Optimal Distributed Algorithm for Minimum Spanning Trees Revisited

Michalis Faloutsos*and Mart Mollet

Abstract

In an earlier paper, Awerbuch presented an innovative dis-
tributed algorithm for solving minimum spanning tree (MST)
problems that achieved optimal time and message complex-
ity through the introduction of several advanced features.
In this paper, we show that there are some cases where his
algorithm can create cycles or fail to achieve optimal time
complexity. We then show how to modify the algorithm to
avoid these problems, and demonstrate both the correctness
and optimality of the revised algorithm.

1 Introduction

Given an undirected graph G with N nodes and E edges,
with weights assigned to each edge, we want to find a span-
ning tree for which the combined weight of all its edges is
minimized, denoted an MST in the sequel. Furthermore,
we want to use a distributed algorithm to find that MST by
placing a processor at each node and treating each edge as
a bidirectional and error-free communication channel, over
which the nodes can exchange messages among themselves.
We assume that initially, all nodes of the graph are “awake”
but none of them has any special status (nor are any of
them aware of the network topology except for their ad-
jacent edges) so we cannot simply send all the information
about G to a distinguished node that solves the problem and
broadcasts the answer to the rest of the graph. Fortunately,
our task is made easier because it is well known that the
MST problem can be solved by a “greedy” algorithm, which
can generate an optimal solution without backtracking.
For the general graph, the distributed MST problem re-
quires at least Q' (E 4 N -log(N)) messages, where we count
the transmission of one message across one edge as our unit

* University of Toronto, Dpt. of Computer Science, Toronto M5S
1A4, Ontario, Canada. mfalou@cs.toronto.edu. Supported by the
University of Toronto through the UofT Open and the Connnaught
scholarship programs.

TUniversity of Toronto (formerly) and University of California at
Riverside (currently), Dept. of Computer Science, Riverside, CA
92521. mart@cs.ucr.edu. Supported by the Natural Sciences and
Engineering Research Council of Canada under grant #A5517.

IWith € we denote the lower bound of the asymptotic complexity.

of “cost”. In addition, there are graphs where the time com-
plexity is at least () assuming that each message delivery
takes one time unit. Recent research in the area suggests
that the diameter of a network is a more accurate parame-
ter for describing the time complexity [GKP93]. However,
it was also proven [SB95] that a tighter bound for the termi-
nation time of the algorithm [GHS83], presented below, is
O((D +d) -log(N)), where d is the diameter of the resulting
MST and D is the maximum degree of the nodes. Since the
algorithm we present is based on this algorithm, the time
complexity of our algorithm has to be of the same order,
if not better. For the rest of this paper, we will consider
O(N) to be the optimal time bound and leave the resolution
of this argument to future research, since we have reasons to
believe that our algorithm will be of competitive complexity
independently of the way optimality will be defined.

1.1 Basic Algorithm of Gallager, Humblet and Spira

In their pioneering paper [GHS83], Gallager, Humblet and
Spira introduced the distributed MST problem and pre-
sented an algorithm that has formed the basis of subsequent
work in the area, for example [CT85], [Gaf85], [Awe87] and
[Fal95]. In their algorithm, each node is initially the root
of its own fragment (a trivial connected subgraph of the
MST) and all the edges are Unlabeled.

Thereafter, adjacent fragments join to form larger frag-
ments by labeling their intermediate edge as a Branch of
the MST. The new branch is chosen by the root of one (or
possibly both) of the fragments, as the minimum outgo-
ing edge (or MOE) for the entire fragment. This frag-
ment MOE is determined by broadcasting an initiate mes-
sage to all nodes in the fragment, asking them to send a
report message with their local MOE to the root (Find-
ing procedure). Each node determines its local MOE by
testing its Unlabeled edges, minimum weight first, until it
finds one that leads to another fragment (Testing proce-
dure). Any edges that are found to connect to nodes in
the same fragment are labeled as Rejected, and are subse-
quently ignored. Each node gathers the reports of its chil-
dren and reports the minimum MOE found by itself or its
children (Reporting procedure). Finally the root sends a
change Root message to the node adjacent to the MOE, ap-
pointing it as the new leader of the fragment. The leader
sends a connect message along that edge and joins with the
other fragment.

