of the state of the algorithm. In this case, an
arrival point occurs once every w time units, a nonempty set
of messages may arrive at each such arrival point with
probability p = 1 - e - wc, and if so, the service time (in
units of w) for that set of messages is independently chosen to
be either l/(w - a) with probability wGe-wG/(l - e-“G)
(representing a success) or b / (w - a) with probability 1 -
wGe-wG/(l - e-oG) (representing a collision). Thus, recall-
ing that a message must wait w/2 on average from its actual
arrival time to the next arrival point, we find that To for this
modified version of synchronous virtual-time CSMA is given
by

To=-+ w=-+ w - w W(q-1)
2 2 rl

where W is given by (19).
Without collision detection, it is no more difficult to find

To for the ordinary version of the algorithm, in which the
virtual clocks advance by min { w , Q} at the beginning of
each slot. To see this, we observe that without the constant
advance restriction, collisions would be less likely to occur in
the first slot of each busy period than in the rest. But without
collision detection, the service time for the first customer in
each busy period is no different from the rest, since the
length of every busy slot is always 1 + a. Thus, the
requirement of i.i.d. service times in the M/G/l model is
satisfied. Furthermore, it is clear that once a busy period has
begun, the virtual clocks always advance by exactly w at each
slot for the remainder of the busy period. In other words, for
a the busy period beginning at t l , we see that the arrival
points that are included within that busy period occur at t l ,
tl + w , t l + 2 w , . * e . Thus, W can be found using exactly
the same discrete M/G/1 model as before. However, the
virtual clocks now scan each idle period in steps of a once
every a time units, instead of in steps of w once every w time
units, reducing the average waiting time until the next arrival
point is reached from w / 2 to a/2 for messages that arrived
during an idle period. Since such messages make up a
fraction 1 - p of the total, TO for ordinary synchronous
virtual time CSMA without collision detection is given by

where W is given by (18) and (19), assuming b = 1.
Note that these simple results were only achieved because

we deliberately defined service times in the synthetic

queueing problem to include scan times. Had we instead let
each slot (idle or not) be a “customer” who requires one
slot’s worth of service, then we would have been forced to
use a instead of w as the elementary time unit because the
service time for an idle slot is clearly a. It follows that euen
with the constant advance modification, we would still
have been faced with analyzing a system where periodic
customer arrivals occur once every q elementary time units,
rather than a system with memoryless arrivals-which is a
far more difficult task.

For asynchronous (unslotted) virtual time CSMA, we can
estimate 7‘0 using the results for the continuous time M/G/1
queue. Recall that in our throughput analysis, we have
already assumed that the total traffic is Poisson, that the
number of stations is large, and that the network topology is
the worst possible (i.e., the propagation time between all
pairs of stations is the same). Unfortunately, even for this
case we cannot use (18) without making some further
approximations, because the customer arrival process in the
synthetic queueing problem is not Poisson. First, “gaps”
occur in the customer arrival process. Recall that during a
transmission cycle where the virtual clock rate is r , the
virtual clocks at almost all the stations advance by the same
amount,’ namely, the sum of an exponential interarrival time
with mean 1/G, which advances the virtual clocks to the
arrival time of leading message, and the “vulnerable period”
for that message, ar. Any messages that arrive during the
vulnerable period do not become customers in the synthetic
queueing problem. They simply collide with the leading
message, possibly changing his service time. Second, when-
ever the backlog is cleared, the virtual clock rate (and,
hence, the duration of the vulnerable period) is reduced.
Thus, we see a dependence between the state of the algorithm
and the arrival process, since both the mean time between
customer arrivals (i.e., 1/G + ar) and their service times
depend on r.

