,,dress Consultant
faster. In addztzon our algomthm is more general, be-

“tions:at-an -intelligent switeh’;eontroller.
‘i an ATOMIC network is. a Mosaie’ ch1p [4];:which

An Improved Topology Dlscovery Algorlthm for Networks with Wormhole Routing
. and Dlrected Links

 Ying'Yi Huang'

‘Department of Computer Science
“University of California
Riverside, CA 92521

Abstract

: We propose a new parallel topology dzscooery al-
gorithm._ for irregular, mesh=connected- networks with

wnidirectional links and wormhole routing. -An’ algo-
“rithim of this type was developed for the ATOMIC high

speed local area network to avoid the need for manu-
ally updatzng rontzng tables. “Similar needs may ariseé
in wireless networks where channels may be unidirec-
tional because of limited transmission power, multi-
path, and similar effects. Like the ATOMIC topolog,y
discovery algorithm, our algorithm accumulates’ @ b’p
of the network at a dzstznguzshed ‘node called the Ad-
However, our algomthm 18 much

cause it can correctly resolve topologzes thot contain
multzply connected rodes.. We zmplem nted both algo-

rithms n a concurrent szmulatwn ENVITO ment and

tested them on a variety of topologzes '4
Keywords:: Wormhole Routmg, “Non- Symm tric Nét-

Eworks Topology’ Drscovery, Dlstrrbuted algorlthms

1 Intreduction . Bt L.
The ATOMIC network#[1} is-a-novel"high-speed
LAN that was developed by USC/ISE ATOMIC differs
from traditional LANs-(Ethernet; Tokén Ring, etc.)
because it -allows arbitrary mesh-connected topologies,
and-supports parallel transmission of -distinct mes-
sages over disjoint paths. ATOMIC differs from: tra-
ditional LANs because it does:not support broadcast
delivery to all nodes at the physical layer. Conversely,
ATOMIC differs from ATM LANS by allowing variable
length messages (i.e., normal Ethernet-frames, where

-the lengths may vary by a factor of 20)-and in dis-

tributing its ‘medium-access control functions:among
the end stations instead of centralizing:those . func-
.Fagh node

*The prOJect is partlally supported by a Computer Sc1ence
research fellowship from the University of California, Riverside.

1095-2055/97 $10.00 © 1997 IEEE

98

Mart L. Molle

Deparytment’ o‘f"‘(’j‘omputer Science
‘University of California.
_ Riverside, CA 92521

was originally designed as the processing element for
a. ﬁne—gram message-passing, massively- parallelf com-
puter system In effect, ATOMIC takes a mas”_‘ vely—
parallel Mosalc computer drstrrbutes its Processors
around a bulldmg, and programs its nodes to act as
a hlgh—speed LAN that supports varlable length:mes—
sages.

Because of the de31gn of the Mosalc ﬂ;processor
and .the manner in which they can be connected in
ATOMIC, an ATOMIC network can exhibit some un-
usual graph:theoretic properties. First, the communi-
cation links are fundanientally unidirectional, so that
network links will in general form a directed graph.
We say that a network is ~symmetric if every lik from
node A to node B has a matching reverse link from
B to A (ie., the network is an undirected graph);
otherwise, 1t is non- symmetmc For example, the up-
per and lower-right network: conﬁguratlons in Figure
1 are symmetrlc but the lower-left network configu-
ration 1§ non=§ymmetric. In general non—symmetrrc
ATOMIC networks can arise either from link failures
or from intentionally choosmg to. connect cables m a
non-symmetric pattern

Non-symrmetric links may also be a consideration

-for :other applications. For example, small VSAT. ter-

minals generally do not have enough power to, transmit

-on.-the satellite uplink at anywhere close to. the same

rate as the downlink [5], andin some recent, consumer-
oriented systems [6] the return link uses.a d1SJ01nt path
through the telephone network: Similar: hybrid net-
work topologies.have also been proposed for utlhzmg
the cable television system .In addition, mobile com-

- puters. connected +40..a narrow band ground radlo sys-
-tem (suchias [3]) may be unable to transmit data back

to:allithe. stations . from which they can receive data

-+ fromy because of power limitations (1f one statlon Is a

mobile battery powered device and the. other isa per-
manent base:station), localized sources of background
noise, and multipath 1nterference



5 |

Symmetric and Consistent

T

NON:Symmetric, Consistent

Symmetric, NON-Consistent

Figure 1: Possible network configurations.

