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Prioritized-Virtual-Time CSMA: Head-of-the-Line
Priority Classes without Added Overhead

Mart L. Molle, Member, IEEE

Abstract— The prioritized-virtual-time carrier sense multiple
access (PVT-CSMA) protocol is a media access algorithm for
cable- and radio-based local area networks that incorporates
message-based priority classes. PVT-CSMA implements the well-
known head-of-the-line (HOL) priority queueing discipline, in
which higher priority messages are always transmitted in pref-
erence to lower priority messages, and messages are transmitted
first-come—first-served within each priority class. This priority
discipline works by altering the way in which stations manipulate
the “virtual clocks” that scan the time axis for message arrivals,
to ensure that higher priority messages are encountered by the
virtual clocks before lower priority messages. Thus, unlike other
approaches for incorporating message-based priority classes in
CSMA protocols, ours works implicitly, without adding any
channel overhead compared to the nonpriority case. Expressions
are obtained for both throughput as a function of offered load
and mean delay as a function of throughput for asynchronous
(unslotted) PVT-CSMA, which are easily solvable for any num-
ber of priority classes and for class-dependent message lengths,
arrival rates, retransmission rates, etc. Specialization of our delay
analysis to the single class case yields a substantial improvement
over our previous results for asynchronous virtual-time CSMA.
Comparisons are made between our analysis and simulations
of PVT-CSMA, and with simulations of Tobagi’s P-~-CSMA
protocol.

I. INTRODUCTION

SMA protocols allow a set of nearby stations to share a
common channel under distributed control. Each station
executes a copy of the protocol to decide when it should
transmit its messages, using its own observations of the
state of the channel (i.e., whether it is idle or busy, and, if
collision detection is available, whether the ongoing message
transmission period represents a successful transmission or a
destructive collision among several messages). CSMA pro-
tocols are random access protocols, which means that they
provide an efficient way to share bandwidth among large
numbers of low duty-cycle (or “bursty”) stations and that one
can expect small access delays in steady-state operation under
moderate load. However, random access protocols do not
ordinarily discriminate between stations or message classes.
While fairness is in general a useful property in networks, it
may not be appropriate when the network must carry different
classes of traffic. For example, packetized speech (for which
both mean and variance of delay must be small, but some
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loss is acceptable) should be handled differently from file
transfers (for which high throughput may be required, but
mean and variance of delay are unimportant). In the case of
heterogeneous traffic, we can improve the perceived grade of
service for each class of traffic by discriminating on the basis
of priority class. Below, we follow the usual terminology from
priority queueing (e.g., [10], ch. 3) in assuming that there are
P message classes in the network, and that messages of class
p have higher priority than (i.e., should be transmitted before)
those of class p — 1.

Previous approaches for incorporating priority classes into
CSMA were based on the addition of reservation periods to the
protocol. In P-CSMA [26] each transmission is followed by
a reservation period consisting of at most P reservation slots.
Here each priority class has a turn to transmit a reservation
(actually a short burst of noise) to indicate that they have
a message. If the first reservation occurs in the pth slot,
then the channel is reserved, until the next transmission, for
access by class p messages (or for classes P,P—-1,---,p
in the semipreemptive version, which more closely resembles
our HOL priority queueing discipline) using the standard
p-persistent CSMA protocol. In Priority Ethernet [7], each
transmission begins with a reservation period in which the
stations make use of collision detection and variable length
preambles to resolve collisions in favor of the highest priority
message, if it is unique. Here stations of class p transmit their
preamble for at most p reservation slots. If after j reservation
slots, a station does not detect any colliding transmissions
1 < j < p it transmits the message. Otherwise, if the
collision lasts through the pth reservation slot, the station must
reschedule its transmission because the collision included at
least one other message with the same or higher priority.

Extended Hyperchannel [1] and Twentenet [23] are similar
to P—CSMA in that a reservation period follows each trans-
mission period. However, the priority mechanism is further
extended to encode both the message class and the identity of
the transmitting station. For large numbers of stations and/or
message classes, this expansion of the reservation period
can add considerable channel overhead. Twentenet tries to
overcome this overhead by dividing the reservation process
into rounds. A first-round reservation period is used to reserve
the channel for a given priority class. If a collision occurs
following this first round, then a second-round reservation
period takes place based on the high-order address bits of the
stations that collided in the first round. If a collision occurs
following this second round, then a unique station is selected
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in the third-round reservation period, based on the low-order
address bits of the stations that collided in the second round.

To varying degrees, these reservation-period based ap-
proaches suffer from the following set of drawbacks. First, they
require synchronous operation, with all stations advancing the
algorithm in lockstep. Second, they impose channel overhead,
since there is a reservation period for each transmission period.
In addition to consuming bandwidth that could have been
used for transmitting messages, this makes them incompatible
at the physical level with existing networks. Third, the
overhead is an increasing function for the number of priority
classes, and, for both Extended Hyperchannel and Twentenet,
also of the number of stations. Fourth, particularly for the
Twentenet protocol, each station must keep track of more state
information about the network, such as which class (if any) has
reserved the network, when the last transmission ended, and so
on. And finally, for both Twentenet and Priority Ethernet the
reservation overhead is an increasing function of throughput.
In our proposal for PVT-CSMA, we have been able to avoid
these problems by avoiding the use of explicit reservation
periods.

II. DESCRIPTION OF PVT-CSMA

PVT-CSMA is an extension of the virtual-time CSMA pro-
tocol described in [17], [18], [20]. A slightly different priority
implementation called R—VT-CSMA, which is intended for
the integration of voice and data, has recently been introduced
by Lea and Meditch. In [14], they have analyzed the stability
region for R—-VT-CSMA, and in [13] they have presented its
throughput-delay characteristics obtained via simulation.

The operation of virtual-time CSMA is quite different from
the well-known CSMA protocols described in [8], [25], in
that messages are assigned transmission times during the
idle time on the channel by “recording” the arrival time for
each message with the aid of a real-time clock, and then
“playing back” the recording of the arrival process with the
aid of a virtual-time clock that runs only during the idle
periods on the channel (since new transmissions must defer
to a busy channel), and at an accelerated rate of 7 so that
the (intermittent) virtual-time clock can keep up with the
(continuous) real-time clock over the long run. A message is
transmitted when the virtual clock reading reaches its recorded
arrival time. Since this virtual clock mechanism is essentially
forcing the messages to queue for access to the channel,
we assume that n times the proportion of idle time on the
channel is greater than one to ensure that the queueing delay
remains finite. But in this case, the virtual clocks cannot always
run at rate 7 when the channel is idle without scheduling
some messages for transmission before they were generated.
Thus, to ensure causality, we limit the speed of the virtual-
time clocks to unity once they catch up to real-time. Notice
that if the virtual clocks are not running in step with real-
time, they must be either gaining on real-time at rate 7 — 1
if the channel is idle, or else falling further behind at rate
unity, if the channel is busy. Consequently, whenever the
channel is busy for X time units, the virtual clocks are “busy”
(because they are not simply running in step with real-time)
for X + X /(n—1) = BX, where § 2 17
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The extension in PVT-CSMA involves changing the “play
back” scheme. Thus, messages belonging to class P are
scheduled first, by letting only the class P virtual clocks run at
rate 7, until the next class P message is encountered or they
catch up to real-time. Once the class P virtual clocks have
caught up to real-time (possibly after some additional class P
transmissions have taken place), we allow messages belonging
to both classes P—1 and P to be scheduled: the class P clocks
continue to run at rate unity (giving newly arriving class P
messages free access to the channel), while the class P-1
clocks run at rate 7, — 1. When the class P — 1 virtual clocks
eventually catch up to real-time, we start scheduling messages
belonging the classes P — 2,---, P, and so on. It should be
clear that no message from class ¢ — 1 or below is transmitted
until the class ¢ virtual clock has caught up to real-time, and
that within a given class the messages are scheduled in first-
come—first-served order. Thus, the scheduling of transmissions
in PVT-CSMA is done in HOL-priority order.! Notice that
whenever the channel is busy for X time units, the class ¢
virtual clocks are “busy” for X 3, time units where

