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Abstract

Queue nferencing algorithms are used to derive
estiinates of queue lengths and/or customer waiting
times from a priort information about the customer
arrival process and the observed sequence of times at
which each customer enters and leaves service. In this
paper, we extend these techniques by decoupling the
arrival time constraints from the customer departure
times, which allows us to handle additional features
like server vacations. We then show how these tech-
niques can be used to monitor a single station in a
polling system, or in a shared medium Local Area Nel-
work such as Ethernet, Token Ring and FDDI. Using
these results, passive, non-intrusive network monitor-
g tools could be developed to estimate waiting times
and queue lengths for any host on the network by ob-
serving only the packet departure times from the nodes.

1 Introduction

Recent results by Larson [1], Bertsimas and Servi
[2], and Daley and Servi [3, 4] provide algorithms
for estimating queue lengths during a busy period
for an M/G/1 queueing system, given transactional
data that 1s visible to a passive external monitor.
The visible data consist of only the service initiation
and service termination events for each customer, or
equivalently the customer departure instants together
with the beginning and the end of each busy period.
Larson introduced this queue inference problem and
proposed an Q(n®) algorithm to estimate the queue
lengths over an n—customer busy period. Bertsimas

*This work was done while the authors were with the Dept.
of Computer Science, University of Toronto, Toronto, Canada
M5S 1A4, and was supported by the Natural Sciences and En-

gineering Research Council of Canada under grant A5517.

Mart L. Molle

Computer Science Dept

University of California, Riverside
Riverside, CA 92521

mart@cs.ucr.edu

and Servi later developed an O(n®) algorithm, while
Daley and Servi describe a reasonably accurate ap-
proximate O(n? log(n)) algorithm. In all of these al-
gorithms, the estimates are computed off-line, at the
end of each busy period, and the algorithms are inde-
pendent of both the customer arrival rate (as long as
it is a stationary Poisson process) and the service time
distribution. However, it is necessary that the service

discipline be FCFS.

Some estimation algorithms have also been derived
for more general queueing problems. For example,
Bertsimas and Servi [2] also considered the case where
the arrival process is a time dependent Poisson process
or a renewal process with a known distribution, while
Daley and Servi [4] also considered M/G/1 queues
with balking, reneging and finite buffers, and the
M/G/m queueing systems. In addition, Bertsimas and
Servi provide an on-line O(n) estimation algorithm for
the current queue length at the nth departure during
an ongoing busy period, which is general enough to
handle time dependent Poisson arrival processes.

The rest of the paper is organized as follows. In
section 2 we develop a new off-line estimation algo-
rithm for the waiting times of departing customers in
an M/G/1 queue with FCFS service. In section 3 we
introduce the problems of monitoring one of the sta-
tions in a polling a system, state our assumptions and
introduce some additional notation. In section 4 we
provide a framework for applying our waiting time es-
timation algorithm, and the queue length estimation
algorithms of Bertsimas and Servi, to the monitor-
ing of polling systems with exhaustive, k-limited and
time-limited service. We then discuss applications to
the monitoring of LAN systems in sections 5 and 6.
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2 Estimation Algorithms

In this section we derive our algorithm for estimat-
ing the waiting times for departing customers in the
busy period of an M/G/1 queue.

2.1 Arrival Time Estimation

Consider an interval Z = (0,t,] that includes n
customer arrivals from a Poisson source, subject to
the constraints that the mt? arrival occurred no later
than time t,,, m = 1,---,n. In this section, we will
derive the minimum mean square error estimate for
Tm, the actual arrival time for the m‘* customer. (To
simplify the expressions we obtain, we find it conve-
nient measure time from the left-hand boundary of Z
and to define 7; = 0.) This problem formulation is a
generalization of the usual situation in queue inferenc-
ing algorithms, where the interval Z represents a busy
period for a single server queue, and the constraint
t corresponds to the departure time y,,.; for the
(m — 1) customer. We give the more general form
here to permit easy application of our results to polling
systems, Local Area Networks, etc., in later sections.
We assume that the interval Z and the constraints t,,
are known to our monitoring algorithm, with which we
must estimate the unknown 7,,,’s. Define the vectors
t=[ti,tz,---,tn] and 7 = [11, 70, - -, 1]

