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The Helical Window Token Ring

FRANK R. KSCHISCHANG, STUDENT MEMBER, IEEE, AND MART L. MOLLE, MEMBER, 1EEE

Abstract —A new access rule for token ring local area networks called
the “helical window” token ring protocol is introduced. This protocol
features the use of a window that limits the allowable messages a token-
holding station may send. With the window, the operation of the protocol
approaches that of a central single-server queueing system in the sense
that messages are delivered in “near” first-come~first-served order on a
networkwide basis. The introduction of the window also makes analysis of
the network tractable. Exact analytical formulas for the capacity, and the
mean, variance, and moment-generating function of the message waiting
time are derived for both the continuous (infinite population) and the
discrete (finite population) case. Numerical simulation is used to verify the
results. Comparisons with continuous polling systems show that the imposi-
tion of the windowed access rule can lead to significant reductions in the
delay variance (but at the cost of increasing the mean system time) when
the traffic is heavy and/or the message transmission time is large with
respect to the walk time of the ring.

[. INTRODUCTION

N A TOKEN RING network, access to the channel is

controlled by a form of distributed hub polling in which
permission to transmit messages rests with the current
holder of a reserved symbol, called the idle token (or
simply “token”). To transmit a message, a station must 1)
wait for the arrival of the idle token from its inbound
channel; 2) take control of the channel by substituting
another symbol called the busy token (or “connector”) on
the outbound channel; 3) transmit its message(s), sepa-
rated by busy tokens; and finally, 4) release control of the
channel by regenerating another idle token on the out-
bound channel.

The network protocol governs the number of messages a
station holding the token may send. The usual protocols
may be grouped into three categories. Ordinary service
limits each station to transmitting just one message before
giving up the token. Gated service allows the station to
transmit all messages that were ready for sending before
acquisition of the token but none that became ready while
the token is held. Exhaustive service allows each station to
empty its buffer of messages before passing on the token.
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Although the usual protocols are fair in the sense that
each station is treated statistically identically, usually no
attempt is made to deliver messages in the order in which
they arrive to the system. A station located unfavorably
with respect to the token may be forced to wait while
intermediate stations deliver messages out of turn.

In this paper a new access rule for local area token ring
networks—which, for reasons explained later, is called
helical window service [1]—is introduced. This protocol
controls possession of the token, and hence access to the
channel, with a window. The protocol is fair in the sense
that it will deliver messages on a networkwide first-
come-first-served basis, at least up to the resolution of the
window size. The helical window token ring is interesting
from a theoretical standpoint because the introduction of
the window uncouples the message queues at the individ-
ual stations. This greatly simplifies the analysis of the
protocol.

The operation of the helical window protocol is de-
scribed in Section II. In Section III, the protocol is ana-
lyzed for both the continuous (infinite population) and the
discrete (finite population) cases, yielding exact expres-
sions for the message waiting time statistics. Section IV
derives parameter settings for maximizing capacity or for
minimizing mean delay. Section V gives the results of a
computer simulation verifying the theoretical analysis, and
in Section VI the helical window system is compared with
the continuous polling systems analyzed in [2], [3] and
finite population token rings with ordinary, gated, and
exhaustive service, as analyzed in [4]. Conclusions are
given in Section VII. We have also included an Appendix
in which we analyze a particular class of “moving server”
queueing systems; the results are used in the main portion
of the paper but may also be of independent interest.

II. DESCRIPTION OF THE HELICAL WINDOW
TOKEN RING

The evolution of a ring network through time may be
represented on the surface of an infinitely long hollow
cylinder in space—time, with the boundary of a circular
cross section of the cylinder representing the spatial extent
of the ring and the longitudinal axis representing time.
Events such as message arrivals and deliveries occur at
discrete points on the surface of the cylinder. In a token
ring network, the motion of the idle token in space and
time describes a continuous curve on the cylinder surface.

An object moving around the ring at constant angular
velocity would describe a helix of constant pitch in
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space—time. (See Fig. 1.) Such a helix would partition the
time axis, as viewed from any particular station, into a
sequence of equal-length segments that we will call win-
dows. The helical window service allows each station seeing
the idle token for the kth time to transmit only those
messages that arrived during the kth window. Thus a
station located at position ¢, on a ring of circumference ¢
and holding the idle token after its kth pass may transmit
all messages whose arrival time ¢ satisfies

Co Co
(*g+k—2)w<t$(7+k*l)w (1)

where w is the length of a window.

J—

: token trajectory in space-time
. window boundary

+ . message generation point

Fig. 1. Helical window token ring represented on surface of cylinder in

space-time.

The movement of the idle token in the helical window
token ring differs from that of the usual token ring sys-
tems. The idle token moves around the ring at one of two
different speeds, depending upon its position with respect
to the leading edge of the window. When the idle token is
caught up with the leading window edge, it moves around
the ring (with speed ¢/w) at the same rate at which the
window advances. When it stops in space to allow a
particular station to transmit, the idle token falls behind
the window. When the transmitting station regenerates the
idle token, it will again circulate around the ring, only at a
greater speed (nc/w,n>1) to catch up to the leading
window edge. Once it has caught up with the window,
possibly after having stopped to allow the transmission of
some additional messages, the idle token reduces its speed
from nc/w to ¢/w. When the idle token has stopped to
service a customer or is traveling around the ring at rate
nc/w, we shall say that the system is backlogged.