P
BT, 1<esP
pc P T 1

Figs. 1 and 2 show the effect of imposing two priority
classes on a busy period in virtual-time CSMA. Notice that
the order in which the high-priority message (H;) and the
preceding low-priority message (Lo) are transmitted has been
reversed—as it must be under HOL scheduling, since the
arrival of H; occurred before the scheduled transmission time
for Lo. Also, we emphasize that each station starts its class 1
clock running (at rate 7;) as soon as its class 2 clock slows
down to rate unity. Thus, unlike the reservation-period based
priority mechanisms described above, each station knows
implicitly when to allow traffic belonging to each priority
class into the channel without having to introduce “gaps” in
the channel traffic at priority changeover events. Obviously,
this means that class 2 transmissions may collide with class 1
transmissions. However, since at all times the class 1 virtual
clock reading is no greater than the class 2 virtual clock
reading, it is clear that no class 1 message can ever be
delivered “out of turn” in the presence of a class 2 message.

If half the traffic belongs to each priority class, then the
values 72 = 2n and 71 = 21 — 1 that we used in Fig. 2 are
“optimal” in the following sense. First, these values preserve
the total channel overhead imposed by the virtual clock
mechanism that was present in the single class case because

_ 2n 22y-1_
Toam-1 2p-2 n-

B1 1515

(This result is also evident from Figs. 1 and 2 where the length

of the “busy period” for the lowest/only class is exactly the
same.) And second, they preserve the channel traffic rate, nG,

INote that some of these scheduled transmissions may result in collisions,
in which case we assume that the backoff algorithm randomly assigns a “new”
arrival time to each colliding message. Although our scheme does ensure that
these colliding messages are transmitted in HOL-order based on their “new”
arrival times, we obviously cannot guarantee anything about the order of
delivery in terms of their original generation times.
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Fig. 1. Operation of virtual-time CSMA without priorities. (A busy period
begins at the point marked A and ends at the point marked B)
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Fig. 2. Operation of PVT-CSMA showing how the channel activity is
partitioned into 3 virtual-time axes. (Busy periods for class 2 begin at the
points marked A and C, and end at the points marked B and D, respectively.
A single busy period for class 1 begins at the point marked A and ends at
the point marked E.)

throughout the busy period: if only the class 2 clocks are
running, then the channel traffic rate is (27)G/2 = nG; if the
clocks for both priority classes are running, then the channel
traffic rate is G/2 + (2n— 1)G/2 = nG.

The same “optimal” imposition of priority classes is easily
extended to the general case of P priority classes with traffic
intensity G, for class p, Z§=1 G, = G. In this case, we let

P
nG- %, G
Iy, = =l g« p<P
P Gp Y = —_ 4
so that
5 = nG/Gp (nG - Gp)/Gp

1= 0G/Gp—1 (nG-Gp)/Gp-1 -1

(e-fe)/e

. = —
(WG— ZGi)/Gl—l K
i=2
as before.

It should be clear from the description above, that adding
HOL priority classes to virtual-time CSMA need not introduce
any additional overhead to the protocol. All that happens is
that the order in which the waiting messages are transmitted

=5,
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is permuted such that higher priority messages are transmitted
before lower priority messages. In addition, a station that does
not generate messages from all priority classes need not keep
track of the evolution of the virtual clocks for every priority
class. For example, if the station never generates messages
from classes i,7 — 1,---,1, then it can ignore those classes
completely, to the point of being unaware of the number of
lower priority classes. Similarly, if the station does generate
class j — 1 messages, but never any messages from classes 7,
j+1,---,k, then it can replace the k — j + 1 virtual clocks
by a single “equivalent” clock with rate njx = f; /(Bi -
ﬁk+1). Thus, one could configure a PVT-CSMA system
with a large number of priority classes without imposing an
excessive processing burden on any station.

III. THROUGHPUT ANALYSES FOR PVT-CSMA

In this paper, we assume that the network consists of a large
number of low duty cycle stations that collectively generate
traffic (consisting of both new messages and retransmissions)
according to a Poisson distribution at the rate of G, for
priority class p, p = 1,---,P. For simplicity of notation,
we define Gy = 0, and 7o = 1. Messages of variable length
within each class are permitted. In particular, whenever a class
p message is transmitted, we assume that its transmission
time, t,, is drawn independently from a (class dependent)
general distribution with probability density function fi,(tp),
mean %, and second moment t%. We will consider only
asynchronous (i.e., “unslotted”) operation on the worst case
“star” topology, in which the propagation time between every
pair of stations is some fixed constant a. For the synchronous
(or “slotted”) version of the protocol, see [20] for an analysis
of the nonpriority case using similar techniques, and [14], [15]
for a more traditional embedded Markov chain approach.

Because our analysis in this paper is for asynchronous
version of the protocol, our results depend on the timing
interactions of events originating at different points in the
network. Thus, it is worth summarizing the sequence of events
that takes place whenever there is a successful transmission
or a collision. Fortunately, this task is made much simpler
because of our previous assumptions. Because of the “star”
topology, all other stations will sense the actions of a given
station (i.e., starting or terminating a message transmission)
simultaneously. And because of the large population assump-
tion, almost all the stations (i.e., those that have not transmitted
during the current busy period) will see exactly the same
channel history, which is the same as an observer sitting at
the “hub” of the star sees but delayed by a/2 time units.?

2Had we considered a topology other than the worst case “star,” then
a precise analysis of the events in a transmission cycle would have been
complicated by the fact that the times at which stations in an asynchronous
protocol sense those channel state changes depend on their positions relative
to the transmitting station(s) [21]. It is important to note, however, that
even though the present analysis assumes a worst case “star” topology, the
operation of the protocol does not depend on that assumption. Other topologies
would merely allow some drift to occur between the local copies of the
class p clocks at different stations, giving those stations with faster clocks a
slight priority advantage over the rest until they all catch up to real-time and
(implicitly) resynchronize. The magnitude of the clock drift between stations
was studied in [11] where it was found to be quite small.
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Define a transmission cycle to be an interval of time between
two successive channel state changes from “busy” to “idle” as
observed at the hub of the star. Suppose a cycle begins at
t = 0. Then at time a/2, all stations (except the last one to
have stopped transmitting) sense the state change to “idle” and
resume scheduling their messages. Once the first transmission
begins, a further time of a/2 elapses before the state change
reaches the hub. Thus, assuming that the same station does not
transmit twice in succession, the length of the idle period will
be the constant a plus the minimum of the “think times” of
all the stations. Note that a time units elapse before the other
stations sense the start of the first transmission, so it will be
successful if no other stations begin their own transmissions
in this time. In either case, the channel will be busy at the hub
from a/2 units after first station begins transmitting until /2
units after the last station stops transmitting.

