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On the Capacity of Infinite Population 
Multiple Access Protocols ’ 

MARTL.MOLLE, STUDENTMEMBER,IEEE 

Abstract- We present bounds on the maximum channel utilization (with 
finite average delay) of synchronous multiple access communications proto- 
cols serving an infinite population of homogeneous stations. Messages 
arrive to the system as a series of independent Bernoulli trials in discrete 
time, with probability p of an arrival at each arrival point (the Poisson limit 
is explicitly included) and are then randomly distributed among the sta- 
tions. Pippenger showed that the channel utilization cannot exceed [,, 
where 5, = I and lim,,&, = 0.744. Using a “helpful genie” argument, 
we find the exact capacity for all p 2 0.568 (where we find optimal 
protocols that obey first-come first-served); for smaller values of p, we 
present an improved upper bound that decreases monotonically to = 0.6731 
in the Poisson limit as p - 0. 

I. INTRODUCTION 

C ONSIDER a distributed population of stations using 
a “synchronous” multiple access protocol to ex- 

change messages over a noiseless communications channel. 
That is, all message transmissions are synchronized to fall 
into constant length slots of duration equal to a message 
transmission time. The transmissions in a slot can have 
three outcomes: an empty slot, when no station transmits; a 
success, when exactly one station transmits; and a collision, 
when two or more stations transmit simultaneously. We 
assume that at the end of each slot all stations receive an 
acknowledgment whenever a message is sent successfully 
and a nonacknowledgment whenever there is a collision, 
but we require that the protocol operate without any 
additional exchange of information. However, the protocol 
is free to use the history of activity on the channel. 

Without loss of generality, such a multiple access proto- 
col may be described as a discrete time Markov process, 
since an arbitrary amount of information may be encoded 
into the state description (including any channel history 
information that affects the behavior of the protocol, and 
the current backlog of unserviced arrivals to the system). 
At the beginning of each slot, the protocol enters some 
state and immediately enables (i.e., grants transmission 
rights to) a subset of the stations, the choice of which 
subset to enable depending on the current state. Each 
enabled station transmits a message if it has one. All other 
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stations remain silent for the duration of the slot. At the 
end of each slot, the next state is chosen as a function of 
the current state and the activity (i.e., idle, success, or 
collision) in the current slot. Thus service becomes a prob- 
abilistic event. Each attempt to offer service may either 
result in a successful transmission if exactly one busy 
station was enabled, or merely provide some information 
about the distribution of messages among the stations. The 
goal in defining a protocol is to choose the sequence of 
enabled subsets so that few slots are wasted as idle slots or 
collisions. 

We say that a protocol is stable if a stationary probabil- 
ity distribution exists for the Markov process, i.e., if the 
backlog of unserviced arrivals to the system remains finite 
with probability one, and we define capacity to be the 
supremum over all arrival rates such that the protocol is 
stable. For example, with a finite number of buffered 
stations, Tsybakov and M ikhailov [2] have shown that 
N(t) + (n,(t), n,(t),- * * ,n,(t)), where ni(t) is the queue 
length at the ith station at time t, is a suitable state 
description for the (memoryless) ALOHA protocol [3]. 
Among other results, they proved that the capacity of 
ALOHA is at least e- ’ by showing the existence of param- 
eters for which N(t) is ergodic whenever the sum of the 
station arrival rates is less than e-‘. 

The complexity of the state space makes the perfor- 
mance analysis of multiple access protocols a difficult task 
in general. However, determining the capacity of an opti- 
mal protocol (in the sense that it attains maximum channel 
utilization) without explicitly calculating message delays is 
a much simpler task. A protocol with a larger backlog can 
always simulate the behavior of a protocol with a smaller 
backlog by restricting its choice of enabled sets. Thus, to 
upper-bound the capacity of an optimal protocol, we may 
assume that the protocol is free to choose enabled sets of 
any size at any time. Here we may study the behavior of an 
optimal protocol even when each state encodes only the 
channel history information that affects the behavior of the 
protocol (and not the exact value of the backlog), thereby 
greatly simplifying the state space. We call this simplified 
process a collision resolution algorithm. Therefore, to bound 
the capacity of an optimal protocol, we need only bound 
the maximum attainable channel utilization by a collision 
resolution algorithm. 