In addition to non-symmetric links, the ATOMC
network is also unusual because wormhole routing is
used. Thus, the routing algorithm must identify which
port (and not just which node) is the starting point and
ending point for a given link. In particular, wormhole
routing is basically combination of source routing and
cut-through switching, except that messages are not
normally buffered at an intermediate node. Each mes-
sage begins with a routing tag that might say: “Go n;
steps in the X direction, then turn left and go another
no steps in the Y direction.” As the head of a message
arrives at some intermediate node, the first element of
its routing tag is decremented. If the first element
reaches zero, the message may require extra handling
such as a change of direction, or perhaps delivery to
the node processor. However, if the first element in the
routing tag is still non-zero, then the message is im-
mediately forwarded one more hop in the opposite di-
rection from which it arrived without any involvement
of the nodal processor. In particular, the Mosaic chip
has four input and four output ports, labelled North,
South, East and West; if a message arrives on the East
input pert, say, with n; > 1, it will immediately be
sent out the West output port. We say that a link
is .eonsistent if the input and output ports to which
it .is connected have opposite labels, i.e., a link that
leaves one node from its North output port should ar-
rive at the destination node at its South input port. It
is important to note, however, that there is no intrin-
sic reason why links must be consistent. For example,
Figure 2 shows that a link that starts from the outgo-
ing ‘East port of node 1 may in general arrive to any
of the input ports at node 2.

Taking advantage of consistency is very important
for minimizing the latency and processing overhead
associated with the delivery of each message under
wormhole routing. This is because continuing some
extra steps in the same direction always has a very
low cost, whereas changing directions may require the
entire message to be buffered at that node, which adds

99

the latency of a store-and-delay and creates a bottle-
neck to the nodal throughput due to the speed of the
Mosaic memory.! Thus, for proper routing decisions
the routing algorithm must know the input-and out-
put labels for each link and not just the identities of
its starting and ending nodes.

2 The Topology Discovery Problem

The first step in the routing algorithm in ATOMIC
is for one distinguished node called the “Address Con-
sultant” (AC) to invoke an algorithm that allows it to
gather topology information about the network, which
includes finding all of its nodes, and identifying the
source and destination nodes along with the associ-
ated input and output direction labels for all links.
The topology discovery problem in ATOMIC is fur-
ther complicated by the fact that the Mosaic proces-
sors do not have a built-in unique hardware address,
so the AC must assign a unique label to each node as
it is found. Once the algorithm terminates, the AC
has a complete map of the network topology and can
determine the routes from any node to any other node.
Moreover, during the execution of the algorithm, all of
the other nodes will learn the route to the AC, which
they consult as a name server whenever they need to
determine a route to another node.

To increase fault tolerance, any host may become
an AC if it cannot find one in the network. In a large
network, it may make sense for multiple ACs to be
running in different parts of the network so that re-
quests from hosts need not, travel large distances to get
to an AC, and to reduce the computational complex-
ity and storage requirements at each AC. However, in
this paper we examine the case where there is only one
AC in the network.

2.1 The ATOMIC Algorithm

The topology discovery algorithm currently used by
the ATOMIC network is shown in Table 1. In the first
phase, all nodes cooperate with the AC to flood all the
links in the network with Probe messages, travelling
one hop at a time away from the AC. Each Probe
message accumulates the path it followed after leav-
ing the AC, encoded as the sequence of output labels it
has traversed so far. Eventually, these Probe messages

1In ATOMIC, minimum latency routing is almost equiva-
lent to minimizing the number of elements in the routing tag.
However, it is interesting to note that, because the Mosaic chip
was designed to support a specific row-column routing algo-
rithm for regular two-dimensional grid networks, there is no
cost penalty for changing from the X direction to the Y direc-
tion. This feature encourages designers of ATOMIC networks
to include Y — X inconsistencies to reduce the number of store-
and-forward delays in a path.