A. Partitioning the Channel Time Line into P + 1 Virtual-Time
Axes

The direct analysis of the sequence of transmission cycles
in real-time is not easy because abrupt changes in the channel
traffic may occur whenever the virtual clocks for some class
catch up to real-time. Thus, even under the above “strong”
Poisson traffic assumption, the lengths of the channel idle
times are not exponentially distributed. However, we can
partition the channel time axis into P + 1 virtual-time axes,
each of which sees a time-homogeneous Poisson arrival
process [20]. As shown in Fig. 2, virtual-time axis i, 1 <7 <
P, consists of the union of all intervals of channel idle time
where the virtual clocks for priority class i are running at rate
7i, together with all message transmission periods that directly
follow some channel idle time belonging to that virtual-time
axis. The leftover parts of the real-time axis where all virtual
clocks have caught up to real-time, are assigned to virtual-
time axis 0. Thus, during the idle periods on virtual-time axis
1, 0 < ¢ < P, we will say that the class p virtual clocks run
at rate

1 p>=2
Tpi =4 Mp P=1 6]
0 p<i

and that the channel traffic rate is
P

Gr =Y 1pi G @

p=i

Once we have divided the channel time line into P + 1
virtual-time axes, we can then partition each virtual-time
axis into a sequence of transmission cycles. Note that in
reality, a transmission cycle contained in virtual-time axis 4, or
i-cycle, may consist of the union of several disjoint intervals
of channel time, namely parts of one or more channel idle
periods in real-time, terminating with a message transmission
period. Nevertheless, it should be clear that we can partition
the entire channel time line into i-cycles, 0 < § < P, each of
which is contained in a single virtual-time axis. Let {n;} be
the limiting distribution for the fraction of such transmission
cycles that are z-cycles.
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If we restrict our attention to the i-cycles, their analysis
becomes quite straightforward. In this case, we appear to
have a time-homogeneous Poisson arrival process (say at rate
G} on virtual-time axis ¢), and the durations of the message
transmission times appear to be i.i.d. random variables (say X;
on virtual-time axis 7). Note that because of the memoryless
property of Poisson arrivals, it does not matter that the channel
idle time attributed to an i-cycle may not be contiguous on
the channel time line.

In the remainder of this section, we will compute the
throughput for each priority class S; for the given values of
G; and n;, i = 1,2,---, P. This will be done in three stages.
First, for each class p = 1,2,---, P, we find its contributions
H,; and X, ; to the throughput and channel busy time,
respectively, in an i-cycle, ¢ = 0,1, .-+, P. Second, we make
use of a set of “global balance equations” on the average
advance of real and virtual-time per transmission cycle (i.e.,
without conditioning on 3) to find {m; : ¢ =0,---, P}. And,
finally, we find the total throughput per class as the ratio
of the expected contribution to the class p throughput per
transmission cycle to the expected duration of a transmission
cycle.

B. Derivation of E[H, ], E[X, ] and E[(XN‘)Z}

Because of the Poisson assumption, the conditional prob-
ability that a message belongs to class p given that it was
transmitted on virtual-time axis ¢ is

a TGy
i = ~or

1

i<p<P 3)
Consequently, an ¢-cycle may contain the transmission of
messages from any class p > 4, and, indeed, a collision
may contain messages from several classes. However, without
loss of generality, we can attribute the channel busy time to
class p if it begins with a class p transmission. Because of
carrier sensing, the probability of success for this first message,
namely, %G is independent of its class. Thus, we have

E[H, ] = {,:Elty)e . )

The moments of X, ; can now be found using the results
for f-(x) in the appendix. Using the definition of X, ;, it is
clear that the pdf, f;(z), for the length of the first message in
the channel busy time must be that of class p, i.e.,

ft(z) = fi,(2). ®)

Similarly, using the definition of an i-cycle, it is clear that the
pdf, fi(z), for the lengths of the colliding messages (if any) in
the channel busy time will be a weighted (by {(,:}) average
of the pdf’s for classes ¢, 4 4+ 1,- .-, P, namely,

fe(@) = Ceifi ().

, (6)
Thus,
E[X,: = T fo(z) dz )
J
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and

oo

E[(x,,.)] = / 22 fa(z)dz

z=0

®)

where fz(z) is given by either (A7) or (A.4), if collision
detection is or is not present, respectively. When collision
detection is present, (7) and (8) may be simplified to obtain

E[X, ;|collision detection] = e G (F, —a)
+(1-e%) . 1/Gi tata), O
and
E [(X »,i) |collision detection
e 96" (q —a(3a+2c+ 2/G,*))

+(1- e ) ((1/G; +a+0) + 1/G;). (10)

C. Derivation of {m;} and the Throughput for Each Class

Let E[L;] be the average duration of an i-cycle. Since the
mean idle time in an i-cycle is 1/G?¥ + a, and since the mean
channel busy time is found from {E[X, ;]}, with respective
weights (,;, we have

P
> GiBlX .. 1)

E [L,] = -l: +a+
G} /
pP=1
Recall that 7; is the probability that a transmission cycle
chosen at random is an i-cycle. To find {=;}, we make use
of the following “global balance” equations on the average
advance of the class p virtual clocks over a transmission cycle
in equilibrium. More precisely, if the mean delay for class p
messages is finite, then in equilibrium the average advance of
the class p virtual clocks over a cycle, i.e.,

P
1
oy a ;7}7,1’ (G_:‘ + a) i, (12)
and the average duration of a cycle, i.e.,
P
E[L] =Y E[Lim, (13)

=0

must be equal. Now suppose the delays for ail classes c,
¢+ 1,---,P are finite (and ¢ = 1 if all classes experience
finite delays). Then, since §; = E[L] for all j > ¢, we can
equate &, and 8.1 after dropping the common terms to obtain

1 1 1
ﬂc+1(**—+a)ﬂc+1+(j+a)7r =, (—-l-a)w,
Gc+l Gc ¢ ¢ Gz ¢

from which we find after some algebraic manipulations that

o (g — 1)(1/G} +a)
t C]‘;Ic (Mj+1)(1/G541 +a)

J

1> cC

(14)
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Since 7; = 0 for all < ¢— 1, we can substitute (14) into (13)
and equate it to (12) evaluated at p = c to obtain

. P izl (n;—1)(1/G}+a)
_nc(l/Gc + a) + l;:E[Lll j=c "Ij+1(1/G;+1+a

1/G*_, +a—- E[Lc_1]

Me—1 = Tec

(15)

To find the throughput for each priority class S, we sim-
ply take the ratio of the expected class p throughput per
transmission cycle to E[L], i..,

p
Z E[Hp’i]ﬂ'i.