If all we knew about the arrivals was that n of them
from a Poisson source fell within the interval Z, then
the joint arrival time density, f,(z), would be !

n!
()"

However, we do know more about the arrivals, in par-
ticular that the m!”* arrival occurred before t,,. Thus,
for any feasible arrival vector 7, the corresponding
joint density f,(r) is obtained from f/(r) by multi-
plying by the normalization constant 1/p,, where p,
is the probability that a randomly chosen arrival vec-

tor would satisfy these constraints and is given by

tn |
n:

pn = / / a / yRe
" 71=0 Jro=7) Tp=Tp—1 (tn)n

Therefore, the joint arrival time density, given all
the information we have available, is given by

faln) = 1)

. dT2 dTl

_Jtn(@)
falz) = o (2)

n

as long as 7 satisfies the given constraints, i.e., ;_1 <
7 <t forall i =1,2,--,n; otherwise fn(zr) = 0.

!Note the difference from Eqn. 1 of [2]: in our model we
allow the first customer arrival to occur within the interval Z,
rather than defining its left-hand boundary.

Lemma 1 Forp > 0, let ¢, ,(7p) =1 and forq > p
let

tp+1 tpt2 tq
bp,q(Tp) = drg - dTpiy
Te+1=Tp Y Tp4+2=Tp41 Tg=Tq—1

Then ¢y 4(1p) is a polynomial of degree ¢~ p in 1, and
can be represented by

o

-P

cp,q(j)ﬁz (3)

b}

bp.q(p) =

J

where the coefficient cp 4(j) of the j** power of 7, is

cqq(0) =1 (4)
Forr=¢q—1,¢-2,---,p
(e +1)
k=0 lcr+1,q(1)‘ﬁ.‘r i=0
crq(d) =
—trttalinl 0<j<q-r

’ (5)

Proof: For g = p, the lemmalis true with ¢, ,(0) =
1. Assuming the lemma holds for some ¢ > p, we
evaluate ¢, 441(7p) as follows

tp41 q—p
bp,a+1(p) = / Ecp+1,q+1( )7}Z+1d7'p+1
T,

p+1=Tp j=0
q-p (G+1) (5+1)
= Zcpﬂ ¢+1(J) t‘?i'l_ - 1?7_‘“
j=0 ’ I+ 1 J+ 1
qtl-p )
= D ent
=0

where cpg41(j) is defined by Egn. 5. Hence the

lemma.

Lemma 2 Form=1,2,---

/ / / dTm <o drpdry (6)
11=0 Jra=my Tm=Tm—1

o
; (—1)i+t tfntil ’¢0,m_,'(0)(7—i—i—)? (7

Proof: Proof is by direct evaluation.

Using the above lemmas, it is interesting to note
that p, and f,(z) for a feasible arrival vector can be
rewritten as

Pn = (t )n #0,n{0)

fo(mi, 1, M) =

¢0,n(0)
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Theorem 1 The minimum mean square error esti-
mate, ETy, of the arrival time for the m'® customer
out of n n the interval I, given the arrival process is
Poisson and the constraints t, is given by

o :n-—znﬂ-l Cm,n(j _ 1) i J‘(—1)1+1 t-z:il_iCOYm_.,’(O)
" i=1 c0,n(0) i=1 (G +9)!

(8)
Proof: Proof is by direct evaluation of Ery,.

2.2 Waiting Time Estimation

The results from the previous section provide all the
information we need to create an off-line queue infer-
encing algorithm for estimating waiting times. The
inputs to our algorithm are the starting and ending
times for a busy period in a single server FCFS queue-
ing system with Poisson arrivals, together with the
departure times yi, - - -, yn for each of the n customers
served in that busy period. The output is the min-
imum mean square estimate, Ewp, for the m** cus-
tomer’s waiting time. Note that our algorithm also
permits the first customer of the busy period to receive
extraordinary service, i.e., it must wait for some time
before its actual service begins. Examples of such sys-
tems include some types of M/G/1 queues with server
vacations and some types of priority queues. We will
use yo to represent the end of this server vacation,
when 1t exists.