To make use of (18), we shall approximate the arrival
process to the synthetic queueing problem by a Poisson
process even though the “gaps” occur. Because the gaps are
small, few messages fail to become customers in the
synthetic queueing problem because of this approximation.
Furthermore, our model of the arrival process in the virtual
time CSMA system is already an approximation (because we
said that the total traffic, including retransmissions, is
Poisson), so the additional error from assuming Poisson
arrivals in the synthetic queueing problem does not seem
significant. To handle the state dependence in the mean
interarrival times, we form upper and lower bounds on W by
assuming that the mean interarrival time is state independent
and given by 1/G + a and 1/G + qa, respectively. Recalling
that the shorter value for the mean interarrival time should be
used between the first and second customer arrivals in a busy
period, and that the longer value should be used between
each of the subsequent arrivals in the busy period, we expect
the actual waiting to approach the upper bound under light
traffic (since few busy periods contain more than two
customers) and the lower bound under heavy traffic (since
customers initiate new busy period%). Together, these two
approximations allow us to bound W at any value of G , by
solving the Pollaczek-Khinchin mean value formula [9] at
utilizations of pu = x G / (l + aG) and p L = XG/(l +
aqG), respectively, i.e.,

’ The only exception is at the transmitting stations during a collision.
However, this is unimportant in the calculation of To because we have
assumed that the number of stations is large and, thus, that these same stations
are unlikely to transmit more messages in the same busy period.

MOLLE AND KLEINROCK: VIRTUAL TIME CSMA

Since an arriving message need not wait for the next arrival
point in asynchronous virtual time CSMA, To satisfies

929

We have now found expressions for To, Ilamely, (20) and
(21) for the synchronous case and (23) for the asynchronous
case. The throughput S was shown in Section IV to be E[mI
E[L] . Thus, to find the mean delay T from (1 3), it remains to
find an expression for TR.

Recall that T R is composed of an unsuccessful transmission.
of duration

[b + a synchronous case
TF= 1 + E [y I asynchronous without collision detect

(24)
a + E[Y’] + c asynchronous with collision detect

followed by the time it takes for the virtual clocks to advance
by the scheduled retransmission delay. We assume that the
retransmission feedback algorithm operates by adding a
random delay to the current value of the arrival time “tag”
for each colliding message (which clearly must have been
equal to the current value of virtual time), .and that these
random delays are independently drawn from a common
distribution with mean R.
To calculate the mean time for the virtual clock to advance

by R, we make use of the fact that R s l/(q - 1) must hold
for the Poisson total traffic assumption to be reasonable. In
this case, we can assume that this advance is distributed over
each virtual time axis in proportion to their relative lengths,
and it follows immediately from the discussions leading up to
(5) and (10) that

if the queueing delay due to the virtuai clocks is finite (i.e.,
?ro > 0); otherwise we have

TF+
R m s l r l a

synchronous case

if ?ro = 0.

VI1 . NUMERICAL RESULTS

Mean message delays as a function of throughput were
found humerically for both the synchronous and asynchron-
ous versions of the protocol. In each case, we have compared
the results of our analysis with simulations where we have
relaxed many of the assumptions used in the analysis. The
results show that in spite of its simplicity, our analytical
model is remarkably accurate.

For the synchronous protocol, we set the parameters in
our model to be compatible with the well-known reiults of
Tobagi and Kleinrock [lo]. Thus, we assume that messages
are of constant length, that the transmission time for a
message is unity, that the end-to-end propagation time a is
0.01, and that there is no collision detection (i.e., b = 1).

In Fig. 10, we compare simulation results with the
estimated delay from (13), (21), and (26). Following [25, ch.
61, the simulation consists of 50 identical stations, eaqh with
geometric message interarrival times with mean’ a/o and
geometric retransmission delays with mean a / v . Three
values for Y, namely 0.0003, 0.001, and 0.003, and a fixed
virtual clock rate of q = 12 were used in this experiment.
Each point is based on a run length of 500 OOO slots. Because

a= 0.01

n= 12
b- 1.0

0.0 0.2 0.4 0.6 0.8 1.0

THROUGHPUT (S)

Fig. 10. Comparison of simulatioh with analytic results for synchronous
virtual-time CSMA.

we needed the assumption in our analysis that the total resting
and scanning times for each customer, q / (q - 1) from (15),
is evenly divisible by the advance ,of the tirtual clocks in one
step, namely qa, we used q = 12.1 in the analytical curves so
that I/(@ - a) = 9.