1=0

1
Sp = B (16)

IV. DELAY ANALYSIS

Our estimate for the mean message delay for each priority
class in PVT-CSMA is based on the standard “equilibrium”
model for random access protocols [10]. That is, we partition
T, into several disjoint components, i.e.,

Tp = TO,p + (Gsptp

P
where Ty, includes the initial waiting time up to the first
transmission attempt for class p messages, Tg,p includes the
delay at each unsuccessful attempt,® and %, + a includes the
transmission and propagation time during the final, successful
attempt. It can be shown [20] that under stable operation
(i.e., Top < 00), the average time for the virtual clocks to
advance by R,, the retransmission delay, is simply R,,. Thus,
since Tr, is the sum of the durations for an unsuccessful
transmission attempt and the subsequent retransmission delay,
we have immediately that

Trp = E[Ry)

+ Zp: Pr[transmission was on axis i |p, collision]
. E:[:}g,,,i | collision]

P

ER]+)

i=0

- E[X , ;| collision].

- 1> Trp+ip+a a7n

Pr[collision | p, i} Pr[i|p]
Pr{collision | p]

(18)

Of course, this expression for Tg, is an approximation
because we have chosen to evaluate Ty, and Tg,, accord-
ing to the Poisson total traffic assumption. However, it will
become clear below that retransmissions are rare in virtual-
time CSMA, so the dominant term in (17) is the initial delay
rather than the retransmission delay. Thus, we shall devote
the remainder of this section to estimating Tp »; we will return
to the Poisson assumption and the associated stability issue
below in Section V.

3Note that in the absence of collision detection, we are making an
“independence assumption” in which a message does not retain its length
on successive transmission attempts. However, unlike ALOHA (where long
messages are much more likely to suffer a collision), this approximation is

not very important in our case because the collision probability is low and
because of carrier sensing, independent of the message length.
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A. The “Moving Server” Head-of-the-Line M/G/1
Queueing System

In a moving server queueing system with first-come—first
served (FCFS) order of service, the server comes to the
customers by walking along the arrival time line, instead of the
usual case where the customers come to the server and form a
queue. Whenever the server encounters a customer, he pauses
to offer service, and then continues his walk at an accelerated
rate (of n, say) until he either encounters the next customer or
catches up to real-time (in which case, by slowing his walk
to unit speed, he is certain to encounter the next customer at
the moment of his arrival to the system). Obviously, message
scheduling in (single class) virtual-time CSMA is an example
of such a moving server system.

In [12], we showed that for FCFS moving server systems
with arbitrary customer interarrival and service time distribu-
tions, the waiting time for each customer is proportional to the
waiting time for the corresponding customer in a “synthetic”
queueing system. The key step is to observe that if A®) and
X ) represent the sequence of interarrival and service times,
respectively, in the moving server system, then the waiting
time sequence satisfies the recurrence relation

Wk = max{ww—n 4 x (k1) _ 4k +A(k>/,,70}
= max{W*=D 4 x D — A<’°>/ﬁ,0}. (19)
Since the recurrence relation reduces to
W® = max{wk=D 4 x-b A®.0}  (20)

for an ordinary FCFS queuing system without moving server
overhead, we see that (19) can be put into the same form
as (20), by increasing each service time by a factor of 3
and ignoring the moving server overhead—thus forming the
synthetic system—and then introducing a change of variable
from W) to W), Hence, under FCFS order of service,
the waiting time statistics for a moving server system may be
obtained from the corresponding synthetic system using the
relation

W =Ww/B. (21)

Now consider the generalization of the model to a moving
server system with P HOL-priority classes. In this case, there
are P separate arrival time lines—one for each class—with
a moving server walking along each one. Whenever any of
the servers encounters a customer, all of them stop until the
service is complete. Thereafter, only the class P server begins
walking at rate 7,, and when he has caught up with real-time
(and reduces his speed to unity) the class P — 1 server begins
walking at rate 7j,_1, and so on. We say that the class p server
is busy whenever he is stopped (either because some customer
is actually being served, or because the class p + 1 server is
still busy) or walking at rate 7, and that he is idle otherwise.
Obviously, message scheduling in PVT-CSMA is an example
of such a moving server system.

In [22] we showed that the waiting times for customers
of each class in an M/G/1 HOL priority queue with moving
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server overhead can be obtained from the corresponding results
for a conventional M/G/1 HOL priority queue with class j
arrival rate A; and service time x; [2], [10]. In particular, the
mean class p waiting time for an M/G/1 moving server HOL
priority queueing system is given by [22]

W, = - Prer BpWo - 22)
<1—ﬁpzfj/\j 1—:3p+1 E E;)‘j
Jj=p j=p+1
where
 R—
Wo=— Z/\sz 23)
k=1

is the mean residual life of the service time for the customer (if
any) in service at his arrival, the ratio of the numerator to the
left-hand factor in the denominator represents the component
of his mean delay due to customers in the queue on his arrival,
and the ratio of that component to the right-hand factor in the
denominator represents the mean duration of the delay busy
period that ends with his entry into service.

B. Application to the Initial Delay in Virtual-Time
CSMA without Priorities

Some care is required in using the results above, for
“ideal” moving server queueing systems, to obtain the initial
delay in virtual-time CSMA and PVT-CSMA. This is because
the nonzero propagation time inherent in CSMA systems
manifests itself as state dependence (according to the current
virtual-time axis) in both the customer arrival process and
the service time distribution in the corresponding moving
server system. In particular, we found in Section III-B. that
the service time X . ; for a class ¢ customer encountered in an
i-cycle depends on G, which governs the probability that the
customer represents a successfully transmitted class c message
[and, in the absence of collision detection, also on the message
lengths for each class and their respective channel traffic rates
on virtual-time axis i via (6) and (A.4)]. Furthermore, the
arrival rate for class ¢ customers in the moving server system
is also a function of the virtual-time axis ¢ € {c,c — 1,---,0}
where those customers were encountered.

Surprisingly, the results from the previous section can be
used to obtain an exact expression for Ty in asynchronous
virtual-time CSMA under the Poisson total traffic model. This
expression is a significant improvement over our previous
results, [20] where we obtained [weak] bounds on Ty by
assuming that the best/worst case state dependent values,

4Note the distinction between the arrival of a customer in the moving server
system, which happens exactly once per transmission cycle, and the arrival of
a message in the PVT-CSMA system, which is governed by a Poisson process,
at intensity G, for class ¢, and is independent of the state of the protocol.
Since several message arrivals are reduced to a single customer arrival in the
event of a collision (by “erasing” all but the first message arrival, say), and
since none of these colliding messages contribute towards the throughput in
the PVT—CSMA system, the state dependent customer arrival rate for each
class, A ;, must satisfy Sc/tc. < Ac; < Ge. It is also important to note
the distinction between the above state dependence in the customer generation
process, and the state dependence of the mapping from a customer’s generation
time to the time of his entry into service, as shown on the horizontal “Arrival
Time” and vertical “Channel Time” axes of Fig. 2, respectively.
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respectively, for the customer arrival rate and service times
were to hold over all time. The improvement in this paper is
obtained by applying the transformation introduced in [24] to
eliminate the state-dependent “gaps” in the (Poisson) arrival
process, and then solving the resulting synthetic system as an
M/G/1 queue in which the first customer of each busy period
has a different service time distribution [6, Section 4.3] to
account for the lower collision probability (and hence atypical
service times) on virtual-time axis 0.