At present there is considerable theoretical interest in 
multiple access protocols suitable for an infinite number of 
stations. Infinite population protocols can be used without 
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mod ification when there is a  finite number  of stations. 
Thus, infinite populat ion protocols are also of considerable 
practical interest for systems with a  large (but finite) 
number  of stations. Their performance in the finite popula- 
tion case is at least as good as in the infinite populat ion 
case. They are robust in the sense that each station need 
not be  aware of the addresses of every other station in the 
system, or even of the exact number  of stations in the 
system. This simplifies the procedure by which stations can 
enter or leave a  working system. Furthermore, when in- 
finite populat ion protocols are used, the average message 
delay for a  given channel  utilization is insensitive to even 
large changes in the number  of stations sharing the chan- 
nel. 

Unfortunately many seemingly reasonable protocols are 
infeasible with an  infinite number  of stations. Round-robin 
time  division mu ltiple access (TDMA), for example, has 
zero capacity in the infinite populat ion case, for if each of 
an  infinite number  of stations had a  positive average queue 
length then the average number  in system (and hence the 
average time  in system by Little’s result [4]) would be  
infinite. Consequently, an  infinite populat ion mu ltiple 
access protocol cannot depend on  individual stations hav- 
ing a  queue of messages. Instead, such protocols must 
search for messages directly by, say, examining the time  
axis for arrivals to the system. 

Let us assume that messages may arrive at a  series of 
independent arrival points, each having probability p of 
containing exactly one  message and 1  - p of containing no  
messages. (When a  message arrives to the system, we 
assume that it is assigned to one station at random. A 
protocol as described above is subsequent ly used by this 
station to determine, at each slot, whether or not the arrival 
point for this message has been enabled and hence that the 
message should be  transmitted.) Initially, we say that each 
arrival point is unexamined. As the protocol operates, we 
may deduce information about the state of an  arrival point 
from the history of channel  activity. W e  will say that an  
arrival point is busy if it becomes known to the protocol 
that it contains a  message that has not yet been success- 
fully transmitted, and  idle if it becomes known that it does 
not contain a  message (possibly because its message has 
already been transmitted successfully). W e  note that if 
there are TJ arrival points per slot then taking the lim it as 
p --) 0, n  + cc while preserving the product S 5  qp, the 
arrival process becomes Poisson with parameter S. 

Capetanakis [5], [6] described the following mu ltiple 
access protocol for Poisson arrivals. Access to the channel  
is only permitted at the start of a  service “epoch.” All 
messages generated during one epoch are transmitted in 
the next epoch. Whenever  a  collision occurs, each station 
involved in that collision tosses a  fair binary coin. Those 
stations tossing l’s retransmit their messages immediately; 
those tossing O’s are forbidden from participating in the 
collision resolution algorithm until all stations that just 
tossed l’s have successfully transmitted their messages. The  
capacity of this basic protocol is = 0.34, but many refine- 

ments have subsequent ly been suggested. Capetanakis 
mod ified this basic algorithm to increase the maximum 
throughput to = 0.43. Ga llager [7] and  Tsybakov and 
M ikhailov [8] independently devised a  first-come first-serve 
(FCFS) protocol with a  capacity of * 0.487. Humblet and  
Mosely [9] did some fine tuning on  the Ga llager-Tsybakov 
algorithm to achieve a  maximum throughput of = 0.488 
with a  FCFS protocol. 

In general  it is not obvious how an  optimal infinite 
populat ion mu ltiple access protocol should operate. Com- 
plicated sequences of intersecting sets could be  enabled to 
gather information about the distribution of messages. 
W ithout describing any specific optimal protocols, Pip- 
penger  [l] has proven an  upper  bound <p on  capacity. 
G iven any set of arrival points, a  protocol enables subsets 
of these points according to a  ternary decision tree. A path 
through the decision tree terminates when all messages 
from that set are known to have been transmitted success- 
fully. Each terminal node determines a  unique partition of 
the set of arrival points, with each element containing 
exactly one  message. The  bound is obtained in the lim it as 
the expected number  of messages in the set of arrival 
points grows to infinity by equat ing a  lower bound on  the 
entropy of valid partitions (i.e., those that could separate 
messages correctly) with an  upper  bound on  the entropy of 
the identity of the terminal node, given that a  fraction E, of 
the time  the protocol must take the “success” branch in the 
decision tree. In the Poisson lim it as p -+ 0, Pippenger’s 
bound on  capacity is = 0.744. 

In this paper  we take a  more direct approach. W e  show 
that optimal protocols can be  found for systems in which a  
helpful “genie” provides certain extra information at no  
cost to the protocol. The  performance of optimal genie-aided 
protocols must be  an  upper  bound on  the performance of 
optimal unaided protocols, since the optimal genie-aided 
protocol can always simulate an  unaided protocol by ignor- 
ing the genie’s information. However, this upper  bound 
need not be  attainable. 