The agreement between each set of simulation points and
the correspondihg analytical curve is quite remarkable,
considering the simplicity of the analytical model. Indeed,
the only noticeable discrepancy is that the simulation points
for the highet.retransmission rates (i.e., Y = 0.001, 0.003)
lie above the corresponding analytical curve, near the
“knee” of the delay curve. This appears to be the result of
comparing analytical curves in which we made the Poisson
total ttaffic assumption, with simulation results where we
used a nonadaptive retransmission feedback algorithm.
When the mean retransmission delay is large, we see
excellent agreement over the entire throughput versus delay
curve. However, when the mean retransmission delay is
small, the feedback of colliding messages in the simulation
model becomes significant, so that our analytical model
underestimates G during the busy periods and, hence,
overestimates the probability of success at each transmission
attempt.

In Fig. 11, we compare the simulation points for Y =
0.003 and Y = 0.001 with some equilibrium throughput-
delay curves for a model of slotted nonpersistent CSMA that
was first studied by Tobagi [25]. However, where Tobagi
relied on the numerical solution of matrix equations, in the
Appendix we solve for the equilibrium solution to the
embedded Markov chain as a triangular set of equations, and
obtain closed-form expressions for the remaining quantities
of interest. This has allowed us to produce more complete
performance curves for the comparison. Comparing the
simulation points for virtual time CSMA with the equilib-
rium curves for nonpersistent CSMA in Fig. 1 1, it is evident

930 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-33, NO. 9, SEPTEMBER 1985

E
‘ 5 x

>

z

5

THROUGHPUT (S)

Fig. 11. Comparison of simulation with numerical curves for slotted
nonpersistent CSMA. (Simulation of virtual-time CSMA uses u = 0.001
and Y = 0.003; 9 = 12.)

that virtual time CSMA with fixed values of virtual clock
speed and retransmission delay (i.e., q = 12, Y = 0.003)
attains the lower envelope of the curves for nonpersistent
CSMA optimized over all values of the retransmission
delay.

It is worth pointing out that slotted nonpersistent CSMA
has an unfair advantage in this comparison because it
assumes unbuffered stations: if a station generates a new
message before an earlier message is transmitted success-
fully, the newly generated message is simply dropped
without penalty. However, the simulation of synchronous
virtual time CSMA assumes stations have infinite buffers:
all messages are queued at the station until the virtual clocks
reakh their generation times.* Since queueing messages,
rather than dropping them without pendty, can only increase
the mean delay for the messages that are not dropped, we
expect virtual time CSMA to outperform buffered nonpersis-
tent CSMA.

Before leaving Fig. 1 1, it is worth remarkirig that with 50
unbuffered stations, the average number in system, IiJ, can
never exceed 50. It follows from Little’s result [14] that it is
impossible for the delay curve’s for nonpersistent CSMA to
enter the region bounded below by the curve

To simplify the simulation, a few messages are still lost because no station
is allowed to transmit more than one message in the same slot. This could
happen if one message suffered so many collisions that it was still in the
system at the next message’s scheduled transmission time. To prevent this, the
new message is dropped without penalty. Such dropped packets are rare,
however, because the average number of slots between the first transmissions
of two successive messages at the same station is 50/(oS). In this example, we
have o = 0.12 and S s 0.86, so that even at capacity these transmissions are
separated by about 475 slots on average.

It is interesting to note that with nonpersistent CSMA, the
delay curves for all values of Y actually seem to terminate at
some point on this boundary, rather than approaching it
asymptotically as T * 00. Furthermore, each of these limit
points represents the capacity of the protocol with infinite
buffering, given that each station with a nonempty buffer
transmits the message at the head of its buffer with
probability Y in each slot. To find the capacity of such a
buffered protocol, we can use the results of Tsybakov for
slotted ALOHA [28] to show that the M-dimensional
(embedded) Markov chain representing the queue lengths at
each station is ergodic only if the queue at a single station is
ergodic, assuming the worst-case behavior at every other
station, namely, that their buffms never empty. To see that
the throughput of the unbuffered protocol approaches the
capacity of the corresponding buffered protocol as its delay
approaches the limit point, we‘note that even for relatively
small values of u, say u 2 0.01, it is very unlikely that a
station will remain in the thinking state through an entire
transmission cycle (where it will have had more than 100
opportunities to generate.a new message). Thus, there will
usually be 50 messages in the system, and the channel
activity is close to that of the corresponding buffered
protocol. The only difference between the buffered and
unbuffered protocols occurs after successful transmissions,
where the channel load is different because one station is
transmitting with probability u instead of Y. However, this
difference in load is not significant as long as 49v p u, which
was the case in all the above examples.