The motion of the idle token can also be described in
analogy with the classic cyclic repairman problem. In the
latter problem, a repairman is confronted with a popula-
tion of machines along some closed tour [2]. Here the
repairman is analogous to the idle token. The window can
be described by the motion of a “dispatcher,” who moves
around the tour at a constant rate. Whenever the dis-
patcher encounters a newly broken machine, he marks it
with his tour iteration number. This repairman initially
moves in step with the dispatcher. However, after stopping
to repair the first broken machine (requiring some service
time) the repairman falls behind. In an effort to catch up,
he speeds up by a factor of 7 but still continues to stop
and service broken machines, repairing, however, only
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those machines tagged with his own tour iteration number.
If he encounters a machine tagged with a number greater
than his tour iteration number, he defers repairing it until
he has completed enough tours. Eventually, if the ma-
chines fail at a low enough rate, the repairman will catch
up with the dispatcher again. When this happens, the
repairman once again slows down to move in step with the
dispatcher.

In Fig. 2, the cylinder has been “unrolled” into an
infinite two-dimensional strip. Station positions are repre-
sented by the symbol /, plotted along the horizontal axis. /
is periodic in the ring circumference so that, for n an
integer, / and /+ nc correspond to the same station with
message arrivals in different windows. Time ¢ is plotted
along the vertical axis. The area bounded from above (and
containing) the line ¢ = wi /¢ and bounded from below by
the line ¢ = w(//c —1) represents the surface of the cylin-
der and hence contains all message arrival points. The two
boundary lines also represent the helical window edges.
The motion of the idle token is described by the dotted
curve. The channel is said to be busy whenever the idle
token has stopped, i.e., when the idle token trajectory is
vertical. When the idle token is moving, the channel is idle.

t !
\: e : message arrival point
idle token trajectory __\ 1/
[ ) )
t=w(lic-1)
[ I TR o—Y—i(—/ '
slope w/c —— L
W
.
busy | idle -
channel c=1 1; !
activity
o o
Fig. 2. Two-dimensional representation of helical window token ring.

Observe that the definition of the helical window access
rule—namely, that a station holding the idle token for the
jth time should transmit exactly those messages (if any)
whose arrival times fall within the jth window—is inde-
pendent of any particular message arrival process, message
service time distribution, or the particular distribution of
stations in the network. However, the analysis of the
performance of the protocol depends critically on these
factors.
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Practical Considerations

In spite of our seemingly unrealistic assumptions, the
implementation of the helical window access rule in a real
token ring network is straightforward. As discussed in [5]
with reference to the operation of virtual time carrier sense
multiple access (CSMA), this type of window-based access
rule is robust in the face of inaccurate time keeping at
various stations.

It is not hard to modify a token ring system to allow the
idle token to circulate at one of two speeds. Inactive
stations (i.e., those that have crashed or been taken off
line) can simply allow the data on the ring, including idle
tokens, to pass by unhindered, in the usual way. Similarly,
the active stations follow the usual token ring protocol,
with the following exception. Following the notation of
(1), assume that at time ¢, , the idle token arrives for the
kth time to a station at position ¢, on the ring. In this
case, upon detecting the arrival of an idle token on the
incoming channel, the station starts a “rest period” on the
outgoing channel of duration

€o
max{(—#—k—l)w—tovk,O},
¢

thus delaying the apparent arrival of the idle token until
the completion of the corresponding window. Thereafter,
the station continues in the usual way, either by releasing
the idle token, since it now knows there will not be any
messages to send in the current window, or by transmitting
a busy token, the message(s) scheduled for transmission in
the current window separated by busy tokens, and finally
an idle token.

The implementation of “rest periods” on the outgoing
channel can be done as follows. If tokens are represented
as reserved bit strings [6], then the rest periods can be
created using variable length tokens. Thus instead of using
1% and 170 to represent idle and busy tokens, respectively,
we could use 17*/01 and 17*/00, where j is any nonnega-
tive integer. Notice that the minimum length token is 1 bit
longer than before (or that bit stuffing, to prevent the
appearance of a token in a message, must be done 1 bit
carlier) and that the delay at each ring interface must be
increased to two bit times. Alternatively, it is possible to
create tokens that are of the same duration as a single bit
time using violations of the standard Manchester encoding
for data bits [7]. In this case, since the complete token fits
within the 1-bit delay in the station’s ring interface, it is a
simple matter for the station to “remove” the idle token
and output ordinary data bits for the duration of the rest
period.