Theorem 2 The minimum mean square error esti-
mate, Fw,, of the waiting time for the mt® customer
in an n-customer busy period of an M/G/1 queue-
ing system with extraordinary service for the first cus-
tomer is given by

n-m+1

1) . g (=1)iF i+i _:(0
B = gy -3 =D ICEDT s com4(0)

i=1 con(0) £ G+

(9)

Proof: The waiting time of the m*”® customer in
an n-customer busy period is

Wm = Yn-1 — Tm (10)

where y,,_1 is an input to our monitoring algorithm,
and 7, is an unknown that requires estimation. Tak-
ing expectations, we have

Ewm = Yym-1 — Emm (11)

and it remains to evaluate ET,. But recall that for
each customer served within the same busy period
for a FCFS queueing system, its arrival time must

have occurred before the departure of the previous
customer (if any). Thus, since E7, can be com-
puted using theorem 1 when we let ¢, = yp,—1 for all
m = 1,---,n, the theorem follows immediately from
Eqn. 11.

3 Extending the Applications

Unlike most of the literature on queue inferencing,
we derived our waiting time estimation algorithm in
terms of an arbitrary interval Z that is known to in-
clude the customer arrivals, together with some ad-
ditional constraints ¢ on the arrival times of individ-
ual customers. This generalization makes it obvious
how to apply our algorithm to other situations where
bounds on the arrival times can be determined. The
queue length estimation algorithms of Bertsimas and
Servi can be treated similarly.

In this section, we show that these algorithms can
be applied to polling systems. Priority queueing mod-
els and to vacation server models can be handled sim-
ilarly. In applying these algorithms, we assume that
the monitor can determine the associated transac-
tional data, such as the beginning and end of each
busy period and the bounds on the arrival times for
each customer.

3.1 Monitoring a Polling System

Our goal in this section is to estimate the average
waiting times and queue lengths at the individual sta-
tions in a polling system. To this end, we define the
problem and state our assumptions.

We assume that the monitor can observe the times
of arrival, A;(j), and departure, D;(j) of server on its
jth visit to station i, along with the departure times
Y1,i(4), y2,i(4), - - - for each of the n;(j) station 7 cus-
tomers who were served during the jt* visit.

We assume that the monitor is not told explicitly
when the queue at station ¢ becomes empty, but must
instead deduce this for itself from the above transac-
tional information based on a priori knowledge about
the service discipline that the server is using, and its
parameters. Thus, for example, under the k-limited
service discipline, we assume that the monitor knows
K;(j), the maximum number of customers that can
be served at the j7i* of the server to station i. Simi-
larly, for the time-limited service discipline we assume
that the monitor knows 6;(j), the maximum time that
the server can spend at station ¢ during its j** visit,
beyond which it must not begin serving any new cus-
tomers.

Given this context, we can now define a busy period
for station i as seen by the monitor.
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Definition 1 A monitored busy period at station
¢ consists of the interval between V; + 1 consecutive
departures from station i by the server, such that:

1. The first V; — 1 of the included visits by the server
ended when it was time for the server to leave
station i according to the service discipline.

2. The V" included visit by the server ended before
it was required to leave station i.

8. At least one customer was served at station i.

Observe that a monitored busy period for station
¢ always begins and ends with some server departure
from that station, i.e., it includes an integral number
of service “cycles.” However, the set of all monitored
busy periods does not cover the entire transactional
log: a “cycle” represents a server vacation in the sta-
tion ¢ model if no station ¢ customers were served in
that cycle and the server was not required to leave
station ¢ according to the service discipline on the pre-
vious “cycle.” Thus, we define V;(r) to be the total
number of server visits included in the r** busy period
at station 7, where F;(r) is the visit number of first of
these visits and L;(r) is the visit number of the last.?
Thus

V,(T‘) = L;(T) — F.,‘(r) +1 (12)

Let M;(r) be the total number customers served in the
rth busy period for station i, where

Fi(r)
Mi(r)= ) m(j). (13)
j=Li(r)

In order to apply the previously described queue in-
ferencing algorithms to the r** busy period for station
i in a polling system, we adopt D;(F;(r) — 1) as our
time origin. We will also be using the notion of service
completion time of a customer defined as follows.