Figs. 12 and 13 show how our analytical delay model for
asynchronous virtual time CSMA compares with simulation
data.9 Both simulations consist of 20 stations on a “star”
network, each with buffer size 15. The arrival of new
messages at all stations is Poisson with identical rates. In Fig.
12 we assume that a = 0.01, that the virtual clock rate
depends on G through the relation q = 9.45/G (since
maximum conditional throughput occurs at q G = 9.49, that
retransmission delay is geometric with a mean of 3, and there
is no collision detection [12, Fig. 6.11. In Fig. 13 we assume
that a = 0.01, that the virtual clock rate is fixed at 10, that
there, is co l l i s ion detection with col l i s ion recovery time
0.001, and that one of three widely varying retransmission
feedback algorithms is used [19, Fig. 51. Since only the
random geometric feedback algorithm was simple enough to
have an obvious mean, it was used to determine R for the
analytical curves.

In both figures we find that the simulation results approach
the upper bound to delay at light traffic and the lower bound
to delay under heavy traffic, as we expected. Furthermore,
the simulation points generally fall between, the analytical
bounds with two exceptions. First, Fig. 12 shows the same
behavior as Fig. 10, where the simulated delays exceed the
upper bound near the knee of the curve because of the
Poisson traffic assumption. (The fact that the simulation
results for binary exponential backoff and the asynchronous
stack fall below the lower bound in Fig. 13 is not significant,
because the given value of R only applies to the random
geometric . feedback algorithm.) Second, the simulations
attain slightly higher throughput near saturation, where
buffer overflow begins to occur. The expianation for this
discrepancy lies in the fact that the simulation has a finite
number of stations, each with a limited buffer capacity. The
inevitable buffer overflow that occurs at saturation interacts
with the virtual clock mechanism in an interesting way.
Suppose that all stations’ buffers are full between times 7 1

Many additional simulation experiments involving asynchronous virtual
time CSMA, including comparisons between different retransmission feed-
back algorithms and detailed comparisons with Ethernet-like algorithms on a
“bus” topology, can be found in [12], [lo1

MOLLE AND KLEINROCK: VIRTUAL TIME CSMA

40C

1 oc

-
t
>
4
0

5 z
IC

1

I I I

a= 0.01

‘Star’ Topology
n= 9.45 / G

THROUGHPUT (S)

Fig. 12. Comparison of simulation with analytic bounds for asynchronous
virtual-time CSMA without collision detection.

400 I I I 1

a= 0.01
C’ 0.001
‘Star’ topology
n= 10

SIMULATED RETRANSMISSION ALGORITHMS:
A = Asynchronous Stack

(Pushdown = 4a)

*= Random Geometic
.= Binary Exponential Backoff

100 -

THROUGHPUT (S)

Fig. 13. Comparison of simulation with analytic bounds for asynchronous
virtual-time CSMA with collision detection.

93 1

and r2. Then all new messages arriving in this interval are
lost. When the next successful transmission occurs, say by ’

station j , only station j can accept a newly generated
message. Thus, later on as the virtual ‘clocks are sweeping
past rP\only station j will come upon a new message to send,
and $is more likely to be able to transmit it successfully than
one ‘would expect from the Poisson total traffic model. P

VIII. CONCLUSIONS
We.have introduced the virtual time CSMA channel access

algorithm. It is quite different from existing CSMA al-
gorithms, and offers some significant advantages. It is the
only CSMA algorithm that reduces to ideal M / G / 1 behavior
in the limit as a -+ 0. It is fair in the sense that at each
transmission attempt, stations are granted the opportunity to
transmit their messages in FCFS order. Its capacity is at least
as the other CSMA algorithms, and its delay characteristics
are very good. Its virtual clock mechanism is equivalent to
the “sliding window” mechanism used in some tree conflict
resolution algorithms, but also generalizes to asynchronous
(unslotted) operation.