There are several obvious performance improvements to
the above access rule, most of which are trivial to imple-
ment, but which we will not consider to simplify the
analysis. These include 1) moving the rest period to the
end of the transmission period (if any) and 2) avoiding
the rest period altogether by taking the window size to be
the minimum of the constant w and the current backlog
of the algorithm at this station. Both improvements reduce
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the delay for those messages that are waiting to be sent
when the idle token arrives “ahead of schedule” because
they avoid the rest period. In addition, the delay for
subsequent messages is also reduced, since the amount by
which the idle token falls further behind the leading edge
of the window is the difference between the (sum of the)
message transmission time(s) and the length of the rest
period. Unfortunately, either improvement adds significant
complexity to the analysis, since each introduces a depen-
dence between the arrival process (i.e., the number of
messages at each station waiting for the next arrival of the
idle token) and the state of the system (i.e., the lag of the
algorithm).

III. ANALYSIS OF SYSTEM TIME

In this section we analyze the performance for homoge-
neous symmetric systems in which the number of stations
may be either finite or infinite (i.e., ‘continuous’ polling).
In our analysis we assume, without loss of generality, that
the message service time x has mean ¥=1, ie., time is
measured in units of mean message service time. Further-
more, we will assume that the ring circumference ¢ is
unity, i.e., lengths are measured in units of ring circumfer-
ence.

In the discrete (or finite population) case, N stations are
regularly spaced around the ring, so that the ith station is
located at position /;=i/N, i € {0,---, N—1}. Messages
arrive independently at each station at rate G/N. The
number of messages that arrive during an interval of
duration ¢ is Poisson distributed with parameter Gt/N.
This implies that messages arrive independently at the
system (considered as a whole) at rate G according to a
Poisson process.

In the continuous case, we let N —oc to obtain an
infinite population system where stations are uniformly
distributed along the ring circumference. System message
arrivals form a two-dimensional Poisson process with a
mean number G messages arriving per unit surface “area”!
of the cylinder in Fig. 1. Letting n(A4) represent the
random number of messages that arrive in an area A on
the cylinder, the probability density function of n is

e 19(A4G)*

Pln(4)=k] = e

Moreover, messages arrive independently in disjoint re-
gions of the cylinder.

With any collision-free protocol in equilibrium, the rate
at which messages are delivered must equal the rate at
which they arrive. Thus the throughput S, defined as the
mean number of messages delivered per unit time, is equal
to the arrival rate Ge, where ¢ is the ring circumference.
Since ¢ is equated to unity, we have the simple result

S=G. )

'Here “area” is the product of a spatial length and a temporal length.
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In the following analysis we assume that the protocol
operates in equilibrium so that (2) holds.

A. Decomposition of System Time

Consider the ith message arrival point (/;, ¢;) in Fig. 2.
We shall define the system time T, for this message as the
total time it spends in the system. The system time consists
of four components (see Fig. 2):

T, window delay, or time elapsed wl; —t; between the
" arrival of the message and the end of the window in
which the message arrived;

T, server delay, or time elapsed between the end of the
message arrival window and the arrival of the idle
token on the correct tour iteration;

T, queueing delay, caused by the service of messages
that arrived at the same station during the same
window and before the tagged message. (Notice
that, with probability one, T, is zero in the continu-
ous system.)

X, message service (transmission) time, is characterized
by its probability density f,(x) and the correspond-
ing moment generating function ®_(s), defined as
the Laplace transform of f.(x):

2.(5) 2 [ “f(x)e dx.

f.(x) may be any positive probability density with
mean X =1. To ensure that the higher moments of
T exist, all derivatives of @ (s) at the origin must
also exist. Thus

=T, +T +T, +x,.

We assume that the service of different messages are
statistically independent and independent of the operation
of the network. T, and T, depend on the message arrival
process at a single station within a single window and are
independent of the operation of the ring. T, depends only
on the service times of messages encountered by the idle
token before reaching the position of the ith message
arrival point on the correct tour iteration. Thus since the
arrivals from disjoint intervals are independent in a
Poisson process, T, + T, T,, and x; are mutually inde-
pendent random variables so that knowledge of their
marginal density functions is sufficient to obtain a com-
plete description of T,. And since all stations are identical,
the equilibrium statistics of 7, are the same for all stations.
For this reason, we shall henceforth suppress the sub-
scripts identifying the ith message arrival, except when
necessary.

B. Window Delay Plus Queueing Delay

Since the arrival process is Poisson, T, is uniform in
[0, w), hence

fr(t) = {1/w, t,€[0,w) (3)

0, otherwise

629

is the probability density function of T,. We will tem-
porarily define the random variable m as the number of
messages that arrived before a randomly tagged message
within an arrival window. Since messages arrive at rate
G/N with Poisson density, the distribution of m condi-
tional upon the window delay T, of the tagged message is

Pm|Tw(i|tw) £Plm=iT,=1,]
= e GO t/N[G(w—1,)/N]'/it. (4)

Given that m =i, we may write
i
= Z X (5)
j=1

where x; are the service times of the i messages ahead of
the tagged message in the station queue. Let fr. . (¢]i) be
the probability density function of T, given that m=1i.
From Bayes’ theorem, we may obtain the joint density
function

qu,m,Tw(tq’ )= fr|m T,

Observe that f; . T, =fr Im since, given m, a priori know-
ledge of T, is unnecessary to determine the distribution of
T,. Thus

mm, 'frw-

qu,Tw(tq’tw) =Zfrq|m=i‘Pm|rw'fTw~ (6)