Let X® and A®) respectively, be the service time and
interarrival time leading up to the kth customer in the synthetic
system. Recall that A consists of a “gap” in the arrival
process (of duration r(*~Da where r*=1) € {1,7} is the
virtual clock rate when the kth customer was encountered)
followed by an exponential interarrival time with parameter
G. Thus, if we subtract each “gap” from the corresponding
interarrival time, the remainder, namely, A®) — r(:~Dq_ is
clearly Poisson distributed with parameter G. Having thus
transformed the sequence A®) in the synthetic system into
a Poisson process, we must now apply a complementary
transformation to the sequence X (%) 50 as to preserve the
customer waiting times, W), Using (20), it is clear that the
transformed service times must be X () —r(®F)g_ Unfortunately,
with collision detection the transformed service time for a
collision is upper bounded by (2—7(®)) . a + ¢, which is
likely to be negative for r(®) = . Thus, the result below is
only useful if there is no collision detection. Fortunately, our
approximate result for PVT-CSMA, specialized to P =1,
was found to give excellent agreement in our numerical
examples.

Thus, Ty for asynchronous virtual-time CSMA without
collision detection follows immediately from [6, (4.41)], as

06 E[(X11 - ma/6)’]
*7 2(1- G- E[BX1, - ma)
86 - (E[(X10 - /8] - E[(X11 - ma/8)"))
2(1-G-E[fX11—mal+ E[X10— al)
where X ; ; is given by (7)—(8).

+ (24)

C. Application to the Initial Delay in PVT-CSMA

Unfortunately, our approach for the nonpriority case de-
scribed above does not generalize to PVT-CSMA, even
without collision detection. This is because the transformation
we used to eliminate the “gap” in the arrival process in an
i-cycle imposes contradictory constraints on the transformed
service time, since the gap in the class c arrival process that we
wish to cancel is either, a, n;a, or 0, for¢ > i, ¢ = 4,and ¢ < 4,
respectively. However, we can still improve on the best/worst
case bounds for Ty , in PVT—CSMA described in [19], [20] by
a substantial margin, by substituting carefully chosen weighted
averages of the various state dependent parameters into (22).
These weighted average parameter values are obtained as
follows.

First, since the servers encounter an average of (. ; class c
customers per i-cycle, during which the class ¢ server moved
an average distance of . ;(1/G} + a) along the arrival time
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line, we obtain
G,

Ao = —=0r,
7 1+ aG?

i<e. 25)
Note that (25) is the exact result for the [state dependent] mean
customer arrival rate, but its application to (22) will result in an
approximation whenever the assumption of Poisson arrivals is
required.

Equation (23) represents the residual service time of the
customer (if any) in service when a “tagged” class p message
arrives. Because of the Poisson traffic model, this “tagged”
message arrival takes a uniform look at the channel time line.
Thus we can solve for Wy via a renewal type argument that
depends on the relative frequency of the different possible
service times but not on their arrangement along the (channel)
time line. But since m;(, ;/E[L] represents the mean arrival
rate (in customers per unit time) of class p customers whose
service takes place in an i-cycle, in which case his service
time will be given by X, ;, (23) reduces immediately to

L &L )
= Q—E_[f] Z; ZWiCC,iE[XC,J-

=1

Now consider the summation in the left-hand term in the
denominator of (22), representing the queueing delay for
our tagged class-p customer due to customers from classes
¢ = p,p+1,---,P who were waiting in the queue at his
arrival. But recall that our priority access rule was constructed
so that a class ¢ customer either experiences no queueing delay
(if his arrival takes place during the idle time in an ¢-cycle,
for some 7 < ¢), or his service takes place in a c-cycle (and
thus before any waiting messages from classes c—1,¢— 2,
could enter service). Thus,

P P
Y XoAem Y Koo

c=p c=p

Wo (26)

P _—
.

;p n.(1/G% +a)’

@n

The situation is more complicated in the right-hand term,
representing customers of strictly higher priority who arrive
after the tagged class p customer but are served before him.
The key observation is the following. A tagged class p cus-
tomer arriving at time 7 will enter service at time 7* > T,
corresponding to the event that the class p server has reached
+ and the servers from classes p + 1, - -, P have all reached
7*. But by definition, that part of the tagged customer’s
waiting included in the numerator and left-hand term in the
denominator of (22) represents exactly the time required for
the servers from classes p,p + 1,--+, P to reach 7 on the
arrival time axis but no farther. (Otherwise, we might have
missed giving service to some customer who arrived earlier
or inadvertently already given service to some customer who
arrived later.) Thus, it should be clear that every customer
who contributes to the right-hand summation must have been
served during a (p + 1)-cycle, - - -, or a P-cycle. Furthermore,
the servers from classes p + 1,---, P each move from 7 to

SRemember that we require Tt p, for messages arriving to the PVT-CSMA

system, before any of them are “erased” from the customer arrival process in
the corresponding moving server system.
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7* on the arrival time axis during this part of the tagged
customer’s delay. But by eliminating common terms from (12),
we see that to equal the average advance of the class p + 1
clocks over a p + 1-cycle, the class ¢ clocks require 7. /mp41
c-cycles, plus m.—1/mp41 (¢ — 1)-cycles, - - -, plus one p + 1-
cycle. Since each i-cycle advances the class ¢ clocks by an
average of r.;(1/G} + a), a fraction

mirei(1/GY + a)
Tpt17p+1 (1/Gppy + @)
of the interval between 7 and 7* will be examined for
class ¢ customers in state i. Combining this weight with the

expressions above for ), ; and X, ;, we obtain after some
manipulation

4

P
4 Z+1 . z;lwz(c,ixc,z
X o), v 2P .
c;}-l T M (1/Gy + a)

(28)

Substituting (26)—(28) into (22) gives us the desired approxi-
mation to Tpp.

V. NUMERICAL RESULTS AND DISCUSSION

A. Comparison to VT-CSMA without Priorities

The first set of performance curves are chosen to match
[20, Fig. 13] except for the imposition of two message-
based priority classes. That is, we consider asynchronous
PVT-CSMA on the worst case “star” topology, assuming that
t; =ty = 1, that the propagation time a = 0.01, that there is
collision detection with collision recovery time ¢ = 0.001, and
that the mean retransmission delay is 3. The major difference
here is that instead of a single class system using n = 10, we
now let two classes share the traffic equally using 12 = 20
and 7; = 19. (Recall from the discussion of Figs. 1 and 2
that this is the “optimal” way to impose priorities in this
example.)