Even the basic algorithm presented in [GHS83] contains
several subtleties. First, each fragment has a level, L, in
addition to its unique fragment identifier, F. The fragment

levels are used to make fragment joining less symmetric,
so that certain types of “one-sided” joins can be permitted
without the risk of forming cycles. If two adjacent frag-
ments discover that they share a common MOE and wish to
label that edge as a branch, then it is clear that the result-
ing “two-sided” join can be permitted because the combined
fragment will still be a subgraph of the MST. However, since
fragments operate asynchronously (and edge testing, MOE
selection and joining are neither instantaneous nor atomic),
“one-sided” joins create the risk of forming a cycle as one
fragment tries to label its MOE as a Branch while the adja-
cent fragment tries to label another edge as a Branch, and
S0 on.

Rather than reducing parallelism by delaying each join
until it becomes “two-sided” (a situation we refer to as an
equi-join), they permit a fragment F' at level L to do a
“one-sided” join along its MOE as long as the level of the
adjacent fragment is greater than L (a situation we refer
to as a submission). All fragment levels are initialized to
zero, and thereafter at each join the higher level replaces
the lower one in a submission while both sides increase their
level by one for an equi-join. Thus, the level can reach at
most log(N) when the algorithm terminates.

Another noteworthy feature involves reducing the re-
quired number of messages by having a node delay its re-
sponse to any test message arriving from a fragment with
a higher level than its own, since that other fragment will
not be allowed to initiate a join with our fragment until our
level increases.

It can be shown (e.g., [GHS83]) that the message com-
plexity of this algorithm is O(E + N - log(N)), and hence
optimal. However, its time complexity is O(N -log(NN)) and
hence not optimal.

MOE of F, MOEof £ MOE of

Figure 1: Bad case example.

We now present a pathological test case that we refer to
as the bad case example, which for this basic algorithm
(and all the others based on it) exhibit their worst perfor-
mance. There is a chain of fragments Fi, ..., Fr (as shown
in Fig.1) with respective levels L; < Ly < ... < L,, and
r >> 1. Furthermore, assume that these fragments are con-
nected with their MOE edges in such a way that F} submits
to F3, F> submits to F5 and so on without the previous (in
line) fragment participating in the Finding procedure of the
following one. We can assume that F) is of greater level and
absorbs all these fragments, or that it equi-joins with F,_;.
We can notice that it will take a long time for an initiate
message from F, to arrive at Fj. (In particular, we will see
in the complexity section that the MOE reporting procedure
for the whole fragment will take a long time to complete, in
comparison to the level of the fragment.)

Now suppose that an outgoing edge of a fragment (F, L)
connects to the fragment (F1, L;) such that L > L;. Be-
cause of this level difference, F; delays its answer to the
test message from F. Thus F' waits for a “very long” time
(i.e., until all nodes of the chain of fragments are traversed)
before it can complete its Finding procedure. If F' joined fi-
nally with the chain, then it would get a great level increase
and it would be compensated for the delay. However, this
is not guaranteed, since F' could end up joining with some
other fragment F, and get a very small level increase.

1.2 Awerbuch’s Optimal Algorithm

In [Awe&7], Awerbuch proposed an innovative three-phase
distributed MST algorithm, which achieves optimal perfor-
mance in terms of both message and time complexity. The
different phases represent a tradeoff between the demands
of the initial part of the problem (involving large numbers
of small fragments, where limiting the number of messages
is most critical) and the final part of the problem (involv-
ing small numbers of large fragments, where limiting the
execution time is most critical).

In the first Counting phase, Awerbuch’s algorithm de-
termines the total number of nodes, N, after building an
unweighted spanning tree using a simple O(E + N -log(N))
message and O(N) time algorithm. The second phase starts
to build the MST by following the basic [GHS83] algorithm,
described above. However, as the fragments grow larger,
they switch to a more complicated phase 11l algorithm as

soon as their sizes reach ﬁ. The estimation of the size

is done trivially in the reporting procedure; all nodes that
report are counted.

Awerbuch’s third phase differs from the basic [GHS83]
algorithm through the addition of two new procedures de-
signed to limit the time between level increases. Recalling
the bad case example, above, both procedures aim to in-
crease the level in a long chain, with one of them working
outwards from the root of a large but low level fragment, and
the other working inwards towards the root from a distance
subfragment.