(a ) Address Consultant State“Machme o

Imtzal State e Send a Pr be: message wrth aknullf_y,
routing ‘tag: to all cutgoing links.:: Di
reetion:Probe message t0: all outgomg links. Go: to...
:Mapping State. -
~ Mapping State — For each Probe or a, Loop mes-

sage, “eheek “each ‘node* ot ‘any ‘new path: segments *

Send-a

by :sending -4 Label message: and - waiting.for ‘its

Respond message to see if it.is a-new node.. For each
Direction message, or Direction - Probe message .
addressed to-the -AC, create. a Dlrec’mon ;H Vndler for. -

thislink. -

(b) Ordlnary Node State Machme

Imtzal State = When ﬁrst Probe messag

a Lioop message

rection Probe message t0- all output links, ( ) Send

and (e) Go to Connected State

Connected State — For each. Label message send a.
negative Respond message, including your, ex1st1ng ,
node -label; .to. the AC. For each Probe message, .
convert it toa Loop message. and send unmedlately to.
the.AC..For:each: Direction Probe message, convert: -
it to a Direction message and send.immediately to:

the AC.

(c ) Dlrectlon Handler State Machme

Waiting State — Wart for the return’ of llrectlonf,
message for- the ‘given link,; the Respond ‘message:
that returned after sending a Probe message aeross

the  given’ link;" and ‘the: Respond message: that

returned after sending a-Probe message over thelink

from’the probéd ‘node to thé'node that returned the
Direction message for this linik. wApply the d1rect10n
ﬁndlng method Shown in F1gure 2 o

Table 1: s‘me' Mschiné Deseription of the ATOMIC
Topology Drscovery Algor'thm “(Because of wormhole

routing, we ignore all. rn'essage passrng through the

current node on their way to another destmatlon J e

ibdse currently unlabelled and ‘gives it a

e arrives,. -
send & copy. on each output . link after appendmg the

output direction: to- the -current routmg tag Goito .

- Probed State.. g Gt
Probed State- — For each Probe message store 1t as -
For .each. Direction. Probe: mes-
sage, store it-asa Direction message..When a-Label -
message arrives; then:- (a).-Aceept. the node label: and; .
store ‘the return path to the-AC, (b} Send. a. positive:.
‘Respond message 10.the:AC; (¢)-Send a 2-hop Di-

intersect a prev1ously—probed part of. the network (ini-
tially just the AC itself) where they are held as Loop
messages until they can.be, returned to the AC,

In-the second phase ‘the AC-examines the stored
routes in'the i 1ncom1ng Loop messages o d1 new
path fragments, which are used to expand its-map of
the network.” In1t1ally, the AC labels: itself as niode
0, and thereafter, each time a new path fragment is
found, the AC -queries each-node in sequence along
the new path fragment to estabhsh 1ts~1dent1ty -More
precisely, the- AC sends a Label message to- ‘each node
along the new path fragment in sequence, which offers
to assign:the next unused node. label to that node af

to.the AC. The destmatron node: sendsvback a Re- -
spond message. to the AC to indicate that the node
accepts. the new. node label .or. to: tell the,ACl what. 1s
its. existing. node label Us1ng this 1nforma‘r1on”the*:
AC updates its map, to include the starting n '
bel, ending node label and output‘_,d ectio

each link in the: newly drscovered path fragmen

The third ‘phase of the algerithm isused to deter—:»t
mine the inpiit direction by which each link arrivesat:-
its destination node. Fitst each newly-labelled node;

N sends’ a'message to its'one-hop neighbors+n-all di=+ -

rections; giving'its own node label-and the outgoing-
direction taken by this one-hep message:: For exam-
ple; with reférence to Figure 2, such a message would:

- inform node 4 that it is the West neighbor.of -node

2. ‘(Note that these messages are:not returnied to the -
AC,*which already:learned this:information through a
Label/Respond ‘transaction- in phase-2:)~ Thereafter,
node N uses wortnhole routing ‘to deliver atwo-hop:
Direction Probe message to each’ of its=twoshop
neighbors in a fixed direction (i.e., no “turns” in the
ro'ute). Each of the recipient nodes, R;holds its mes=:
sageuntil it has been labelled by the AC; at which:
point R 'sends a Direction message to the AC that
contains the ‘source node label,  IV; the original out-:
going “direction; -and its ‘own' node label; R. > Using-
thig'inforrmation; the AC is now able to-detéermine the
incoming- direction of ithe link  from’ N to Ri-Given
the-starting hodé, NV and the: original outgoing: di-
rection, theé AC can use its-map from phase; 2-toide~
termine the intermediate node:I through which the-
Direction - Probe message must have travelled-to reach
R.=Thus; since-messages passing through:an .inter-:
mediatecnode:come.and:go from-opposite ports under
wermhole routing,:the -AC: concludes. that the-input
direction from-node -N-to-node: I-must be the output

" to-the output direction from node I to node. R; awhieh,

160

is‘given in'the phase 2 map.-Figure 2 shows how this



Msg. will arrive at Node 5.