As a  trivial example, perfect utilization of the channel  
would be  possible if the genie were to examine all the 
arrival points and publicly label each point to be  idle or 
busy. Thus the key to this approach is in the selection of 
some particular information that does not make the colli- 
sion resolution problem “too easy” but still allows one to 
make mean ingful statements about the performance of an  
optimal protocol. 

Below, we shall examine protocols that are aided by a  
genie who publicly labels, at no  cost, two busy points (and 
possibly some idle points) from each collision. W e  show 
that the labeling can be  done in such a  way’ that all 
unlabeled points remain effectively unexamined (i.e., the 
property that the points are independently busy with the 
probability p is preserved), so that we can get no  further 
information from a  collision with genie labeling. This 
allows us to find the exact capacity for all p 2 0.568, and  
tighten Pippenger’s upper  bound for Poisson arrivals to 
= 0.6731. 
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II. OPTIMAL GENIE-AIDED ALGORITHMS FOR 
ComsIo~ REVOLUTION 

Let us assume that the genie uses the following algorithm 
to label points from each collision. If no previously known 
busy points were enabled, the genie examines the enabled 
points chronologically and publicly labels the first two busy 
points that were enabled (thus implicitly labeling every 
other examined point to be idle). If one previously known 
busy point was enabled, the genie first labels the known 
busy point (giving the protocol no new information) and 
then publicly labels the first previously unknown busy 
point that was enabled (also possibly creating some known 
idle points). If at least two known busy points were ena- 
bled-a certain collision-the genie trivially labels any 
two known busy points, giving no new information. (This 
last case clearly cannot be optimal and need not be consid- 
ered below.) 

We note that it is not necessary for the genie to examine 
the enabled set in a first-come first-served order. The genie 
may examine the arrival points arbitrarily as long as every 
point that is examined is labeled to be idle or busy. Since 
the Bernoulli trials were initially independent, all unlabeled 
arrival points remain effectively unexamined with probabil- 
ity p of being busy even with perfect information about the 
labeled points. Thus, any genie-aided collision resolution 
algorithm faces only known busy points, known idle points 
and unexamined arrival points. It remains to find an 
optimal genie-aided collision resolution algorithm and to 
determine the capacity of a protocol that uses that algo- 
rithm. 

We now show that without loss of generality the search 
for an optimal algorithm can be restricted to those algo- 
rithms that separately enable each known busy point. Let 
A be any genie-aided algorithm that sometimes enables 
both a single known busy point and some unexamined 
arrival points. Define a new algorithm A’ that simulates the 
behavior of A but makes the following modification. 
Whenever A would enable both one known busy point and 
k > 0 unexamined arrival points-giving a success with 
probability (1 - P)~ and a collision (from which the genie 
labels one new busy point) with probability 1 - (1 - P)~ 
- A’ enables either one known busy point (and no unex- 
amined arrival points) or all remaining unexamined arrival 
points (and no known busy points) with probabilities (1 - 
P)~ and 1 - (1 - p)“, respectively. Should it choose the 
former, A’ resumes its simulation of A as if a success had 
occurred. Should it choose the latter, there is certain to be 
a collision from which the genie labels two new busy 
points; A’ interrupts its simulation for one slot to transmit 
successfully one such point and thereafter resumes its 
simulation of A as if a collision had occurred. There is thus 
perfect utilization of the channel over all slots for which A’ 
interrupts its simulation of A. In addition, the simulation is 
a faithful probabilistic replica of A: it achieves a successful 
message transmission with probability (1 - P)~ (maintain- 
ing the same throughput as A), and it either increases the 
number of known busy points by one with probability 

1 - (1 - p)“,. or decreases the number of known busy 
points by one with probability (1 - P)~. Thus A’ must have 
at least as high a throughput as A. It follows that no 
genie-aided algorithm can have a higher capacity than the 
best genie-aided algorithm that chooses each enabled set to 
be either a single known busy point or a set of unexamined 
arrival points. Without loss of efficiency, this may clearly 
be done FCFS. 