From the joint density of T, and T,,, we obtain the density
of their sum,

o0
frw+rq(4’) :f frq,rw(‘!’ - YvY) dy,
— o0
and the moment generating function of their sum,

Op ()2 [ frr($)e Py,

Recognizing from (5) that CI>T|M ;= (®,), since the mes-
sage service times are mdependent we obtain, after substi-
tution of (3) and (4) into (6) and some manipulation,

er(@,(:)'l)/N — 5w

—e€

(DT”‘*T‘i(S) N Gw(®,(s)-1)/N+sw’

From ®; , ;(s), we may obtain the moments of T, + T,.
In particular, the first moment

d
E[Tw+ ]-——hmo T+T()
w(G
=—(—;+1)
2\ N

where X is the mean message service time. The second
moment may similarly be obtained:

2

d
2 .
E[(Tw+ Tq) ] = }TOFQT“‘+T4(S)
L P Gwx?
= +—x[1+—=%||+
3" Nx( Nx) IN
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The variance of this component of the system time is then

. wl( G \* Gwx?
Of,+1,~ E(l— —ﬁx) + N
In the continuous case, where T, =0, these results may be
simplified to obtain @ (s) = (1— e*")/sw, E[T,]=w/2
and o7 =w?/12, respectlvely

C. Server Delay

In a moving server queueing system [5], [8], a server
traverses an infinite tour along which he encounters cus-
tomers requiring service. As shown in the Appendix, it is
trivial to obtain the delay characteristics for a moving
server system, given the corresponding results for a related
“synthetic” queueing problem, provided the latter problem
can be solved. To obtain the moment generating function
of T,, we will show that T, may be viewed as the waiting
time in a moving server queueing system.

The moving server queueing system is obtained from the
helical window token ring by projecting the message ar-
rival points, idle token trajectory, and window edge helix
from Fig. 2 onto an “arrival time” (a-)axis, obtained by
scaling the /-axis by a factor of w/c (changing the units
from distance to time). A point (/, ) in Fig. 2 is mapped to
the point w/ on the a-axis. (Recall that ¢=1.) Thus a
message arrival at (/,, ¢;) in the helical window token ring
is mapped to a customer arrival at a, = wl, in the moving
server queueing system. The result of this projection is a
moving server system with Poisson arrivals at intensity G
in which the server (the projection of the idle token)
“moves” along the arrival time line at unit speed (the rate
of advance of the projection of the window edge helix), if
he is not backlogged; otherwise, he is either stopped (serv-
ing a customer) or moving at the accelerated rate 7.2 The
waiting time in the moving server system is identical to the
server delay T, in the helical window system.

Analyses of the mean delay in moving server queueing
systems based on our transformational approach have
appeared in [5], [8]. However, the presentation in the
Appendix extends the method to show that our approach
holds for the distribution of delay and not just its mean.
The basic idea is that any moving server queueing system
can be transformed into a corresponding central single-
server synthetic queueing system by inflating each service
time by a factor of 8 to account for the server walking
time, where

LT
.3=n—_T- (7)

If we can solve for the waiting time W, in the synthetic
queueing system then we will also have solved for the

1t is interesting to observe that this moving server system is identical
to the one that is used in [5], [8] to estimate the initial delay (until the first
transmission attempt) for virtual time CSMA. Indeed, if Fig. 2 is modi-
fied by mapping message arrival points to the end of the window (i.e.,
(4, ;) = (I;, a;)), we obtain the identical mapping from arrival times to
transmission times as shown in [5, fig. 2].
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waiting time in the moving server queueing system, since

(8)

Continuous Case: In the continuous case, the synthetic
queueing system is an M/G /1 queue with arrival rate G,
service time X = Bx and server utilization 5 = 8Gx. Hence
the moment generating function of W, obtained from the
Pollaczek—Khinchin transform equation [9], is

0, (s) = s(1— BGx)

s—G+GPO(Bs)’
The moments of W may be obtained either by differentiat-
ing ®;(s) at the origin, i.e.,
d’
E[W/]= lim (=1)"—5®,(s)
or from the Takécs recurrence formula [9, p. 201] and the
first moment of W

E[W | _#S
(W1=85 156
Using (8), we may obtain all the statistics of 7, from the
statistics of W. Specifically,
s(1- BGx)
P (s)=

: s—BG+BGO, (s)"

is the moment generating function of 7,, and

BGx?
ElT]= 2(1- BGx)
BGx
N )

are the mean and variance of T,, respectively.