Definition 2 The service completion time of the
mth customer at station i, Um,i, ts the time at which
the server is ready to accept the (m+1)** customer at
station i (if any) into service.

This definition is similar to the one used by Gaver [8]
for priority queueing systems. Thus, using a similar
approach to our treatment of priorities and vacations,
we let §oi = Ai(Fi(r)) be the end of the server va-
cation that initiates the r** monitored busy period
at station ¢, and thereafter for m = 1,---, M;(r), we

2Note that according to the above definition, no station ¢
customers need be served at the L,-(r)”’ visit, if Li(r) > Fi(r).

define §p, ; for the mt* customer served in that busy
period to be its departure time, if the given customer
was not the last one served in a particular visit to the
station, or the server’s next time of arrival at station
i, otherwise. As before, we assume that the customers
at a given station are served on a FCFS basis and
that the arrival and service processes are continuous
in time. In our subsequent discussion, we will be deal-
ing with only a specific busy period. For notational
convenience, when referring to a busy period we will
drop the reference to r, the sequence number of the
busy period.

4 Application to Polling Systems
4.1 Exhaustive Systems

In the exhaustive service discipline, when the server
departs from station ¢ at time D;(F; — 1) the queue at
station ¢ is empty by definition. Thus, each busy pe-
riod includes only one visit to the given station by the
server. We can, therefore, state the following proper-
ties for exhaustive service polling systems by inspec-
tion.

Property 1 In the exhaustive service polling scheme,
the time between two consecutive departures of the
server from station i is either a monitored busy pe-
riod for station i, if at least one station i customer is
served during the visit, or a vacation, otherwise. For
any monitored busy period at station i we have

Vi =1
F;, = D;
M; = ni(F)

Using the beginning of the busy period, D;(F; — 1), as
a time origin, the elements of the service completion
time vector are given by

Yoi = Ai(F) - Di(F;i-1)
Yrm,i Ym,i — Di(F; — 1)
Im.i = Di(Fi)— Di(F; —1)

IS’ITL(M,‘

and the interval T containing the arrivals runs from
0 to §m,-1,i, subject to the constraints that the mth
customer arrived no later than t,, = Jm-1,.

4.2 Limited Service systems

There are two kinds of limited service systems, the
k-limited system and the time limited system. In the
k-limited systems, the server limits the number of cus-
tomers it will serve during one visit to a station, K;(j)
for station ¢ during visit j. In most polling models
K;(j) is a constant for all j, although there are some
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exceptions such as the Bernoulli schedule where it is
a geometrically distributed random variable. If the
queue at station ¢ is empty before serving K;(j) cus-
tomers, the server moves on to the next station.

In time limited service polling systems, the server
limits the amount of time it will spend at the station.
A new service will begin at the station if the queue is
non-empty and if the time spent at the station by the
server during the current visit has not exceeded the
limit for the visit, 8;(j). The FDDI protocol belongs
to this class with 8;(j) being determined by the server
at the beginning of the visit using a token rotation
timer.

It is easy to see that, under limited service, the
monitored busy period at a station does not neces-
sarily end when the server leaves the station. If the
server leaves station ¢ early i.e., if the server leaves af-
ter serving less than K;(j) customers during the visit
for k-limited systems and if it leaves before 6;(j) for
time limited systems, it is an indication that the queue
at station ¢ is empty and hence the monitored busy
period at station ¢ has ended with this visit of the
server. On the other hand, if the server leaves station
¢ on time, i.e., after serving exactly K;(j) customers or
after staying there for a duration of at least 6;(j), the
monitor is not sure if the busy period ended. In partic-
ular, the monitor cannot distinguish between the case
where the server left some customers behind in queue
¢ and the case where the server’s maximum visit was
Just enough to empty queue i, but the next arrival
occurred before the server returned. Thus, the cus-
tomers (if any) that are served during the server’s next
visit are included in the same monitored busy period,
even If queue was empty when the server departed.