First, the Root Distance procedure ensures that the
root of a level L fragment will never be blocked for longer
than O(2%*!), waiting for local MOE responses from all
nodes in its fragment. The Root Distance procedure solves
the problem by adding a hop counter initialized to 2°+!
to the outgoing initiate message, which is decremented by
one at each hop. Should it ever reach zero, we say that
the message has ezpired and require that node to send an
explInit message to the root which restarts the MOE search
from the next level.

The second new procedure in phase three of Awerbuch’s
algorithm is the Leader Distance procedure.> This pro-
cedure limits the time that a fragment that has submitted
to its neighbor (and hence is no longer independent) can be
blocked at its old level if the root of the other fragment is
very far away (recall the bad case example). In particular,
the Leader Distance procedure allows a submitted fragment
currently at level L to increase its level within time O(2L+1‘ ,
no matter how far it is from the new root. Similar to the
Root Distance procedure, a testDistance message, contain-
ing a hop count initialized to 2%*! is sent towards the new
root. Fach node along the path decrements the hop count.

2 Awerbuch used the name Test Distance, but we feel that our
name makes the description of the revised algorithm clearer.

If the count hits zero before the message reaches the new
root, an acknowledgment is sent back to the fragment, trig-
gering a level increase. Otherwise, the testDistance message
is discarded when it reaches the new root and the procedure
stops. The symmetry of the two procedures is apparent.
We can now go back to the bad case example (Fig.1)
and see that Fy will be updated using the Leader Distance
procedure, and will reach I “faster”, and thus F will have
an answer to its test message sooner and thus avoid getting
stuck at an edge that may not be its MOE, say e; in Fig.1.

1.3 Some Flaws in Awerbuch’s Algorithm

In studying Awerbuch’s algorithm, we found several issues
where the descriptions were either incomplete or incorrectly
specified. Consequently, there are some cases where this
algorithm, as it is described in [Awe87], can fail by creating
a cycle, or at least fail to achieve optimal time complexity.

First, in the proof of optimal time complexity, it is as-
sumed that after each minimum-level fragment has found its
MOE, they can submit or equi-join in constant time. Since
[Awe87] does not specify a new policy, we must assume that
the algorithm has inherited the fragment joining policy from
the basic [GHS83] algorithm. Unfortunately, the joining pol-
icy in [GHS83] does not satisfy this assumption, even if the
fragment(s) are of minimum level. As a counterexample,
observe that the last fragment in a long chain of minimum
level fragments, each submitting to its neighbor, could wait
an arbitrarily long time before receiving an answer to its
connect message.

/7N submisson
 reporting

~=_, TesDisance

Figure 2: Leader Distance failure

A second issue related to time complexity involves a
boundary case where the Leader Distance procedure fails.
Recall that after the fragment Fy has submitted to a node,
w, from the adjacent fragment F», Fi uses Leader Distance
to force timely level increases while it is waiting for an
tnitiate message from the new root. But suppose that node
w has already reported its local MOE to the root, r, of F»
before the Fi submits, so Fi will not simply be absorbed
into the ongoing MOE search in F,. Furthermore, suppose
w happens to be close to r, so the testDistance message
from F) reaches r with a positive counter, before F» has
completed its reporting procedure. In this case, r discards
the test Distance message, which terminates the Leader Dis-
tance procedure for Fi. Consequently, if r later decides to
submit to fragment F3, F3 submits to F4, and so on, the
distance from Fi to the new root may be huge — leaving Fi

without a level increase for a very long time. Since Awer-
buch’s proof of time optimality requires level increases to
occur on schedule, the Leader Distance procedure obviously
needs some refinement.

The third problem is a correctness issue. The level in-
creases for blocked fragments obtained through the Leader
Distance procedure can sometimes cause Awerbuch’s algo-
rithm to fail. Consider the situation that results from exe-
cuting the following sequence of four steps (see Fig.?7?).

Figure 3: The creation of a cycle.

2 Revised Algorithm

In this section, we present a revised version of Awerbuch’s
three-phase distributed MST algorithm, which achieves the
optimal bounds for both communication and time complex-
ity. The algorithm incorporates several changes in order to
eliminate the three problems we identified in the previous
section. We have also tried to clarify certain fine details that
were not obvious from reading [Awe87] but were needed for
an implementation of the algorithm.