Discrete Case: In the analysis of the discrete case, we
will follow the same approach as in the continuous case
and transform the system into a synthetic single server
queueing system. However, now customer arrivals can only
occur when the window boundary (or, in the terminology
of Section II, the “dispatcher”) is at a station position,
which happens periodically once every w time units, where

w2 w/N. 9

Because of our assumption of homogeneous stations gener-
ating Poisson traffic, customer interarrival times in the
moving server system have a geometric distribution, with
probability

=1-e¢ /N (10)
of encountering a customer at each station position. Fur-
thermore, each “customer” in the synthetic queueing sys-
tem no longer corresponds to an individual message, but to
a nonempty bulk arrival of messages that were generated
at a single “busy” station during a single window. Letting
a, be the number of messages contained in the ith such
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bulk, we have

-Gw/N(Gw/N)j

Pla, —J]_P(J)_‘WW)T,

Jj=1
Since we assume that the message lengths are independent,
the conditional service time distribution for the ith cus-
tomer given that a;= j, f, , (b;]j), may be found as the
J-fold convolution of the message length distribution.

Solution of the synthetic queueing system in the general
case is difficult because it combines a geometric arrival
process in discrete time with a general service time distri-
bution in continuous time. However, we shall restrict the
service time for each message so that its expanded service
time Bx is a multiple of w, the discrete time unit for the
arrival process, so that the synthetic system reduces to a
geometric/G /1 queue in discrete time. This restriction is
equivalent to requiring that the backlog of the token
always be cleared at a station position.

To solve for the waiting time W in the synthetic system,
it is convenient to use w as the elementary time unit, so
that

T,= /. (11)
In this case, the transformed service times satisfy
Bx
¥=—=k, k€{1,2,---}
w

and are characterized by a nonnegative discrete probability
distribution with discrete moment generating function
X(z), which satisfies

X(e 9/8) = (s).

Let b, with discrete moment generating function ﬁ(z),
be the service time for a customer in the synthetic system
(corresponding to the total service time for all packets in
the bulk arrival at a busy station). Then

B(z)4 i Plb=i]z

8

= L RO E Pli=ia= ]2

j=1

P(j)X/(z)
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The mean transformed service time of such a bulk is
.. GwE[¥]/N

Since the synthetic system is a geometric/G /1 queueing
system with probability p of a customer arrival at a
(discrete) arriyal point, service time b, and server utiliza-
tion = pE[b], the moment generating function for the
waiting time is given by [10, p. 230]

- 1-5)(1-:
70PN
pB(z)—z+1-p
Substituting from (10), (12), and (13), we obtain
- 1-GwE[%|/N)(1-:2
ey = Lo GUELE/MY1—2)
e w(X(z) 1)/N._Z
Now, using the fact that ®(s)=W(e /%), &=px/0,
and w=w/N, we obtain
(1- BGx)(1— e~s"/M8)
®7,(s) = (B~ DGw/N _ ,—sw/NB

From ®,(s), we may obtain all the moments of 7,. In
particular, the mean is

BGx? Gwx
E[1]= 2(1- BGx) 2N’
and the second moment is
) BGx?
E[(1,)’] =2E7[T,]+ W
wx
(1 2,8Gx)[E[T]+W
Thus the variance of T, is
3
of = E*[T,]+ 3(13_0#_)
Gwx
(1 2BGx)l 7]+ 5 |

Notice that the expression for the mean and variance of 7,
are increasing functions of N and that they reduce to our
previous results for the continuous case as N — co.

D. System Time

er(X'(z)—l)/N_e—Gw/N i o .
= ) (12) Let us now obtain the statistics for the system time T.
1—e Gw/¥ Since x, T,, and T, + T, are independent random vari-
ables, we have
1-e7*)(1- BGx
o.(s) ( ) ) , Neo
®.(s) sws — BG + BGD (s5)] (14)
s 1
T o ( ) (eGW(‘I’x(S)—l)/N_ eAsw)(l —BGE)(I- efsw/NB) N
xS (Gw(®,(s)—1)/N + sw)(e(@:(I"DGw/N _ o—sx/Ng) > =
w Gx?
E[T]=x+—=+ A (15)

2 " 2(1- BGx)
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and
5 " w? ) 2Gx 1 1
= 4+ —1-—1=- —
T % T N NB

)" s | 86
4 1-BGx 3 |1-pgex’

(16)

E. Population Invariance of the Mean Delay

Observe that (15), the expression for the mean system
time, is independent of N, the number of stations in the
system. This implies that the system capacity is also unaf-
fected by N, and we obtain the same capacity in both the
discrete and continuous cases.’ That this invariance should
hold can readily be seen from the following constructive
argument.

Clearly, the window delay T, and service time x are
unaffected by N; therefore, to show the invariance it
suffices to show that { £ E[T,+7T,] is the same in both
cases. Notice that, providing a steady state exists, { can be
found from any sample execution trace as