From the above discussion we can state the follow-
ing properties for limited service polling systems

Property 2 In limited service polling schemes, a
monitored busy period for station i is an interval that
begins and ends at server departure instants from sta-
tion i, and includes V; visits by the server to station
t. During the first V; — 1 of those visits, the server de-
parted on time, i.e., following conditions are satisfied:

ni(7) = Ki(j) for K—limited systems
D;i(j) — Ai(§) > 06i(§) for time limited systems
(14)
For any monitored busy period at station i we have
Vi 21
L;
M,' = Z n,(])
j=F;

Using the beginning of the busy period, D;(F; — 1), as
a time origin, the elements of the service completion
time vector are given by

Joi = Ai(Fi)—Di(F;—1)
Uni = Ym,i— Di(Fi—1) 1< m < ni(Fi)
Uni(Fyi = Ai(Fi4+1)—Di(F; 1)
Uni(Fy+m,i =  Yn(Fi)4m,i — Di(Fi — 1)

l<m<n(F;+1)

Imii = Di(Li) = Di(F; = 1)

and the interval Z containing the arrivals runs from
0 to §ar,—1,i, subject to the constraints that the mt"
customer arrived no later than t,, = Ym—1,i-

5 Application to LAN Monitoring

In this section we show how the monitoring tech-
niques described above can be used to estimate queue
lengths and/or waiting times at some device(s) which
are connected to a shared medium LAN. Given the
requirements of the algorithms, the approach is sim-
ple: we need only connect a passive receiver to the
medium from which we can record a “transaction log”
describing the activity of the target device(s). That
is, we need a connection to the medium from which we
can determine the starting and ending times for each
packet transmission by the target device, together
with the necessary information for deciding whether
or not the device used each opportunity to transmit.

In general, this information can be obtained by con-
necting the monitor to the medium and configuring its
network interface for promiscuous receive. Note that,
in general, the event times in the “transaction log”
collected by the monitor will be offset from true event
times because of the propagation delays across the net-
work as well as clock drift. However, this offset is of no
consequence for our results since it is applied equally
to every event. In the following sections, we will dis-
cuss the monitoring of both Ethernet and token rings,
such as FDDI, in more detail.

5.1 Monitoring Ethernet

In Ethernet (or IEEE 802.3) networks, the moni-
tor must be connected to the same collision domain
as the target device(s). Clearly, the monitor can de-
termine the starting and ending times for each packet
transmitted successfully by the target device by filter-
ing the traffic by source address. However, the dif-
ficulty with Ethernet arises when we try to decide if
the target device is using all of its transmission op-
portunities, and hence that is in the midst of a busy
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period. In general, all activity by the target device
will not be visible to a monitor with a promiscuous
receiver because collision fragments are often removed
by the runt filter in the network interface, and even
if they are not the identities of the colliding transmit-
ters cannot be determined reliably from the garbled
packet fragments. Moreover, because CSMA/CD is
a random-access protocol, there aren’t even any spe-
cific assigned transmission times where we can look
for activity by the target host. Indeed, because of the
binary exponential backoff algorithm, an active device
that has experienced sufficiently many collisions with
its current packet may not transmit for a long time
even if the network is completely idle.

Thus, we will assume that an Ethernet monitor has
a direct physical connection to the target device with
which it can detect all transmission attempts — even
those that fail as collisions. In the case of a coaxial
cable network (i.e., 10Baseb and 10Base2), this can
be done by inserting a hardware monitor into the con-
nection between the target device and the cable — for
example, see [5]. Fortunately for us, however, the most
widely used version of Ethernet is 10BaseT, where ev-
ery host is directly connected to an active hub. In this
case, the required information can easily be collected
on demand via some simple additions to the manage-
ment software in the hub.