For any such genie-aided algorithm, a new period of 
activity begins whenever the algorithm enables some (pos- 
sibly random) number N of unexamined arrival points. 
Each idle period lasts for one slot and transmits success- 
fully no messages, each success period lasts for one slot 
and transmits successfully one message, and each collision 
period lasts for three slots and transmits successfully the 
two genie labelled messages. Over all periods where a 
particular value of N is chosen, the conditional genie-aided 
t~oughpw PN, is found from a renewal argument to be 

s, + 2c, 
pN k IN + s, + 3CN = 

2 - 21, - s, 
3 - 21, - 2SN 

1 - s, 
=I-3-21N-ZS,’ 

where IN = (1 - P)~, S,,, = Np(1 - p)“-‘, and C, : 1 - 
IN - S, are the probabilities that enabling N Bernoulli 
arrival points gives an idle slot, a success or a collision, 
respectively. Since the unconditional throughput is a con- 
vex combination of {p,}, it cannot exceed P,,,*, where N* 
achieves maximum conditional throughput. 

We have thus established that an optimal genie-aided 
strategy is to enable the first known busy point if there is 
one, or to enable some fixed number N* of unexamined 
arrival points otherwise. This optimal strategy also trans- 
mits all messages in a first-come first-served order. It 
remains to determine N* for all p. 

Fact: Let f be a function defined on the positive in- 
tegers. If either fk 2 fk+l holds whenever fk-, 1 fk, or 

fk 2 fk- i holds whenever fk+ , 2 fk, then f is unimodal. 

Proof: Let h, fj be two distinct strict local maxima 
and, without loss of generality, let j > i. Then, by the first 
condition above, we must have 

which contradicts that fi is a strict local maximum. Simi- 
larly, by the second condition, we must have 

which contradicts that fi is a strict local maximum. Q.E.D. 

Theorem 1: For any fixed Bernoulli probability p, se- 
quence {p,} is unimodal in N. 

Proof: Let pN L pN+,. Then 

1 - s, 1 - l- SN,l 
3 - 21, - 2SN 

2 l- 
3 - 21,,, - 2SN+, ’ 
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or 
s, - 2&I,+, - 2I,2 s,,, - 2S,+,I, - 21hl+,. 

(2) 

But IN+, = (1 - p)l,, and S,,, = pI, + (1 - p)S,, so 
that (2) gives 

or 

s, 2 443 - 21,), 

NP - 22 3 - 21,. 
1-p 

Hence, to show that &,+, 1  ,6N+2, it suffices to show 

tN+ ljp=-3-21 
l-p - N+l =3-21,+2p1 N’ 

Because of (3), this inequality holds if 
P 

1-P 
2 2PIN 

or 

; I (1 - py+‘, 

(3) 

which is clearly true for p 2 4. W e  thus assume p < i. 
Since I, I 1, it must be  the case from (3) that N 2  (l/p) 
- 1. Thus to show (4), it suffices to show that 

L(l -p). (1 -p)(l’p)-1. 

Let u  k l/p > 2. Since it is well-known that (1 - l/u)“- ’ 
decreases monotonically from 1  to l/e as o  increases from 
1  to cc, (5) follows for all 2) if it holds for the smallest 
value, name ly v = 2, where it is clearly true. Q .E.D. 

Theorem 2: For fixed N, there is a  unique solution, pN, 
to p,(p) = jSN+,(p) for p in the range 0  <p < 1. If 
P <pN, then t%(p) <  f%+,(P); if P ‘PN, then PNtP) ’ 
bN+l(P)* 

Proof: If bN( p) = PN+ ,( p), then (3) must be  true as 
an  equality. Let f(p) 2  Np/(l - p) and g(p) 45 3 - 2(1 
- P)~ be the left and  right sides of (3) respectively. W e  
now show that assuming the existence of two solutions, 
f(p,) = g(p,) and f(p2) = g(pZ) for 0 <P, <p2 < 1, 
leads to a  contradiction. Since f”(p) = 2N/( 1  - P)~ and 
g”(p) = -2N( N - l)(l - P)~-~, f(p) is strictly convex 
while g(p) is strictly concave for 0  < p < 1. For any pO 
such that 0  < pO < p,, choose ty to satisfy p, = ap, + (1 - 
a)~,. Then by convexity 

f(Pl) <“f(Po) + (1 - MP2). 

Similarly by concavity 

d Pl) ’ 4 PO) + 0 - 4g( P2h 

Thus 

f(PO) ‘g(p,) 
for all pO. Since f and  g  are cont inuous and differentiable 
for 0  5  p < 1  and f(p) + 0  and g(p) + 1  in the lim it as 
p + 0, we have an  obvious contradiction. There can thus 

be  at most one  solution, p,,,. Such a  solution must exist, 
however, sincef( p) + 00  and g(p) -+ 3 asp -+ 1. Q .E.D. 