In Fig. 3, we have shown each component of the delay
for each class, both from our analysis and from detailed
simulations.® sAs is evident from the figure, our analysis fits
the simulation data remarkably well. The only real discrepancy
seems to be that our analysis has overestimated Tp2 and
underestimated Tp ; reaching about 5% relative error in each
case under heavy load. We believe that this discrepancy is
related to our choice of a simple nonadaptive retransmission
algorithm in the simulation. Because of this retransmission
algorithm, we expect the transient traffic rate on the channel
due to each class to increase during i-cycles ¢ > 0 and to
decrease during 0-cycles. But by comparing Figs. 1 and 2, it is
clear that within each busy period, high-priority messages are

6The simulation model faithfully represents the operation of a “star”-shaped
LAN in which 21 individual stations (each equipped with a 15-message
buffer) are executing local copies of the asynchronous PVT-CSMA protocol.
Here only the newly generated messages are Poisson—the retransmissions
are carried out under the control of a nonadaptive exponential retransmission
algorithm where R, = 3 - f,. Note also that each station independently
(re)schedules the messages contained in its buffer, so the resuiting system
resembles 315 single-buffered stations arranged in 21 clusters. For more
details on the simulation, see [11], [18].
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Fig. 3. Delay components for PVT-CSMA (two classes with equal traffic).
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Fig. 4. A demonstration that PVT-CSMA can add priority classes to
virtual-time CSMA without affecting the overall class-independent mean
system time.

transmitted earlier on average than are low-priority messages.
(Otherwise, we would not have prioritized access!) Thus, in
contrast to the analysis (where we assumed time-homogeneous
Poisson traffic), in the simulation we expect low-priority
messages to encounter a (slightly) busier system on average.

In Fig. 4, we have shown simulation results for the over-
all mean delay (ignoring any priority class distinctions) in
virtual-time CSMA operating with and without priorities. The
nonpriority points (indicated by “o” on the figure) are taken
directly from [20, Fig. 13], while the corresponding points
for PVT-CSMA with two priority classes (indicated by ‘+’)
represent the average of the two sets of class-dependent points
from Fig. 3. As expected, there is no significant difference
between these two sets of simulation data.

Fig. 4 also contains a single analytical curve, since it can be
shown algebraically that for the given set of parameters (i.c.,
to=t1=1,G, =G, =G/2,n2=2n,771 = 2np—1, and
R, = Ri = R = 3), the average over all classes for each
component of T, from (17) is the same as the corresponding
component of T in the nonpriority case. Once again, we see
remarkable agreement between our analysis and the simulation
data. (Note also the significant refinement of our analysis in
comparison to [20], since we have been able to replace our
previous [weak] bounds on T by a single estimate that is in
good agreement with the simulation results.)
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Fig. 5. Delay components for PVT—CSMA with different arrival rates and
packet lengths for each class. (Following {5], [26] we fix S2 = 0.1 and
increase S; from zero to saturation.)
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Fig. 6. The effect of perturbing some algorithmic parameters on the system
from Fig. 5.

B. Comparison to P-CSMA

The next set of figures is for a different two-class con-
figuration, which has been used previously in numerical re-
sults for P-CSMA [5], [26] and in the simulation study of
PVT-CSMA by Konstantas [11]. Here we assume that a = 1,
c =2, ts = 10, and ¢; = 100. In Fig. 5, we have followed
Konstantas in assuming that 7o = 8, m 23 and that
R, = 3t,. This time our analysis shows even better agreement
than before with the simulation data for each component of
the delay. In Fig. 6, we have perturbed the parameter settings
slightly in order to test the predictive power of the analysis.
Here we have increased 7> by almost 40% from 8 to 11,
decreased 7; slightly from 23 to 22, and increased R from 30
to 50. Once again we have excellent agreement between the
simulation data and our analysis, and in particular, the analysis
correctly predicted that increasing 7, (and thus reducing ;)
would reduce both Tp 2 and Tp 1, but that increasing Ry would
counteract the reduction in Ty o enough to cause a net increase
in T, in comparison to Fig. 5.
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Fig. 7. The effect of changing the system configuration on the mean system
time for each class.

In Fig. 7, we investigate the effect of changing the system
configuration (as opposed to just changing the parameters of
the algorithm) on the performance of PVT-CSMA. In all
cases, we retain the previous assumptions of a =1, t; = 10,
t; = 100, and that there is collision detection such that under
asynchronous operation the collision recovery time ¢ = 2
and (following Tobagi [26]) under synchronous operation the
transmission times for collision fragments are b 2. In
addition to the results from Fig. 5 (where 21 stations use the
asynchronous protocol on the worst case “star” topology), we
have included results for two other configurations.

First, to show the impact of topology under asynchronous
operation, we have included results for a system configura-
tion identical to the previous one in all respects except that
the stations are now assumed to be equally spaced along
a linear “bus” network. As expected, the delay-throughput
performance of asynchronous PVT-CSMA improves under
this much more favourable topology assumption. What is
more surprising, however, is how well our analytical results
fit the simulation data for this “bus” network when we just
substitute the average propagation time, @ a/3 for the
“bus” network, in place of the worst case propagation time
a in our expressions for the “star” topology. This heuristic
substitution was discussed in [21, Section V], in the estimation
of the throughput for nonpersistent CSMA in more general
topologies. Unfortunately, the geometry of collisions in space-
time is quite complex, so it remains an open problem to
determine analytically whether or not this heuristic gives us
either an upper or a lower bound. We attribute the remarkable
accuracy of the heuristic in this example to the fact that
collisions make such a small contribution, on average, to
the duration of a transmission cycle. This is because the
probability of encountering a collision in a transmission cycle
is low, and, should a collision occur, collision detection
ensures that its duration will be short.

For the second configuration, we have included results
for a synchronous PVT-CSMA system. In this case,
however, we follow Tobagi [26] in assuming that there
are 50 stations (rather than 21) to facilitate a direct
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Fig. 8. Comparison of PVT-CSMA and P-CSMA using simulation.

comparison of PVT-CSMA and P-CSMA in Fig. 8. The
synchronous PVT-CSMA system also differs slightly from
the asynchronous systems in that we have increased 73 from
8 to 11, thus enabling the class 2 walk times per message
to be completed in exactly 10 and 1 steps, respectively, for
messages of classes 1 and 2. The previous value of 7; = 23 is
retained, since the respective class 1 walk times per message
are already about as “integral” as we can hope for, namely, 5
and 1/2 steps, respectively. Once again, we see a performance
improvement compared to the asynchronous system from
Fig. 5.

It is interesting to compare synchronous PVT—-CSMA to our
previous results for asynchronous PVT-CSMA on the “star”
and “bus” topologies. Notice that synchronous PVT-CSMA
uniformly outperforms the asynchronous “star” system, while
offering worse delay for the high-priority class and comparable
delay for the low-priority class in comparison to the asyn-
chronous “bus” system. These results are in agreement with
previous studies of the effect of topology on the throughput
for nonpersistent CSMA [21, Fig. 11(b)], which show that
the throughput for the synchronous system is above the
asynchronous “star” but below the asynchronous “bus.”