Given this information about transmission at-
tempts by the target host, it is now a simple mat-
ter for the monitor to identify its busy periods. For
each busy period for that host, we define ¢,, as the
beginning of the first transmission attempt for its mt”
packet. Because of deference to ongoing transmissions
under 1-persistent CSMA, we define the start of the
busy period to be {1, if that first transmission attempt
took place while the channel was quiet, or at the pre-
vious start-of-carrier event if it follows immediately
after some other transmission. After the i*" packet of
the busy period has been transmitted successfully, the
target host must wait for an interframe gap (i.e., 96
bit times) and then can begin transmitting its next
packet.® Thus, if the target host does not make an-
other transmission attempt at this time, the monitor
can conclude that the busy period is over.

5.2 Monitoring Token Ring Networks
In token ring networks, the token arrival at host ¢
and its release correspond to the server arrivals and

3There is no requirement for the host to continue with its
next packet this quickly, so many host interfaces introduce
longer delays. These minimum interpacket delays can be de-
termined by direct observation of the traffic generated by the
target host.

departures to the i*" station in our earlier discussion
of polling systems. For our queue inferencing algo-
rithms to be applicable, the monitor must be able to
determine the times of the j** token arrival and re-
lease events at host i, as well as the start and end
of transmission events for each packet transmitted by
host ¢. In addition, the monitor must be able to de-
termine whether or not the target host released the
token before its turn had expired.

Let +; denote the propagation delay along the ring
from host ¢ to the monitor. In general, v; will be
unknown to the monitor, but we now show that it is
not required either. Clearly, since a token ring is not
store-and-forward, the monitor will see the beginning
and end of each packet from host i exactly +; after the
target host began and ended its transmission.

Also, let the hosts between the monitor and host ¢
be called “upstream” and the hosts between host ¢ and
the monitor be called “downstream” hosts. Clearly,
the idle token visits the monitor exactly once during
the interval [D;(j — 1), A;(j)). Furthermore, the idle
token visits each of the “upstream” hosts exactly once
between its visit to the monitor and A;(j), and ev-
ery packet transmitted by any of those hosts, together
with the preceding busy token, must pass by the moni-
tor before 1t is removed by the sending host. Thus, the
network monitor can determine A;(j) +7; as the next
time it receives the end of an idle token, or the end of
a busy token followed by a packet whose sender is ei-
ther i or a “downstream” host. Similarly, the network
monitor can determine D;(j) + v; as the next time it
receives the end of an idle token, or the end of a busy
token followed by a packet whose sender is a “down-
stream” host. Notice that all of these events (token ar-
rivals/departures and packet transmission start/end)
are delayed by exactly the same amount, i.e., v;, which
is no different than connecting the monitor directly to
the output of host i — but with its clock shifted by
Vi

Using the results from Section 4, it is clear that the
only missing element for applying our queue inferenc-
ing algorithms to token ring networks is determining
whether the token left the target host “on time.” Since
this determination is trivial for k-limited service, we
will now consider the FDDI protocol. In this case, the
monitor must be able to calculate the value of the To-
ken Holding Timer, T'HT; () at node i for the j** visit
of the token. It is easy to see that if the monitor knows
the value of the Target Token Rotation Time (TTRT)
in the network (which can be found by monitoring the
control traffic on the ring), then

THT;(j) = TTRT ~ [A:(j — 1) + Ai(5)]  (15)
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Figure 1: Application of Estimation Algorithms to 25-
customer busy periods in an FDDI Ring with Erlang-2
distributed interarrival times

6 Results and Discussion

We simulated an FDDI network with 5 nodes. Time
is normalized so that the average packet transmission
time is unity. We also assumed a walk time around the
ring of unity, and chose a target token rotation time
of 10. Packet lengths were exponentially distributed,
and the average arrival rate was fixed at 0.75.

In Figs. 1 and 2, we show a comparison between the
measured and estimated values of the waiting times
for each packet and the queue lengths at each ser-
vice completion time for 25-packet busy periods under
Erlang-2, and hyperexponential interarrival time dis-
tributions with respective squared coefficients of vari-
ation of 0.5, and 2.3. Experiments were also run with
an exponential interarrival time distribution and/or
15-packet busy periods, but are not shown here to con-
serve space. The results shown are averages obtained
using the following methodology.