2.1 Node Counting Phase

Any optimal Spanning Tree algorithm can be used. In the
original paper [Awe&7], an O(E + Nlog N) messages and
O(N) time algorithm is proposed. The purpose of this
phase is to determine N so that a fragment size thresh-
old of % can be used to trigger the switch from phase
II to phase III. A Spanning Tree (with no minimum weight
requirement) is formed by ignoring the edge weights and al-
lowing each fragment to join along the edge leading to the
largest fragment. Therefore, we achieve fast level increases
and the communication and time complexity of this phase
are O(E 4+ N -log(N)) and O(N) respectively (see [Awe87]
for details). Given the Spanning Tree, the number of nodes
in the network can easily be counted.

In [FM95], a simple counting algorithm is presented. Its
complexity is O(F) messages and O(N) time. It assumes
that one node can be authorized to initiate the algorithm.

2.2 Small Fragment MST Phase

This second phase is unchanged from [Awe&7]. It begins
with each node acting as the root of a trivial one-node MST
fragment executing the basic [GHS83] algorithm. Fach frag-
ment switches to the more complicated phase III algorithm

as soon as its size reaches IL
og(N)

2.3 Large Fragment MST Phase

This final phase keeps the same general structure as de-
scribed in [Awe87], i.e., it is the basic algorithm with the
addition of the Root Distance and Leader Distance pro-
cedures. However, there are numerous detail changes to ad-
dress the issues we identified above. Thus, we will give a
detailed walk through of phase 111, highlighting the new fea-
tures in the revised algorithm.

Root Initiates MOE Finding. The first task for a
node after it becomes the root of a fragment, with i.d. F' and
level L, is to initiate the search for the fragment MOE. The
root broadcasts an initiate(F, L) message with hop count
0 to all of its children, which increment the hop count and
broadcast copies to each of their children, and so on.

If the hop count exceeds 221!, we say that the Root
Distance procedure succeeds, which stops the broadcast and
sends an explnit(L) message back to the root. Each node
forwards the first expInit(L) message (if any) it sees back
to the root, where it triggers a level increase to L + 1 and
restarts the MOE finding procedure. Additional ezplInit(L)
messages are ignored.

Once the initiate messages have been distributed, each
node enters the Testing state and goes on to the next step.
If any smaller-level neighboring fragments try to submit be-
fore the node leaves the Testing state, it accepts the sub-
mission and then sends a copy of the initiate message.

Edge Testing. The Testing policy is the same as in
[GHS8&3]. Nodes query their Unvisited edges, one at a time
in increasing order, by sending a test(F, L) message. Edges
connecting nodes belonging to the same fragment are re-
jected using two messages, either a test answered by reject
or two test messages sent concurrently. The only other re-
sponse is accept, indicating that the edge is indeed outgoing,
and the level of the neighboring fragment is at least L. Thus,
if the neighboring node belongs to a smaller level fragment,
the Testing policy demands that the answer is delayed until
its level increases.

It is interesting to examine the case where node w of
fragment (Fy, L) tests node v of (Fy, Ly) assuming L., >
Ly, so a delayed answer is required. The interesting case
occurs if the fragment F, later decides to submit to Fi,.
Since node w is still in the Testing state (recall that the
edge testing procedure at w is blocked, waiting for the reply
from v), w will accept the submission and send a copy of
the latest tnitiate message to v. Thus, since node v reaches
level L., with the same fragment i.d. as node w, its (delayed)
answer to the original test message from node w will be a
reject, and node w will go on to test its next Unlabeled
edge. We see that this delay in answer is crucial for the
correctness of the algorithm.

MOE Reporting. While a node is searching for its
local MOE, it is also gathering report messages from each
of its children, which identify the best MOE found in their
respective subtrees. Once the local MOE has been deter-
mined, and all children (if any) have reported, the node
identifies the best MOE among all these choices (and re-
members the path that leads there), and sends the result to
its parent in another report message.

Leader Selection. When all the report messages have
reached the root, the fragment MOE is selected as the best
choice reported by any of node. If none of the nodes reported
an MOE, then the algorithm terminates, having built the en-
tire MST. Otherwise, the root directs a change Root message
to the node adjacent to the fragment MOE, appointing it as

the leader. The change Root message reverses the parent
relations of the nodes along the path between the old root
and the new leader, re-orienting the tree hierarchy towards
the new leader.