5]
(Y N 7 P P g [E

Msg. will arrive at Node 4.

Msg. will arive at Node 6.

Figure 2: Finding the input direction from node 1 to
node 2.

direction handler works. For example, if the two-hop
Direction Probe message sent from node 1 through
node 2 ends up at node 3, and node 3 is the East
neighbor of node 2, then the link from node 1 must
have arrived at node 2 from the West.

2.2 Some Weaknesses with the ATOMIC
Algorithm

The ATOMIC topology discovery algorithm has
two major weaknesses. First, it is very slow because
much of the algorithm is sequentially executed by the
AC. Indeed, only the initial distribution of Probe
messages involves any significant parallelism: a node
can only advance from the Probed state to the Con-
nected state through a Label/Respond transaction,
and these transactions are executed seguentially as
the AC checks each link in a newly discovered path
fragment. That is, the AC sends a Label message
containing a unique node label to a specific node on
the new path fragment, and then waits for the node
to return a Respond message before issuing the next
Label message. This is done so the nodes can all be
assigned unique labels during the topology discovery
process, since the AC does not know whether or not
the target node of a particular Label message will ac-
cept the new node label until it receives its Respond
message. Worse still, these sequential labelling trans-
actions must actually cover every edge in the graph
once, and not just every node once, so the running
time of the algorithm is at least O(E).

The second problem involves the inability of the
input direction finding algorithm to handle multiple
links connecting the same pair of nodes. To see this,
consider the example shown in Figure 3, where mes-
sages sent through the North output port from node
A reach node B after one hop, and reach node C' after

101

—

A

'ni c]

=1 T

bl

Figure 3: In order to find the input direction of the
A, B link, node A must send a 3-hop probe message
through B to node D.

two hops. Since nodes B and C are multiply con-
nected, i.e., node C is both the North and East neigh-
bor to node B, we cannot determine from the given
information if the input direction to node B from node
A was from the West or South. Fortunately, the am-
biguity in this case can easily be resolved if we notice
that a three-hop message sent by node A through its
North output port reaches node D. Since D is the
East neighbor of C', the continuation of the path from
node A to node B must include the link from node B
that reaches C' from the West.

2.3 A New Parallel Algorithm

The new parallel topology discovery algorithm is
shown in Table 2. This algorithm is dramatically
faster, and uses significantly fewer messages, than
the ATOMIC algorithm. These performance improve-
ments come about because of the following observa-
tions.

First, the nodes can label themselves during the link
flooding procedure in phase I. That is, since the out-
put ports on each node are distinguishable (as North,
South, East and West, or perhaps as First, Second,
Third, etc.), each routing tag relative to the given
AC uniquely identifies the destination node. In other
words, a node can choose the routing tag it finds in
any incoming phase I message as its node label, and
still be assured that no other node in the network can
choose the same label. Thus, in our algorithm each
node labels itself with the routing tag of the first mes-
sage to arrive in phase I, so we “promote” the phase I
message type to become a Label message.

The second observation is that the nodes don’t need
to inform the AC of their choice of node labels, since
the AC can deduce this information at no cost by ex-
amining the incoming Label messages from phase I
and returned Loop messages from phase II. This is
true because the outbound wave of Label messages
in phase I stops as soon as it intersects a previously-
labelled node, at which point the messages are held
until they can be returned to the AC as Loop mes-
sages in phase II. Thus, during phase I every Label
message that gets forwarded by a given node must
contain its own node label as a prefix of the outgoing



(a) Address Consultaht -S.tatewl\/[achiné:“ .

Initial State— Send a’Label message with a null rout-
ing tag followed by a a 2-hop Direction Probe mes-
sage to all outgomg links. Go to Mapping State.