This analysis has also brought to light several items of
independent interest. A classification scheme for random
access protocols was given, indicating some of the reasons
why CSMA protocols are still important in spite of the
invention of tree conflict resolution algorithms. The through-
put ‘calculation uses a novel decomposition of the time axis
into an interleaved set of “virtual” time axes. The method of
calculating the mean delay by transforming the system into a
synthetic queueing problem and then transforming the results
back to the original system has recently been used to find the
exact throughput-delay curve for certain “sliding window”
tree conflict resolution algorithms [20]. We extended Toba-
gi’s analysis of unbuffered slotted nonpersistent CSMA to
investigate its behavior at saturation. Finally, we showed
how buffer overflow can improve the heavy traffic perform-
ance of virtual time CSMA.

CSMA channel access algorithms can be viewed as
scheduling algorithms in the sense that they coordinate the
use of some common resource (the channel) by a set of
competing users (the stations). (Channel access is actually a
more difficult problem than scheduling, since the algorithms
must operate in a distributed manner, with each station
running its own copy of the algorithm without complete
information about the demands for service by the other
stations.) Sevcik [23] has observed that the difficulty in
analyzing a scheduling algorithm seems inversely propor-
tional to the goodness of that scheduling algorithm. Our
experiences with virtual time CSMA add to the supporting
evidence to this conjecture. ’ Where existing CSMA al-
gorithms are based on ad hoc scheduling rules, virtual time
CSMA is a “fuzzy” (because of the nonzero propagation
times) approximation to the ideal case-an FCFS M/G/I
queueing system. And unlike other CSMA algorithms, which
have resisted attempts at finding simple analytical models
capable of explaining their behavior (e.g., [6]), we were able
to find simple closed-form expressions for bounding the
delay in virtnal time CSMA.

APPENDIX
Here we wish to solve the model for slotted nonpersistent

CSMA with geometric retransmissions discussed in Section
VII. The system operates in discrete time, with arrival points
occurring once every a time units. Each station can be
“thinking” (trying to generate a new message), “transmit-
ting,” or “blocked” (waiting to transmit a message); state
transitions can occur at each arrival ,point. Each thinking
station generates a new message with probability (I and either
begins transmitting it, if the channel is idle, or enters the

932 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-33, NO. 9, SEPTEMBER 1985

blocked state otherwise. Each transmitting station remains in
that state for one transmission time (i.e., l la + 1 arrival
points), then enters the thinking state, if its transmission was
successful, or the blocked state otherwise. If the channel is
idle, each blocked station begins transmitting its message
with probability v.

Since the time spent in the “transmitting” state is
deterministic, the number of stations in each state at each
arrival point exhibits memory. However, an embedded
Markov chain can be found by examining the state of the
system at the start of each transmission cycle [25]. The jth
transmission cycle consists of the jth channel idle interval
followed by the jth channel busy interval. Since no stations
are transmitting when the channel is idle, the state of the
system at each embedding point is simply the number of
messages in the system (or, equivalently, the number of
stations in the blocked state), which has {T ; } as its steady-
state distribution. Let

u(k)P1-(l -u)k (A. 1)

be the probability that a thinking station generates a new
message within k arrival points. Then

is the probability that when j stations are blocked, i thinking
stations generate new messages ,within a period of k arrival
points, and

g (j , i)=(-!) ~ ~ (1 - v) j - l O s i s j (A.3)

is the probability that when the channel is idle and j stations
are blocked, i of them transmit in the same arrival point. It is
easy to see that the j , kth element of the transition matrix for
the embedded Markov chain satisfies

+f~(j, O)s(j, l l f d j , k - j + 1)

+f~(j, 0)[1 - g U 0) - g (j , l)Ih~Ai, k - j)

+flu, 1) [1 - g (j , O)lfI/,(j+ 1 , k - j - 1)

k - j

+ x fl (j , i) h / a (j + i , k - j - i)) (A.4)
i = 2

for k = j - 1 , j , * * - , M . It follows that we can find { r j } up
to a multiplicative constant using the recurrence relation

j - 2

rj-1(1-Pj-l , j-1)-x riP;,j-1
7rj = i = O j = 1 , 2 , *..