And in Fig. 8, we compare the performance of P-CSMA
and PVT-CSMA using simulation. (We use simulation, rather
than analysis, because we assumed asynchronous operation in
our analysis of PVT-CSMA, and P-CSMA is a synchronous
protocol, and because the analytical model for P-CSMA is
solvable only for small numbers of stations.) The results shown
for P-CSMA are taken from Tobagi {26, Fig. 11]. Although
Tobagi’s results include a variety of configurations, we have
shown only semipreemptive P—~CSMA with p, = 0.05, which,
for both classes, attained the lower envelope of the respective
sets of delay—throughput curves.” The results shown for
synchronous PVT—CSMA are taken from Fig. 7. Note that we

7We are excluding fully preemptive P—CSMA from this comparison
because it allows a high-priority station to destroy an ongoing low-priority
transmission, thereby reducing the delay slightly for the high-priority class
under certain {low] throughput conditions while at the same time drastically
increasing the delay for the low-priority class. We note, however, that similar
response times for the high-priority class are readily obtainable without such
preemptions, simply by reducing the maximum low-priority message length.
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have carefully chosen the system configuration (i.e., identical

values for the message lengths in each class, duration of
collision slots, population sizes, etc.) to be as close as possible
to Tobagi’s results for P-CSMA. The only difference is that
each station in the PVT—CSMA system is assumed to have an
infinite buffer rather than a single buffer. However, the only
effect that this difference could have is to place PVT-CSMA
at a disadvantage in the comparison. This is because new
messages that are generated while the station is already trying
to transmit another message are dropped without penalty in the
single-buffer P—-CSMA model, and stored in a queue (and thus
accumulating delay) in the PVT—CSMA model. Also shown,
to illustrate the efficiency of the various protocols in absolute
(rather than just relative) terms, are the corresponding ideal
results, namely, a centralized, two-class HOL M/G/1 priority
queueing system without overhead.

It is evident from Fig. 8 that both protocols exhibit similar
behavior: for fixed So, T5 increases linearly with S;, whereas
T, increases without bound as S; approaches its maximum.
The results also show that synchronous PVT-CSMA offers
consistently better performance to both classes than P-CSMA
throughout the entire throughput range. Although the margin of
improvement is not overwhelming in absolute terms, we must
point out that by substituting (synchronous) PVT-CSMA for
P-CSMA, we can eliminate more than half of the “excess
delay” incurred in comparison to the ideal case. Furthermore,
by comparing Figs. 5—7 with Fig. 8, it is evident that the mean
delay for each class in P-CSMA is no better than the worst
of the corresponding results for asynchronous PVT-CSMA in
any of the configurations shown, even though PVT-CSMA is
much simpler to implement, since neither “slotting” nor ex-
plicit priority assessment periods on the channel are required.

C. On Stability and the Accuracy of the Poisson Assumption

Those familiar with the importance of the backoff algorithm
in determining the performance of other CSMA protocols
may be puzzled by the accuracy of our analytical predictions,
obtained using an approximate model that excludes the depen-
dence between the channel access and the backoff algorithms.
The reason for our success is that even under heavy traffic
conditions, PVT-CSMA relies more heavily on collision
avoidance (via its virtual clock mechanism) rather than on
collision recovery (using some backoff algorithm). Indeed, it
may be readily seen from Figs. 3, 5, and 6 that, for all the
system configurations we studied, most of the waiting time
in PVT-CSMA occurs before the first transmission attempt.
Thus, we have chosen to model Ty, in considerable detail,
while treating Tr p rather superficially.

The relative unimportance of the backoff algorithm in
PVT-CSMA is best illustrated by means of a simple ex-
ample. Thus, we consider only virtual-time axis P which, by
compressing the scheduled transmission times by np, provides
a worst case analysis for class P. We assume a true infinite
population model, where new messages arrive according to
a Poisson process at rate Sp. Furthermore, we assume that
each message under the control of the backoff algorithm is
rescheduled independently, simply by adding an exponential
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random variable with mean Rp to its “arrival” time—which
is exactly what was done in our simulator.

Define an embedded Markov chain whose state k is the
number of class P messages under the control of the backoff
algorithm at the end of each P-cycle. Observe that the tran-
sition probabilities depend only on the number of scheduled
transmissions within the first a time units of the channel busy
time in the P-cycle (during which time the class P clocks
are assumed to run at rate np), since the number of blocked
messages is invariant during the idle time in a cycle, and the
stoppage of the virtual clocks for the busy time in the cycle
ensures that all other messages in the system remain queued for
the next cycle. (And, in particular, observe that the transition
probabilities are independent of the lengths of the messages
and/or collision fragments transmitted during the cycle.) Let

a1 (k) 2 Plinitial message is new | k] = :S'—+STP/R—’
p P
az(k) 2 Plinitial message is old | k] = g_’:{_%R_
P P
= 1 - al(k),

v(j) 2 P[j new messages collide with initial message]

— (aﬂPSP)j e—a'r]pSp
! ’
and

go(k) 2 P[no old messages collide with initial message | k]
= e~9npk/Rp _ qo(k—1)- go(1).

Now in steady state (if it were to exist!), it is clear that the
following set of global balance conditions must hold:

7k = Tre102(k + 1)r(0)go(k)
+ (o2 (k)(1 — go(k — 1)) + a1(k)go(k))v(0)
+ w1 (ea(k = Dr(0)[1 — go(k = 1)]
T sk~ (D)

+ zﬂ'k—j(al(k - i -1

+ (k= ()

where, for notational simplicity we assume that 7_; = 0.
Using the partial sum approach of Fayolle et al. [4], we can
show that (29) implies that

S 1= ao(N + 1(0) = e (N)(0)ao(N)
2 az(N + Dr(0)qo(N) ’

and thus that w4 /mn diverges as N — oo. Nevertheless,
it is instructive to plot the ratios, 7y /7o, for (relatively) small
values of k, as we have done in Fig. 9. The two solid curves
show the worst case bounds for class 2 messages using the
parameter values from Figs. 3 and 5, when S = 0.35 and
Sy = 0.1 respectively. (Thus, in both cases we are assuming
a reasonably heavy traffic situation, since S = 0.35 implies
S = 0.7 in Fig. 3, while in Fig. 5 our assumptions include all
feasible values for S.) These worst case bounds are obtained
by assuming that every cycle is a P-cycle, in which the class P
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Fig. 9. “Solution” to the embedded chain, showing its initial exponential
decrease and ultimate instability, assuming a nonadaptive geometric backoff
algorithm.

clocks advance at rate np, which maximizes the collision
probabilities in every state. Notice that the curve using Fig. 3
data decreases exponentially, to mx/mo 1011, before
asymptotic instability is encountered at k =~ 30. However,
the corresponding results using Fig. 5 data are not nearly
so encouraging, since asymptotic instability is encountered
much earlier, at k& =~ 10 where /7o 10~2. However,
the situation is not nearly as bad as the worst case bound
suggests, since the unusually high value® of 7, means that
those worst case transition probabilities are not sustainable.
In particular, for 72 8 we find, using (11)—(12), that

Y gp tnra 9 s the minimum rate at which the
P

class P clocks can advance over an entire P-cycle, and

1/G +a S 1
E[L;] ~ 4

~
~

~
~

ming,>o

is the minimum rate at which the class P clocks can advance
over an entire i-cycle, s < P. Thus, the class P clocks traverse
at most 3/7th of the time line at rate np, SO that the average
advance of the class P clocks in a cycle is upper bounded
by 7pa = (na-3+a-4)/7 = 4a. Since np is based on
the most extreme state-dependent values, since ay(k) and
oz (k)are independent of 7p, and since ¥ and e~* are convex
— functions of ), substituting 75 in place of np in (29) and
solving for 741 gives us an upper bound on 7xy1. This upper
bound is shown as the dashed line in Fig. 9.