Mappmg State — For each Label or a Loop mes-

sage, identify the new path segment as L new: links-

separated by I — 1 new nodes, and add them all to
the network map. I L > 1, send a Return Path
message with node count L —1 to the first new node.
For each Direction message, ot a Direction Probe

message addressed to the AC create a Dlrectlonf

Handler for thls hnk

(b) Ordinary Node State Machine:

Initial State — When the ﬁrst Label message arrives,

accept its routmg tag as the node label. For each out—
put link, extend the routlng tag by one hop in the cor-
respondmg direction and send the revised Label mes-
sage followed by a two—hop Dlrectlon‘ Probe message
out that link. Goto Labelled State. '

Labelled State — For each Label message store it as a

Loop message. For each Direction ‘Probe message,

store it as aDirection messagé: For ‘each Notice
message; increment the hop count for that link and
send another Direction’ Probe. When a Return

Path message arrives, then: (a) Store the return path*

to the AC, (b) Decrement the hop count and either
throw the message away -if it: reaches zero or remove

the first ‘step ‘from’the return path, and send it -one:

hop ini that direction,’ “(¢)‘Send all stored Loop and
Direction messages to the AC and ( ) Go to Con-
nected State. ° :

Connected State — For each Notice message, inere-
merit the hop count for that-link and serd ‘another
Direction Probe message. For each Direction
Probe message, convert it to a Dlrectlon message
and send 1mmed1ately to’ the ACH o

(c) Direction Handler State Machlne

Wiiting State — Wait for the return of Direction’
message for the given link, and enough Label and’

Loop messages to determine-the: neighboring: nodes

and- apply the direction finding method shown inFig-

ure 2. If the’ 1nput direction at’ the last hop cannot
be determined becausenodes are multiply connected;
increment - the number of hops ‘required *and send ‘a
Notlce message to the source node Otherw1se stop:

Table 2 State Machme Descmptlon of the: Parallel—
(Messages in transit:

Topology Discovery: Algorithmi..:
to other nodes are ignored, due to wormhole routing.)

162

routing tag, and hence that every preﬁ:c of the ‘routing
tag for-a Label message that either: . - "

e returns on its.own to the AC durlng phase I or

e is being held at an‘intermediate node as a Loop
message until phase II

must-be: the chiosen node label of the correspondmg
node. In other words, the set of routing tags generated
in this way is consistent in the sense that the set of
links where: the sourcé node label is a prefix of the
destination node -label forms an outbound ‘spanting
tree rooted at the AC. Moreover, each of the remaining
links in the network. -appears as the “ﬁnal hop” in some
loop message. )

At the moment when each Label message returns
to the AC during phase I, we can identify a new cycle
in the graph; usingits reuting tag; in which-each'node
knows its own node label;-and: the:AC now:knows-all
oftheir node’labels. - However; none -of these nodes
yet knows the return-path: to-the A€, and the AC-
knows nothing aboeut the:subordinate loops for which -
the routing tags are being held as Loop messages at
one of these nodes. Thus, our new parallel algorithm’
also requires second phase in which the AC tells each
node about a return path to the AC: However our
phase I is “done | in parallel using plggybaCKed mes-:
sages, based on a third observation about the problem
dynamlcs namely that the new mformatzon contained
in each Label or Loop message that returns to the
ACisa smgle path fmgment of known length In’ other
words:

‘e:in the ﬁrst to—return Label message the entnre~
. ~path is:a-new: path fragment and: :

® in each subsequent Label or Loop message the
lremamder of the path startlng from the point
. wheré it d1verges from prev10usly mapped paths
k and ending at. the point where it either returns to
“the AC or.is held as.a Loop message is a new

_ path fragment

Thus, ‘unlike the ATOMIC algorlthm ‘which 1isesa se-
ries of individual Label/Respornd transactions to check
each newly discovered link, our new parallel algorithm
sends & single plggybacked Return Path miessage
over the new path fragment. The message is initialized"
to contain the return path to the AC: relative to the
first node on the new path fragment, togéther with
a“count of the number new nodes in-the path frag--
mient, and is then sent’ dlrectly to the first node 6n”
the new pathfragment via wormbhole touting! There-
after, as the Return Path message reaches each of



Al C

Figure 4: The input direction of AB cannot be found.

A B C

Figure 5: The input direction of AB can be found.

the new nodes along this new fragment, it saves the
complete return:path for its own use, decrements the
node count and:throws the message away if it reaches
zero, and finally deletes the first step from the return
path and uses it to select the outgoing link on which
to forward the. message to the next node. Once the
Return Path message has been taken care of, the
node then sendg any saved Loop messages directly to
the AC via wormhole routing.
2.4 Handling Multiply Connected Links

The remainder of the algorithm involves finding in-
put directions. Input directions are important under
wormhole routing,. since messages can be sent “di-
rectly” to a destination n hops away in the same direc-
tion without store-and-forward packet switching de-
lays at the intermediate nodes. Thus, it is important
to know if the path from node A to node C looks
like Figure 4, where wormhole routing cannot be used,
or like Figure 5, where it can. Fortunately, both the
ATOMIC algorithm and our new parallel algorithm
can find the input direction in Figure 5, where it is
needed by the AC to decide that a wormhole path
exists from node A to node C.