Pj,j - 1

64.5)
and an initial estimate for TO. (For numerical stability, it is
best to adjust this constant dynamically to reduce the risk of
underflows and overflows.)

Having found { r j } , -we can express the average number of
messages in system, N , as

M
7rfljLco’)

N = j = O
M (A.6)

where N j is averaged over all transmission cycles that began
with j blocked stations, and Lc(j) is the average duration of
such transmission cycles. It can be shown [25] that

To find N j , we must account for the messages that are
generated part way through a channel busy interval. Let ei(t)
be the average number of messages in the system during t
arrival points, given that there are i such messages initially
and no transitions to the thinking state take place. Then

= M - (M - i)(l - (1 - u)’)(l - u)
tu (A. 8)

Thus, if k messages were in the system at the start of a
channel busy interval, the average number of messages in the
system over the remainder of that channel busy interval is
given by 9k(l/a). But

is the probability of there being k messages in the system at
the start of a channel busy interval, given that we were in
state j at the start of the transmission cycle. Thus,

where 2 = (1 - a)(1 - (1 - u)’Iu)/u.
To find the steady-state throughput S, it remains to find

He(’), the expected number of successful transmissions per
transmission cycle, given that we were in state j at the start of
the transmission cycle. But this is clearly

so that the throughput may be expressed as
M x 7r,HCU)

s = j = O (A. 12)

7rjLco’)

x lrj4.Lc(f)

M

j=O

and, using Little’s result, the mean delay T is given by
M

T=J=O
M

(A. 13)
~jH,o’)

j =O

REFERENCES
[l] N. Abramson, “The ALOHA system-Another alternative for com-

puter communications,” in AFIPS Conf. Proc., Fall Joint Comput.
Conf., 1970, vol. 37, pp. 281-285. j=O

MOLLE AND KLEINROCK: VIRTUAL TIME CSMA 933

J. I. Capetanakis, “Generalized TDMA: The multi-accessing tree.
protocol,” IEEE Trans. Commun., vol. COM-27, pp. 1476-1484,
Oct. 1979.
G. Fayolle, E. Gelenbe, and J. Labetoulle, “Stability and optimal
control of the packet switching broadcast channel,” J. ACM, v01,24, .

M. J. Ferguson, “On the control, stability and waiting time in a slotted
ALOHA random access system,” IEEE Trans. Commun., vol.

R. G. Gallager, “Conflict resolution in random access broadcast
networks,” in Proc. AFOSR Workshop Commun, Theory Appl,,
Sept. 17-20, 1978, pp. 74-76.
E. Gelenbe and I. Mitrani, “Control policies in CSMA local area
networks: Ethernet controls,” in Proc. ACM SIGMETRICS Conf.
Meas. Modeling Comput. Syst., Aug. 1982, pp. 223-240.
J. F. Hayes, “An adaptive technique for local distribution,” IEEE
Trans. Commun., vol. COM-26, Aug. 1978.
R: E. Kahn, S . A. Gronemeyer, J . Burchfiel, and R. C. Kunzelman,
“Advances in packet radio technology,” Proc. IEEE, vol. 66, pp.