1 K
lim — Z (8, —«)

§ K-ow K i=1
where a, £ wl, and 8, represent the times at which the ith
message observes the completion of the window and enters
into service, respectively. From each sample execution
trace for the continuous case we can construct a corre-
sponding execution trace for the discrete case with N
stations by mapping (/;, ;) = (//, a/) in the following way.
Each arrival position /,€[j/N, (j+1)/N) is mapped to
the discrete arrival position /] = j/N, corresponding to a
station location. The corresponding window completion
time «, is mapped to a/ =wl/. The service order in the
discrete system is preserved by the mapping. Due to the
uniformity of the Poisson arrivals, the mapping reduces a
by w/(2N) on average. The key step is to observe that this
mapping also reduces §; by the same amount on average,
thus leaving { unaffected. To see this, we proceed in two
stages. First, we note that the average starting time of each
“busy period” (during which the token is continuously
backlogged) is also reduced by w/(2N) on average, due
to the mapping of the arrival time of its first message
to a discrete arrival time. Provided the message service
times satisfy the restriction required for the discrete analy-
sis—that each inflated service time be an integer multiple
of the discrete time unit w = w/ N —the ending time of the
busy period will also be shifted by the same amount on a
average. Thus distinct busy periods in the continuous case
will remain nonoverlapping in the discrete case. Next, we
see that the average difference between the start of the

*Note that this result is a mathematical idealization. In an actual
implementation, increasing the system population increases the ring cir-
cumference ¢ due to the necessary bit delay at each station.
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busy period in which the ith message arrives and the start
of its own service is unaffected by the mapping. This result
follows because, in both cases, this difference represents
the sum of the service times for all messages that are
served before the ith message within the same busy period
(which is preserved) and of the time for the token to
advance (at rate n/w) from the position at which the busy
period started to the location of the ith message (which is
the same on average). This completes the proof of the
invariance.

IV. OPTIMIZING SYSTEM PERFORMANCE

Two parameters may be tuned in the helical window
token ring, namely w and n. From Section III-A, clearly
only the server delay T, depends on %, and we see by
induction from (A.2) in the Appendix that T, is a mono-
tonically nonincreasing function of n for every k. Thus,
for fixed w, we should always choose n as large as possi-
ble, subject to the physical constraint that the maximum
speed of the idle token is limited to v revolutions of the
ring per unit time, i.e.,

w

= l_/v . (17)

n

Thus it remains to find the “optimal” value of w.

The system capacity C is defined to be the supremum
over all attainable values of throughput for which the
expected message system time is finite. From (15), we see
that the mean system time has a singularity at G =1 /8X,;
hence, from (2) and (7) and using the fact that x is
normalized to unity, the capacity of the helical window
token ring is

1
C=1--—. (18)
n
Thus, for the mean system time to be bounded, we require
from (18) that

1

n>1TG—’

(19)
where it is assumed that 0 <G <1.

If the optimization criterion is to maximize capacity,
then we should let %, and hence w, grow arbitrarily large.
However, recall that the fairness of the access rule (i.e.,
that the order of message transmissions is approximately
global first-come—first-served, up to the resolution of the
window size) depends on choosing a small value for w;
thus we see that fairness and high capacity are conflicting
goals.

Finally, if the optimization criterion is to minimize the
mean system time without regard to fairness, we must find
values of n and w satisfying (17) and (19) such that (15) is
minimized. A global minimum is attained at (n,w)=
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(mg, Wy), where

1+ (v622) "

T T 6k
1+(UG;i)l/2 )
M T a-6x) (20)

V. SIMULATION RESULTS

Fig. 3 is a plot of mean system time versus arrival rate
for the helical window system with Poisson arrivals as
analyzed in Section III. The service time was fixed at unity
and the maximum token speed v, was fixed at n/w=3.

100 T
. . ! i
- ‘ |
4 n=is | n=3.0 n=13.0 :
50 i P i
I
3 ! ! 4
. ; ®
] i | :
¢
7 \ §
o 2 4 ¥ ﬁ
‘ !
’ J !
10 - ! $ /

|

Mean System Time (T)

5

1 Q’\ /
¢ /
¢ ’ /

}é /3/779"//

o —

— /ﬁ
Jol
o

Simulation Results |
|
2 J !

/ i [} N=e |

e | [n] N=4 !

o i A N=§ |
- ‘ * i N
o | N
N

A

®

\
L. W

i T T T T
0 0.2 04 0.6 0.8 |

Arrival Rate (G)

@

Fig. 3. Comparison of analysis and simulation of mean system time

versus arrival rate for v =7 /w = 3.

Curves for n=1.5, n=3, and 7 =13 are plotted. Analo-
gous curves are included in Fig. 4, except that the maxi-
mum token speed v has been reduced to 0.5. Observe that
at low arrival rates, the mean system time is dominated by
the window delay since, for large values of 7, the system
time is almost proportional to 1/v. At arrival rate values
approaching the system capacity (which is independent of
v for a given value of w), the mean system time is
dominated by the server delay, caused by the token back-
log. The mean delay at low arrival rates may be decreased
by decreasing w, but at the expense of a lower system
capacity.

A computer simulation of the helical window token ring
was performed, and simulation results for both the infinite
population and various finite populations are plotted in
Fig. 3. The simulation values agree well with the analyti-
cally obtained values. This is not surprising since no ap-
proximation was made in the analysis, i.e., the results are
exact.
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Fig. 4. Comparison of mean system system time performance of helical
window token ring with token rings under ordinary, gated, and exhaus-
tive service. Dotted curve displays performance of helical window
system using optimal parameter settings. (a) Constant service time. (b)
Exponentially distributed service time.