~As described above, the normal case is handled by
sending two-hop Direction Probe messages out each
port, which eventually get forwarded to the AC by
the recipient as Direction messages. However, un-
like the ATOMIC algorithm, in our case the nodes
can send the Direction Probe messages right after
they send the Label messages in phase I, since they
already have their node labels. In addition, our al-
gorithm handles multiply connected nodes using the
technique described in section 2.2, where the AC re-
solves the ambiguity by sending a Notice message to
the source node, requesting it to send another Direc-
tion Probe message with the target set one more hop
away. Thus, our algorithm can resolve the input di-
rection at node B in Figure 6, whereas the ATOMIC
algorithm canmet. (Moreover, neither algorithm can

103

EE

Figure 6: The input direction of AB can be distin- -
guished by our algorithm, but not the ATOMIC algo-

rithm.
oG

Figure 7: The input direction of AB cannot be distin-
guished by any algorithm.

handle the case in Figure 7 — although the answer
is unimportant since there is no way to use wormhole
routing any further than node D anyway.) In gén-
eral, our algorithm can resolve the input direction if
there exists an n-hop path, n > 2, in which the last
hop is singly connected. In this case, the source node
will eventually receive a Notice message that triggers
an n-hop Direction Probe message, which allows
the AC to resolve the input direction at the last hop,
from which the other input directions are found by
backtracking.

It is worth mentioning at this point that the only
difference in the final result of executing our new
parallel topology discovery algorithm instead of the
ATOMIC algorithm is in the node labels, which are
fixed-length consecutive integers in the ATOMIC al-
gorithm, and variable-length routing tags in our algo-
rithm. For example, since the ATOMIC network has 4
outputs per node, we could encode the addresses as bit
strings, using two bits per hop. However, ATOMIC-
style consecutive integer node labels are easy to put
into our algorithm without using any additional mes-
sages. Recall that the AC already knows the exact
number of new nodes and their respective self-assigned
node labels on each new path fragment as soon as it
receives the corresponding Label or Loop message.
Thus, the AC could reserve the required number of
new node labels for that path fragment and inform
each node of its new label via an additional field in
the Return Path message. The AC simply initial-
izes the field to the new node label for the first node
on the path fragment, and thereafter, each new node
increments the field before passing it one more hop
along the path.



3 Expemmental Results
Both topology d1scovery algorrthms were tested
using a detailed simulation: model, which® was con-

structéd using:the SMURPH-nétwork-siyniilation-en-":
<The SMURPH-environment:is;optiz:::.
mized for simulating network protocols by emulating: -

vironment 2]

" the physical transmission of data over: various- links

between independently. executing hosts. . Thus, our
SMURPH model involves deﬁmng the network topol-
‘ogy and prografnniing each host ‘to follow the proto-
cols given in “Tables 1. and 2. The correctness of the
simulation was ensured by adding various sanity-check

' assertions about the global state of the system into the
code. Tn addition; a separate pro; rarn Was' developed :
to verify the output to make sure that network map:
produced by the AC, including the nodes; edges and- -

input/output directions, matches the actual topology
of the network. :

Using . the s1mulat10n model varlous experrments,;'

rwere conducted for three kmds of graph

. Grld graphs ThlS is a regular 4—connected graph

_similar to the original’ Mosaic t ology. Graphs

from twenty nodes to two hundred nodes were'v

. tested

e Random’ sparse graphs:’

. one-output. port) under the restriction that both

ports cannot belong to the same node Then we.
connect them to form a link w1th probablhty 0.5.
Graphs from twenty nodes to two hundred nodesi‘
. were tested For each node size, s1x graphs Were,
generated and the mean executlon t1me is shown

,o Random dense graphs'
) hnk is connected with' probablhty 0: 5.
Mean tlme of dense graph usmg new alg

17000

Godo L T E T

CUs0po R T

time"”