NEW — After forwarding the change Root message, each
node on the path (including the old root and new leader)
broadcasts an M OF found message to all remaining nodes,
to inform everyone that the search for the fragment MOE is
over and that the tree has been re-oriented towards the new
leader. We will say that a node is in the Decided state after
it has received either a change Root or M OFE found message
and before it receives the next initiate message. It is easy
to see that the path from any decided node towards the
leader (or root) will not change unless a new Finding pro-
cedure takes place. The significance of this fact will become
apparent below.

Leader Joining Protocol. Consider a node, v, which
has become the leader of fragment (Fv7 Lv) and wants to join
with node w of fragment (Fw7 Lw). Node v sends a connect
message to node w and waits for a reply.

If L, > L, then node w will reply immediately, allowing
F, to adopt the new level and even participate in the MOE
finding procedure for F,, if node w has not yet reported its
MOE.

NEW - Convelrsely,3 if L, = L, then node w waits for a
change Root or a MOF found message and then proceeds to
do an equi-join or accepts the submission of F, respectively.

The addition of the M OFE found message is significant,
because it means that the maximum time that node v can be
blocked by (the absence of) node w’s response to its connect
message will be proportional to its own fragment size. As we
already said, such a characteristic doesn’t exist in the leader
join protocol that was described in [GHS83], and seems to
have been inherited by [Awe87].

Thus, unlike the joining protocol in [GHS&3], ours offers
a guarantee that the delay until the leader receives some
answer from the adjacent fragment, is proportional to the
other fragment’s size. It is also very important to notice
that with the use of MOFE found message, we can guaran-
tee that the path towards the root that the leaders will try
to measure (Leader Distance procedure) will not change in
length. This will be used also in the proof of correctness.

Leader Distance Testing. Now we will see how the
Leader Distance procedure works. The basic idea is that a
leader sends a testDistance message towards the root and
if that message visits enough nodes, the leader is allowed to
increase its level accordingly.

In more detail, a leader submits and waits for an answer
(we will call such a leader Blocked). In a submission and
after the other node becomes Decided, the leader invokes
the Leader Distance procedure. The testDistance message
carries the level of the leader, say Lymsg, (we will call it level
of the message) and has a counter which is initially set to 0
and measures the distance. Each node increases the counter
by one before forwarding the message to its parent.

NEW - There are two ways the procedure can increase
the level of the leader that started it: a) the message ezpires
when the counter reaches 2Emsa+2 (this hop count trigger is
twice as large as in [Awe87] and will be explained below); or
b) the message arrives at a node whose level is greater than
Limsg (the second condition is entirely NEW). In both cases,
the node where the test succeeds sends an acknowledgment

3Recall that the case L, < L, can’t happen at this stage, since
node w would have been required to delay its reply to v’s test message.

message 1s sent back to the leader informing it of the level it
can adopt. This new level can be: the old level increased by
one If the testDistance message expired, the new level will
be one greater than the old one. However, larger increases
are possible if it was triggered by a higher level node. In
addition, a leader that receives a testDistance message of
greater level than its own, will increase its level before for-
warding the message (which is also NEW).

The leader broadcasts its level increase to the nodes of
its fragment (by broadcasting a M OF found message) and
restarts the procedure at its new level. When a test Distance
message ‘crosses” with an initiate message at an edge it is
discarded (we say that it dies) and the procedure stops.

Avoiding Leader Distance failure. (NEW)— We can avoid
the failure of the procedure by making sure that when a
testDistance message arrives at a Blocked leader, the mes-
sage is “kept in memory” and forwarded towards the new
root, when the Leader Distance procedure is invoked in that
leader. Notice that Blocked leaders can’t actually store the
incoming testDistance messages, since the number of such
messages could be equal to the number of distinct fragments
which is O(log(N)) for phase III. Therefore, it is necessary
and more efficient to store only the testDistance message
with the greatest counter. This “concentration” of the mes-
sages Into one requires trivial memory and reduces the com-
munication complexity.

Notice that because of the NEW features of the Leader
Distance procedure, a leader and all the messages it must
store are of the same level; smaller level messages that may
arrive succeed immediately (no need to store them), while
greater level messages increase the level of the receiving
leader (which also informs the other low level leaders as
well). Thus the selection of the greater distance can only
speed up the level increase of some of the leaders.

Avoiding Cycles (NEW) — The factor of 2 that we saw
when checking the distance counter of the test Distance mes-
sage, is a handicap that we apply to the Leader Distance pro-
cedure compared to the Root Distance procedure. In brief,
in order to trigger an increase to the same level, Leader
Distance must detect twice the distance compared to Root
Distance. This way, it is guaranteed that whenever Leader
Distance can trigger a level increase from L to L 4+ 1, Root
Distance will trigger a level increase from L 4+ 1 to L + 2

We will discuss this in more detail in the correctness
section.