Coroilary 1: N*, the optimal number  of unexamined 
arrival points to enable simultaneously, is a  nonincreasing 
function of p. 

Proof: Choose any p and determine N*(p). By Theo-  
rem 1, jjN*( p) 2 p,,,*+,(p). By Theorem 2, since equality 
can occur for only one  value of p, fiN*( p’) > PN*+,(p’) 
must hold for all p’ > p. But ,GN is unimodal in N, so 
N*( p’) I N*(p). Q.E.D. 

Corollary 2: For p > 0, N* decreases in unit steps as p 
increases. 

Proof: It is sufficient to show that pN up,-,. W e  
thus assumep, > p,,,-, and considera E ( pN- ,, pN). Then  
by Theorem 2  we must have pN+ i( p) > pN( p) since @  < 
pN, and i&,(p) 5  pN(fi) since 8  > pN-,, which con- 
tradicts that p  is unimodal in N. Q .E.D. 

W e  have thus established that bN is an  upper  bound to 
the capacity of optimal protocols for all p in the interval 
LPN, PN-1). 

III. CALCULATINGTHEBOUNDS 

Before comput ing some specific upper  and lower bounds 
on  the capacity of optimal protocols, we wish to establish 
that capacity (of optimal protocols) must be  a  nondecreas- 
ing function of p. This is true because we can always 
simulate an  arrival sequence with Bernoulli probability p, 
given an  arrival sequence with p2 > pl. The next arrival 
point in this simulated arrival sequence is independently 
def ined either to be  the next arrival point from the real 
arrival sequence (with probability pl/p2) or to be  empty 
(with probability 1  - p,/p2). Thus the performance of any 
protocol for p, can be  achieved given p2 by applying the 
protocol to the simulated arrival sequence. 

W e  note in particular that if p, > 0  then the randomized 
binomial strategy for p2 that selects k arrival points with 
probability 

( 1  f (P,/P~>~(~ - P,/P~)~-~, 0  5  k 5  N, en- 
ables exactly n  busy points with probability 

ii ( ;)(Pl/P2)k(l - Pl/P*)N-k( gP;(l - P2)k-n 
k=n 

= ; p;(1 -pl)N-n. 
( 1  

This distribution is identical to the probability of enabl ing 
exactly n busy points by the fixed strategy for p, that 
selects N arrival points. Similarly in the Poisson case where 
p, = 0, the randomized Poisson strategy for p2 that selects 
k 10 arrival points with probability 

O/P21k e-h,p, 
k! 

achieves the same distribution for the number  of enabled 
busy points as the fixed strategy for Poisson arrivals that 
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enables a set with parameter A. It follows that the perfor- 
mance of the previously described optimal genie-aided 
protocol for p, can be attained given p2 > p, by defining a 
randomized genie-aided protocol. However, since. the 
throughput will be a convex combination of the through- 
puts of several fixed strategies, there can be no advantage 
in randomization. 

We now consider a Bernoulli arrival process with p > 
l/ fl = 0.7071. We note from (1) that p2 = 2p/(l + 
2p2)<p for all p > l/a. But since p, =p and pN is 
unimodal in N, no genie-aided protocol (and hence no 
unaided protocol) can achieve a throughput exceeding p for 
anyp > l/ n. However, enabling individual arrival points 
whenever there is a backlog of at least one point (i.e., 
“TDMA”) achieves a capacity of p, does not require the 
genie’s help, and is thus feasible and optimal. We note that 
l/ &? must also be an upper bound for all p 5 l/ fl since 
we have shown that capacity is a nondecreasing function of 
P. 

Similarly using pairwise enabling (i.e.,’ N = 2) whenever 
there is a backlog of at least two points is optimal for p 
between l/ 0 and the solution of 

P3 = 
3P-P3 = 2P = 1 + 6p2 P2, - 4p3 1 + 2p2 

namely p x 0.568, where fi2 = p, = 0.6904. We can clearly 
label two busy points from a collision if only two arrival 
points were enabled, so pairwise enabling is feasible without 
the genie’s help, and thus this is an optimal protocol in the 
range 0.568 5 p 5 l/ 0. We may continue to numerically 
evaluate the boundary where N 2 3, b& the optimal proto- 
cols now do require the genie’s information. In the Poisson 
limit where p + 0, N becomes infinite and thus the maxi- 
mum genie-aided throughput is 

& = 
2 - (2 + X)e-A 

3 - 2(1 + X)epX ’ 

This maximum occurs at h = 2.89, the solution of 3 - h = 
2e-“. Hence for the case of Poisson arrivals, the through- 
put cannot exceed & = 0.673 1. This completes the calcu- 
lation of an upper bound on capacity for all p. 