4000 f- g

13000 |

iig000 S AR
0 50 100 150

node. number

- We ‘make - onie 'pass-
through the set of all ports, arbitrarily selecting
pairs of ports (consisting of one input port and’

Same as above: ‘but each:

200,

200000

150000. |-

100000

time

50000 -

100 150 200
ST pode nGmIBEr T e s un

M anttvirne'ovbeparse grraﬁhU‘éihg;newei@‘. s

7110000,
-£+8000-1
. -
E 6000
TTEM000 it
<45, 2000" = o o
: s 2 50 100 ¥ 150
" node number- . - -

Mean time of sparse graph usmg old alg

200000 S ;

180000 |
[ R = NN
£ 4100000 i T
+27800007 F =2
9 T T L N ET e .
"0 F50 SHOQ T R BT 200000
L node number: ..

In each test both algorlthms Were Tun on exactly;
the same set of graphs and for each graph th _elapsed
srmula ion time: (assummg 1t takes one- trme unit for
a. packet to. travel one hop) ‘the otal nurn‘ '

© sages generated by the. _protocol, and the tota, nuymber‘

104

of hops:travelled by all messages were, recorded We’
found. that the major difference. between the two al-
gorlthms was speed, with our new parallel algorlthm



running at least ten times faster than the ATOMIC al-
gorithm. This improvement was expected, because the
new algorithm eliminates the serialization bottleneck
in the ATOMIC algorithm due to the Label /Respond
transactions (see Sections 2.2 and 2.3). This speed
advantage is even more remarkable when you consider
that the timing for our algorithm also included the
relatively-expensive additional steps for handling mul-
tiply connected nodes.

4 Conclusion

We have presented a new parallel topology discov-
ery algorithm for directed networks with wormhole
routing. Qur algorithm is much faster than the one
developed for the ATOMIC project, mostly because
our improvements eliminate an obvious serialization
bottleneck that is present in their algorithm. In addi-
tion, our algorithm includes a number of more subtle
refinements, such as piggybacked delivery of informa-
tion from the AC to a sequence of nodes, early trans-
mission of direction probe messages, and the general-
ization of the direction finding algorithm to properly
handle nodes with multiple connections.

It is interesting to note the significance of the seem-
ingly minor decision to use routing tags as node la-
bels. Even if we ignore the serialization bottleneck,
this change reduces the time until a node is labelled by
an entire round-trip delay (i.e., the time for the Probe
or Loop message to return to the AC, followed by the
time for the AC to send a Return Path message back
to the node). Similarly, because of the change the AC
does not need the Label/Respond transaction to iden-

tify (and possibly assign a label to) the nodes on a

newly discovered path fragment. Of course, sequential
integer node labels are more convenient than variable
length routing tags, but we can easily add that type
of node label to the algorithm without any additional
messages.

105

Although we believe that our parallel topology dis-
covery algorithm is quite efficient, there are still some
interesting extensions possible that we plan to explore.
As the size of the network becomes very large, cen-
tralizing the routing functions in a single AC may be-
come unmanageable. Moreover, if more than one AC
is used, having each one map the entire network is
very inefficient. Thus, we plan to investigate meth-
ods for partitioning the topology discovery problem
amongst multiple ACs. In addition, since network
topology changes may occur from time to time, we
plan to study efficient techniques for incrementally re-
mapping the network in response to topology changes.

References

[1] R. Felderman, A. DeSchon, D. Cohen and G. Finn,
“ATOMIC: A High-Speed Local Communication
Architecture”, Journal of High Speed Networks,
Vol 3(1), pp.1-30 (1994).

[2] P. Gburzytiski, Protocol Design for Local and
Metropolitan Area Networks, Prentice-Hall, Engle-

wood Cliffs, New Jersey, 1996.
[3]

Metricom, Inc., The  Ricochet Wire-
less Network Overview, URL:

http://www.ricochet.net/ricochet/netoverview.htmi.

C. I Seitz, N. Boden, J. Seizovic, and W. Su, “The
Design of the Caltech Mosaic C Multicomputer”,
Proceedings of the Washington Symposium on In-
tegrated Systems, Seattle, WA (1993).

[4]

W. Stallings, Data and Computer Communica-
tions, Fifth Edition, Prentice-Hall, Englewood
Cliffs, New Jersey 1997.

URL:

(6] WebTV Home Page,

http://www.webtv.net/wtvnet. html.