VI. COMPARISONS

In this section, the system time characteristics of the
helical window token ring are compared with symmetric
finite population token rings as presented in [4] and con-
tinuous (infinite population) polling systems as presented

in 2], [3].
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The mean system time (waiting time + service time) for a
symmetric token ring network is given by [4]

G_2+1 1+GE
* v N _
+x

1
2f1-6(x+

E[TN.o] =

vN

for ordinary service, and
et (162
TN _

+
2(1- G¥) *

E[TN‘g«e] =

for gated (+) and exhaustive (—) service, respectively.* As
N — o0, E[T,] converges to

— 1
Gx*+ —
_ v _
E[Tw]‘—“zu—cg) + X, (21)

a result also obtained by Ferguson [3].

Fig. 4(a) is a plot of mean system time versus, arrival
rate for constant service times and v =10.5. The corre-
sponding plot for exponentially distributed service times is
shown in Fig. 4(b). The curves labeled n=1.5, 3, and 13
display the performance of the helical window system. The
dotted curve represents the performance of the helical
window system using the optimal values of 7 given by
(20). Curves representing the performance of finite popula-
tion symmetric token rings with ordinary, gated, and ex-
haustive service for N =4, 8, and 16 are also plotted. The
performance of the infinite population (continuous polling)
system is also shown.

Fig. 4 shows that the mean system time of the helical
window system is greater than the continuous polling
system and finite population token rings with gated or
exhaustive service. This result is not too surprising since
the token does not always travel at maximum speed but
moves slower when it is not backlogged. This increases the
average walk time and hence the mean system time. Ob-
serve, however, that the mean system time of the helical
window system may be less than the finite population
token ring with ordinary service. This result is not surpris-
ing, since the helical window system admits the possibility
of serving more than one arrival per station in a window.
When the message arrival rate is high, so that the probabil-
ity of encountering more than one message per station in a
window is high, a smaller mean system time results.

Limiting Behavior

In Fig. 5 the ratio of the mean system times for the
helical window system and the continuous polling system

“We have omitted a term of 1 /2v in these expressions that explicitly
accounts for the mean propagation delay from source to destination,
assuming that the destinations are uniformly distributed around the ring.
Instead, following [2], we have implicitly included this component in the
service time.
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Fig. 5. Ratio of mean system time in helical window system and mean
system time in continuous polling system with both constant and
exponentially distributed service time.

are plotted versus arrival rate for various values of v. Both
constant service times and exponential service times are
shown. The mean system time of the helical window sys-
tem is obtained by substituting the optimal values of 7
and w given by (20).

We observe that the mean delay of the helical window
system approaches that of the continuous polling system as
v becomes large. Indeed, in the limit as v — oo, we obtain
(21) from (15). This behavior is to be expected since, in the
limit, both systems become M/G/1 queues. The differ-
ence between the systems, however, is that the helical
window system will provide service on a first-come—first-
served basis, while the continuous polling system, in gen-
eral, will not [2], [3]. Since the variance of delay is mini-
mized with the first-come—first-served queueing discipline
[11], we would expect the variance of the helical window
system to be lower than that of the continuous polling
system, for large values of v.

Fig. 6 is a plot of the ratio of the variance of system time
in the helical window system and the variance of system
time in the continuous polling system against message
arrival rate, for various values of v. The variance of system
time for the helical window system is obtained by using
the values of n and w given in (20), which optimize mean
system time, and not the variance. The variance of system
time for the continuous polling system is given by [3]

., O (3~Gf){(GF)2+(GF)(Gi)(1—G;)}
LTkt 3(2- G%)(1 - Gx)?

* 3

. (1/1;)2+6(1/U)GF—3((;;?)2
12(1- Gx)?
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Fig. 6. Ratio of variance of system time in helical window system and
variance of system time in continuous polling system with both con-
stant and exponentially distributed service time.

We see that as v increases (and the walk time of the ring
decreases), the variance of system time in the helical win-
dow system indeed becomes smaller than that of the
continuous polling system, especially for large message
arrival rates.

VII. CoNcCLUSION

A new access rule for token ring local area networks has
been described and analyzed. The access rule employs a
window to determine which messages the token-holding
station may send. The window has two major effects.

1) The introduction of the window improves the fairness
of the system over the usual gated and exhaustive service
disciplines. This is because the helical window access rule
makes an explicit attempt to deliver messages on a sys-
temwide first-come—first-served basis, at least to the extent
of the resolution of the window.

2) The introduction of the window uncouples the queues
at the various stations. This decoupling leads to an exact
analytical characterization of the message system time
statistics for two important special cases, using only the
tools of elementary queueing theory.

Exact formulas for the mean, variance, and moment
generating function of the message system time were ob-
tained for both the continuous and the discrete case.
Higher moments are readily available from the moment
generating function. Computer simulation of the helical
window token ring showed close agreement between the
simulation statistics and the values predicted by the analy-
sis.

The helical window token ring network was compared
with the usual token rings with ordinary, gated, and ex-
haustive service [4], and (infinite population) continuous
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polling systems (2], [3]. The results of the comparison are
as follows.