We now find a lower bound on capacity in the region 
0.568 R p > 0, where our optimal genie-aided protocols 
simultaneously enable more than two arrival points. Since 
we cannot label two busy points without the genie’s help if 
a collision occurs when N L 3, the performance of an 
optimal genie-aided protocol need not necessarily be at- 
tainable without the genie’s help. However the perfor- 
mance of any feasible protocol does form a lower bound 
on capacity. We have also shown that capacity is a nonde- 
creasing function of p, so the capacity of Mosely’s algo- 
rithm for Poisson arrivals [9], = 0.488, can be used as a 
lower bound for all p. We thus obtain a lower bound by 
taking the maximum of the capacity of Mosely’s algorithm 
and the capacities as a function of p of TDMA and 
pairwise enabling (the N = 1 and N = 2 cases, respec- 
tively). 

0.2 

0.0 
0.0 0.2 0.4 0.6 0.8 1 .o 

BERNOULLI PROBABILITY 

Fig. 1. Throughput versus Bernoulli probability. 

The feasible region can be expanded upwards slightly by 
considering contention among more than two Bernoulli 
trials. We consider three obvious FCFS collision resolution 
algorithms for N = 3. For the first case, assume that when 
a collision occurs, individual arrival points from the colli- 
sion are enabled until two messages are transmitted. (There 
can be no advantage in separately enabling the third 
arrival point if the first two points were busy because it is 
effectively unexamined.) Two extra slots resolve the colli- 
sion if the first two arrival points are busy. Otherwise three 
extra slots are required. Hence, for this first algorithm, the 
throughput is given by 

3P - P3 
1 + 2[p3 +p2(1 -PII + 3[2~2(1 - P)I 

= 3P-P3 
1 + 8p2 - 6~‘. (6) 

In the second case, we immediately enable a pair of 
arrival points whenever a collision occurs. There will either 
be a success if exactly one of the first two arrival points is 
idle (and we are done after enabling the third arrival point, 
now known to be busy), or a further collision if both are 
busy. Here again, the collision is resolved after exactly two 
messages have been transmitted, giving a throughput of 

3P - P3 
1 + 3[P3 + P20 - PI1 + 2[2P20 -PI 

= 3P - P3 
1 + 7p2 - 4p3 . (7) 

Finally, we may first enable a single arrival point from a 
collision. If that arrival point is idle, the remaining two 
points (now known to be busy) are separately enabled. If it 
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is busy, both remaining arrival points are enabled, possibly 
resulting in a  further collision. In this case, collision resolu- 
tion takes two extra slots if either of the last two arrival 
points is empty, three extra if the first point is empty, and  
four extra if all arrival points contained messages. All 
messages in the enabled set are always transmitted, and  the 
throughput is 

1  + 2[2py1 -p)] +3:[p’(l -p)] + 4[p3] 

= 3P 
1 + 7p2 - 3p3 * (8) 

As one can easily verify, (8) exceeds both (6) and  (7) in the 
range 0.206 Sp 5 0.430, where (8) exceeds both the 
throughput of pairwise enabl ing and the lower bound 
obtained from Mosely’s algorithm. 

F ig. 1  plots throughput p  against the probability p of a  
message arriving at an  arrival point. Pippenger’s upper  
bound is shown. In addit ion the new upper  bound pre- 
sented above is shown delimiting the unattainable region. 
Mosely’s FCFS algorithm, the above FCFS algorithm for 
N = 3, pairwise enabl ing (the N = 2  case described above), 
and  TDMA on arrival points (the N = 1  case described 
above) delimit the attainable region. 

IV. CONCLUSION 

For all Bernoulli arrival processes with p 2 0.568, opti- 
ma l algorithms are known: pairwise enabl ing for 0.568 5  p 
< l/ n  and  TDMA for p L l/ 0. Both algorithms have 
simple forms and obey FCFS. For smaller p, there is still a  
range of uncertainty about the maximum attainable 
throughput. 

401 

Even though the new upper  bound for Poisson traffic is 
above 2/3, we agree with the common conjecture that i is 
the true capacity. However, sharpening the present upper  
bound from = 0.6731 will seemingly require a  more com- 
plex argument.  
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