For each interarrival time distribution, the FDDI
simulator was run for a very long time until 2000 busy
periods of each target length were identified. For each
of these busy periods, the measured queue length and
waiting time values at each service completion time
were recorded, and the associated monitor data was
fed into the queue inferencing algorithms to produce
the corresponding estimated values. The 2000 samples
of each measured or estimated value were then aver-
aged to produce point estimates, which we plotted in
the Figures.

The measured and estimated values were in com-
plete agreement in the case where the simulator used
an exponential interarrival time distribution, just like

0.0 5.0 10.0 15.0 20.0 25.0

50

N
————— Measured Wait \‘
2 ke Estimated Wait AN
- -~ Measured Q-Len \
— - — Estimated Q~Len \
1 L . L s A
0.0 5.0 10.0 15.0 20.0 25.0

Pkt num in busy period

Figure 2: Application of Estimation Algorithms to 25-
customer busy periods in an FDDI Ring with Hyper-
exponentially distributed interarrival times

the analysis. This accuracy is not surprising, since
these are averages over many busy periods rather than
the data obtained from applying the algorithm to a
single busy period. The agreement in Figs. 1 and 2 is
almost as good, but there is some systematic bias in
our estimations because of the approximation error in
replacing Erlang-2 and hyperexponential arrival pro-
cesses, respectively, in the simulation by exponential
arrivals in the estimation procedure. As expected, the
estimates in Fig. 1 are slightly pessimistic, because our
analysis was derived for an arrival process with higher
variance. Conversely, the estimates in Fig. 2 show a
slight optimistic bias, because our analysis assumed
an arrival process with lower variance. Nevertheless,
the relative error in these estimates was remarkably
small in all the cases we tested.

Figure 3 compares the sequence of estimated and
actual queue lengths at each service initiation event
during a single monitored busy period in which the
target host transmitted 25 packets and the interarrival
time distribution is either Erlang-2 or hyperexponen-
tial. The beginning and end of each packet trans-
mission is marked by a closely-spaced pair of triangle
symbols (recall that the average transmission time is
unity), separated by longer gaps where the token was
elsewhere around the ring. It is evident that the trans-
mission opportunities by the target host were quite
erratic, including several large gaps followed by burst
of many consecutive packet transmissions.

In both cases, the estimation procedure is doing a
remarkable job of tracking the transient fluctuations
in the queue length. Under the Erlang-2 arrival pro-
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Figure 3: Transient Response of the Queue Length
Estimation Algorithm over a Single Busy Period

cess, we can again see a slight systematic bias towards
overestimation, although the error in the estimate is
generally quite small (less than one customer). Larger
estimation errors occur under the hyperexponential
arrival process, because it is harder to predict the ar-
rival times from a more variable process. Because of
these larger estimation errors, it is more difficult to
note the presence of a systematic bias in the results,
although it is obvious that the estimate is a smoother
function than the actual queue length.

7 Conclusion

We believe that these queue inferencing algorithms
can be used to construct a new and more powerful
class of network monitoring tools. Such tools would
allow the network administrator to identify transient
performance bottlenecks as well as hardware failures,
protocol errors and long term traffic patterns. That

0.0 50.0 100.0 150.0

is, if a specific user is experiencing low quality of ser-
vice from the network, then using these monitoring
tools will allow the exact location of the problem to
be identified.

The accuracy of the estimates is quite remarkable,
considering how little information they have available
about the activity that is internal to a monitored de-
vice. Because the algorithms work directly with the
measured packet length and interpacket vacation se-
quences, they do not require any statistical assump-
tions about the distribution of packet sizes, including
independence, stationarity, etc. However, the sensi-
tivity of the estimates to the variance of the arrival
process suggests that further refinement of these algo-
rithms may be needed to deal with the bursty traffic
patterns that are characteristic of real networks.
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