1) The mean message system time is greater in the
helical window system than in the token ring networks
with gated and exhaustive service or the continuous polling
system. However, for some combinations of system param-
eters, and especially at high message arrival rates, the
mean message system time in the helical window system
may be smaller than the corresponding delay in the token
ring network with ordinary service.

2) For small ring walk times and/or large message
arrival rates, the variance of message system time in the
helical window system may be smaller than the corre-
sponding variance in the continuous polling system.
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APPENDIX

In a moving server queueing system, a server traverses an
infinite tour along which he encounters customers requiring
service. A particular class of moving server queueing systems is of
interest in the analysis of several systems [5], [12], [13] including
the helical window token ring. In this class, the server moves
along the tour at one of two different rates depending upon his
position with respect to some constantly advancing reference
point. When the server is caught up with the reference point, he
advances in step with it; when he is behind (because he had to
stop to serve a customer) he speeds up by a factor of 5,7 >1, to
catch up. In what follows, we shall normalize rates so that the
speed of the reference point is unity.

The random variable of particular interest in these systems is
the difference between the time the advancing reference point
encounters a customer requiring service (which we will call the
arrival time) and the time the server encounters that customer.
We shall refer to this random variable as the moving server delay
W. In this Appendix we will show that, by a suitable transforma-
tion of the moving server system, an ordinary single server
queueing system is obtained in which the waiting time is propor-
tional to the moving server delay.

Consider the sequence of customer waiting times
WO w® ... in an ordinary first-come-first-served single
server queueing system. Assume that x*) and A*) are the
service time for the kth customer and the interarrival time
between the (k —1)st and kth customers, respectively, the distri-
butions of which are unimportant for our present discussion.
Clearly,

W"‘)=max{W““”+x(*‘”—A‘“,O}, (A.l)
since the kth customer enters service at either the (k —1)st
customer’s departure time or at his own arrival time, whichever
occurs last.
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Now consider a corresponding sequence of moving server
delays W® W™ ..., in a moving server queueing system.
Clearly, W) =0 if and only if the moving server has caught up
to the reference point when he encounters the kth customer.
Otherwise, the kth customer must wait until the (k —1)st cus-
tomer’s departure time (so the server can start moving again),
and then for enough additional time for the server, walking at
rate 0, to reach the k th customer’s arrival time, namely, A%/,
Thus

W = max{ WD 4 xk=D — g0 4 400/ 01 (A2)

Comparing (A.1) and (A.2), we see that waiting times in a
moving server system contain an extra term corresponding to
“scan time” overhead, where a customer’s entry into service may
be delayed even though the server is not offering service to any
customer. Unlike most models of queueing systems with vaca-
tions, this overhead is proportional to (rather than independent
of) the corresponding customer’s interarrival time.
Define

_n
-1

lie

B (A3)

to be a constant that depends on the moving server’s speedup
factor . Multiplying both sides of (A.2) by B and recognizing
that — A% + 4% /=~ 4 /B we have that

BW® = max{ B, 4+ Bxk=D — 40 0} (A.4)

Notice that after a change of variable from 8W (" to W', (A.4)
has exactly the same form as (A.1) and thus represents the
relation between successive customer waiting times in a synthetic
queueing system. The synthetic queueing system is an ordinary
queueing system that has exactly the same sequence of interar-
rival times AV, 4@, ... as the moving server system, but each
customer’s service time has been proportionally increased from
x*) to Bx'¥), respectively, compared to the moving server sys-
tem, and there is no scan time overhead. Since W = M 2 ¢,
the above observation implies that

W —w g (A5)

must hold for all k: and since this correspondence holds for each
customer taken individually, it must hold for the mean and
distribution of the waiting time in the two systems as well. Hence
(A.5) allows us to compute the statistics of waiting time in the
moving server queueing system from those of the synthetic queue-
ing system.

The increase in service times that results from transforming a
moving server system into a corresponding synthetic queueing
system has an interesting physical interpretation. Recall that
while the server stops to offer service to some customer, he is
being left further behind by the reference point at rate unity;
whenever the server is moving at rate 7, he is gaining on the
reference point at the rate of 7 —1. Thus, to maintain his relative
position with respect to the reference point over the long run, the
system must satisfy a “global balance” condition, which states
that the server must spend 1/(n —1) time units moving at the
accelerated rate for every time unit spent serving a customer. One
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way to accomplish this would be to impose a “local balance”
condition, where we define the kth customer’s service time to be

)
(k) (k) (k)
=Ky = gyk)
n—1

the sum of his actual service time together with enough scan time
overhead for the server to regain his former position with respect
to the reference point.® In the synthetic system, we assume that a
customer’s entire service time is served without interruption,
while in the moving server system, the component corresponding
to scan time overhead is preempted if the server encounters
subsequent customers in his walk. .

Note also that since no assumptions about service or interar-
rival time distributions were made, the above method—where the
analysis of a moving server system is transformed into the
corresponding synthetic queueing problem—applies equally well
to discrete and continuous time systems.
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