Although the above stability analysis offers some insight
into how our analysis could be in such good agreement with
simulations of finite population PVT—CSMA systems (and our
primary interest is in the performance of finite population
systems), the fact that (29) does not have an equilibrium
solution means that there is stilt an open question about infinite
population systems; depending on the form of adaptive backoff
algorithm that is used. We rnote, however, that even our worst
case stability analysis shows that, on average, the simple
nonadaptive infinite population system spends more than 10
transmission cycles in a “quasi-stable” operating mode before

85, = 3.2 would be optimal (in the sense of maximizing capacity) if all
traffic were from class 2. But since Fig. 5 involves saturating the channel with

class 1 traffic for S2 = 0.1 fixed, Konstantas chose 12 = 8 to make [slightly]
more capacity available to class 1.
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reaching the boundary of the unstable region. Thus, we believe
that comparable levels of agreement may be possible if we
adopt the dynamic control procedure’ recently described by
Cunningham and Meditch [3].

VI. CONCLUSION

We have presented the Prioritized-Virtual-Time-CSMA pro-
tocol. This protocol is interesting because it adds HOL priority
scheduling to an ordinary, nonpriority CSMA protocol implic-
itly, at no “cost” in increased channel overhead, and without
requiring any incompatible timing (e.g., priority assessment
periods) or format (e.g., class dependent preambles) changes at

* the physical level. Since the conversion from the nonpriority to
the priority version of the protocol was done entirely by mod-
ifying the rules each station uses to update the “window” that
selects messages for transmission, this same approach could
be used to add priority classes to other sliding-window-based
LAN algorithms, including various tree conflict resolution
algorithms, e.g., [24], and token rings [12].

We have been able to derive the throughput and delay
performance of PVT-CSMA using a generalization and re-
finement of the analysis for virtual-time CSMA that was
introduced in [20]. Unlike models for other prioritized CSMA
protocols, our model remains easy to solve for the general
case of P priority classes, each with its own message length
distribution, virtual clock rate, and retransmission delay. (A
side benefit of our analysis has been to find the throughput
equation for unslotted nonpersistent CSMA with a general
message length distribution, which follows from (13) and
(16) when P = 1 and mp = 1.) The results we obtain
from this analysis were shown to match detailed simulation
results remarkably well, and indicate that the performance
of PVT-CSMA compares very favorably to other prioritized
CSMA protocols.

APPENDIX

In this Appendix, we derive the density of the chan-
nel busy time fx(x) within a single transmission cycle for
asynchronous CSMA protocols without collision detection, in
which we have 1) the worst case “star” topology (where all sta-
tions are assumed to be mutually equidistant); 2) exponential
times between successive message transmissions on the idle
channel (so our results can be applied to both nonpersistent and
virtual-time CSMA, but not to 1-persistent CSMA); 3) a gen-
eral message length distribution f;(z) for the first message to
begin the channel busy time; and 4) a separate general message
length distribution f, () for the colliding messages (if any)
such that their lengths are i.i.d. The derivation is complicated
by the interactions of messages of different lengths, as well as
different starting times, in a collision. In general, neither the

9The authors of [3] were primarily concerned with the limiting behavior
as k — oo, and thus seem to have inadvertently chosen their maximum
retransmission rate 3 so aggressively as to encourage collisions when k is
small (and hencef & 3). Thus, we suggest that a much smaller maximum
rate, for example, the mean retransmission rate 1/ (Stp‘.? used in this paper,
would be more appropriate, since it gives us the benefit of the exponential
initial decrease in py /po of the nonadaptive algorithm, while avoiding the
asymptotic instability for large k.
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last message to stop transmitting, nor the longest transmitted
message will necessarily determine the end of the channel
busy time. The corresponding result for the case with collision
detection is trivial in comparison, since the collision duration
depends on the time at which the second transmission begins
and is independent of the lengths of the messages.

Consider the probability Fx (z | t) that the channel busy time
is at most x, given that the first message had length ¢. Clearly,
for this event to be true no messages with lengths greater than
z could have been transmitted. Furthermore, if any messages
of length ¢ were transmitted, for z — o < t < z, they must
not have begun after time z — ¢. However, it does not matter
whether or not any messages of lengths less than z — a were
transmitted. Thus, for z > ¢ we have

Fx(z|t) =e T A1)
where
I'(z) = oG / fo(uw)du+ G / (z — u)fe(u) du
=aG[l - Fy(z) — Fy(z —a)]+ G Fy(u) du.
- (A2)

Substituting (A.2) into (A.1) and differentiating, we obtain the
conditional density function for X, namely,

fx(@|t) =ug(z = t) - e T® + 8(x — t) - Ge T [afy (2)
+afp(z—a) - Fu(z)+ Fu(z—a)]  (A3)

where, following [9], we use ug(-) and 8(-) to represent the
unit impulse and unit step functions, respectively. Uncondi-
tioning on ¢ we obtain

fx(z) = / fx(e |6 felt) dt. (A4)
t=0

Notice that if all messages are of constant length, t* say,
then fy(u) = uo(t* — u), and for t* < x < ¢* + a we have
I'(z) = G(x —t*) and thus
Ix(z) = e Cug(x — £*) + GeB=t)G < g <t  4q,
which agrees with the classical result from [8].

Another important special case is where only a discrete set
of packet lengths tf < t5 < .- <t} is permitted, such that
[tz —t;] > a for all i # j. Assume that t = t}, for some
m € {1,---,N} and also that

N N
fo) =Y muo(u—t11); Y =1 (A.5)
n=1 n=1

In this case, the duration of a collision containing at least one
message of length t; is independent of the transmissions (if
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any) of all messages of lengths ¢}, _;,---,t]. Thus, for z such
that t}, < z < t¥ +a for some m <n < N, we have that

D(z|t=1,)=(a—z+ i) mG

N
+aG z yi; th<z<th+a
i=n+1
and hence that
N
Fx(@lt=th) =e T Eug(s — 1) + Y 8 — )
n=m

St +a—x) yGe T, (A.6)

The calculation of fx(x) when there is collision detection
is much simpler, since it can be shown [11] that the duration
of a collision is the sum of the propagation time a the collision
recovery time, ¢ (during which the stations jam the channel
after discovering the collision [16]), and the time, y, until
the earliest colliding transmission begins. Since a and c are
constants, and

f.(y, collision) = Ge™¥¢, 0<y<a,
v

we have that

fx(@) = fi(x)e™*® +8(x —a—c)-8§(2a+c—x)

. Ge™*C, (A7)
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