L. Kleinrock, Queueing Systems, Vol. I, Theory. New York:
Wiley-Interscience, 1975.
L. Kleinrock and F. A. Tobagi, “Packet switching in radio channels:
Part I-Carrier sense multiple-access modes ahd their throughput-delay
characteristics,” IEEE Trans. Commun., vol. COM-23, pp. 1400-
1416, Dec. 1975.
L. Kleinrock, Queueing Systems, Vol. II, Computer Applica-
tions. New York: Wiley-Interscience, 1976.
D. Konstantas, “Virtual time CSMA: A study,” M.Sc. thesis, Dep.
Comput. Sci., Comput. Syst. Res. Group, Univ. Toronto, Toronto,
Ont., Canada, Tech. Rep. CSRG-149, Jan. 1983.
S. S. Lam and L. Kleinrock, “Packet switching in a multiaccess
broadcast channel: Dynamic control procedures,” IEEE Trans.
Commun., vol. COM-23, pp. 891-904, Sept. 1,975.
J. Little, “A proof of the queueing formula L = XW,” Oper. Res.,
vol. 9, pp. 383-387, Mar. 1961.
J . L. Massey, “Collision-resolution algorithms and random-access
communications,” School Eng. Appl. Sci., Univ. California, Los
Angeles, Rep. UCLA-ENG-8016, Apr. 1980.
R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed packet
switching for local computer networks,” Commun. ACM, vol. 19,
July 1976.
M. L. Molle, “Unifications and extensions of the multiple access
communications problem,” Ph.D. dissertation, Dep. Comput. Sci.,
Univ. California, Los Angeles, CSD Rep. 810730 (UCLA-ENG-8118),
July 1981.
-, “Asynchronous multiple access tree algorithms,” in Proc.
ACM SIGCOMM ’83 Symp. Cornmun. Architectures, Protocols,
March 1983; preprint’: Comput. Syst. Res. Group, UNv. Toronto,
Toronto, Ont., Canada, Tech. Rep. CSRG-145, Aug. 1982.

pp. 375-386, July 1977. ?*-,

COM-23, NOV. 1975.

1468-1496, NOV. 1978.

Performance ’83. 9th Int. Symp. Comput. Perform. Modeling,
Meas., Eval., May 1983, pp. 295-308.
G. C. Polyzos, “Tree. conflict resolution algorithms: The non-
homogeneous case,”M.A.Sc. thesis, Dep. Elec. Eng., Univ. Toronto,
Toronto, Ont., Canada, .Dee. 1984.
E. G. Rawson and R. M. Metcalfe, “Fibemet: Multimode optical
fibers for local computer networks,” IEEE Trans. Commun., vol.

L. 13. Robirts, “ALOHA packet system with and .without slots and
capture,” ARPA Network Inform. Cen., Stanford Res. Inst., Menlo
Park, CA, ASS Note 8 (NIC 11290), June 1972; reprinted in Comput.
Comrnun. Rev., vol. 5; pp. 28-42, Apr. 1975.
K. C. Sevcik, private communications.
A. S. Tanenbaum, Computer Networks. E n g l e w d Cliffs, NJ:
Prentice-Hall, 1981.
F. A. Tobagi, “Random access techniques for data transmission over
packet switched radio networks,” Ph.D. dissertation, -Dep. Comput.
Sci., Univ. California, Los Angeles, UCLA-ENG-7499, Dec. 1974.
-, “Multiaccess protocols in packet communication systems,”
IEEE Trans. Commun., vol. COM-28, pp. 468-488, Apr. 1980.
B. S. Tsybakov and V. A. Mikhailov, “Free synchronous packet
access in a broadcast channel with feedback,” Probl. Inform.
Transmiss., 1980; transl. from Russian, Probl. Peredachi Inform.,

---, “Ergodicity of a slotted Aloha system,” Probl. Inform.
Transmiss., 1980; transl. from Russian.
-, “Random multiple packet access: Part-and-try algorithm,”
Probl. Inform. Transmiss., 1981; transl. from Russian, Probl.
Peredachi Inform., vol. 16, pp. 65-79, kt.-Dec. 1980.

COM-26, pp. 983-990, July 1978.

VOI. 14, pp. 32-59, Oct.-Dec. 1978.

M. L. Molle and D. Konsiantas, “A simulation studyof retra‘nsmission Leonard Kleinrock (S’55-M’64-SM’71-F’73), for a photograph and biogra-
strategies for the asynchronous virtual-time CSMA protocol,” in Proc. phy, see p. 638 of the July 1985 issue of this TRANSACTIONS.