3 Correctness

3.1 General Results

In order to prove that the algorithm is correct, we have to
prove that it terminates and finds the MST.
For termination, the following theorem holds.

Theorem 1 The revised algorithm is deadlock free.

A proof can be found in [GHS8&3].

To prove that the algorithm finds the minimum of the
spanning trees we can recall the fact that the MST problem
can be solved by a “greedy” algorithm. In other words it
is sufficient to verify that the algorithm makes fragments to
try and join only along their MOE. The previous description
must have left no doubt that the edge along which a connect
message 1s sent, is indeed of minimum weight for all the

nodes that received the initiate message and participated
in the Finding procedure.

In addition, we must prove that it actually finds a tree,
i.e., that it does not create a cycle. The following theorem

holds.
Theorem 2 The revised algorithm does not create cycles.

PROOF. Initially, let us ignore the Leader Distance pro-
cedure. We can see that decision making is centralized
within a fragment, so it is not possible to have a cycle,
i.e., a fragment decides to join to one fragment at a time
and then participates in a new Finding procedure and re-
examine their previous outgoing edges. This centralization,
the use of levels in the joining policy and the distinct weights
of the edges guarantee the avoidance of cycles. Schemati-
cally, we can say that joining decisions and level increases
take place at the root and thus errors are avoided.

Let us consider the Leader Distance procedure. and re-
call the example that made [Awe87] create a cycle.

As already discussed, our modified algorithm breaks the
symmetry of the two procedures. We demand that the
Leader Distance increases the level of a submitted fragment
to L + 1 only when it detects a distance to the root to be
at least 2 - 2% = 2772, This way it will be guaranteed that
if the Leader Distance procedure succeeded and made it to
level L + 1 then Root Distance will ultimately increase the
level of the final fragment to L 4+ 2. This applies for all
the levels and thus we guarantee that eventually the final
fragment, fragment F} in our example, will submit to a
fragment of greater level than the level of any of its
subfragments ever was.e

Notice here that the modified Joining policy guarantees
also that the two procedures explore the same path. As
we said, nodes start forwarding testDistance messages af-
ter they are decided guaranteeing that the final orientation
of the fragment is established (final until the next Finding
procedure). In [Awe7], this problem of “path change” is
not being discussed and lack of detailed description does not
allow us to know whether it was taken under consideration.

4 Complexity

This section will offer a brief description of the complex-
ity issues for the revised algorithm. Recall that commu-
nication complexity is defined as the total number of mes-
sages exchanged between adjacent nodes, i.e., broadcasting
an initiate message in a fragment of k nodes, counts as k—1
message exchanges. Similarly, time complexity corresponds
to the elapsed time required for the termination of the algo-
rithm, assuming the transmission delay at each edge is one
time unit. Processing time for each message within a node
and queuing delays are considered negligible.

The length of messages is O(log(N)), i.e., capable of rep-
resenting N node identifiers. It is optimal and it won’t be
discussed further (see [GHS83]).

We will calculate the complexity of the algorithm by
summing the complexities of its three phases.

4.1 Communication Complexity

Phase I: The communication complexity of this phase was
proven optimal [Awe87].

Phase 11, I1I: We can see that each edge is rejected only
once (if at all) and only two messages (two test messages

or a test and a reject message) are required. Thus, edge
rejection uses O(E) messages. Notice that test messages
not leading to rejection will be counted in the sequel.

For the other messages, we can see that if we partition
the messages generated at a single level among the nodes,
then the number of messages assigned to a node is bounded
by a constant. In more detail, a node can receive at most one
tnitiate, one M OE found and one accept message. It can
transmit at most one successful test message, one report
message and one change Root or connect message. As we
already said, the maximum level is log(/N) and thus the total
number of the other messages is O(N -log(N)).

We are now left with the test Distance messages. Notice
that the number of acknowledgment messages sent when the
Leader Distance procedure succeeds is at most equal to num-
ber of testDistance messages. Recall that the Leader Dis-
tance procedure is activated after the number of fragments
is reduced to log(N'). We can’t have more than log(N) sub-
missions and thus O(N -log(N)) testDistance messages. It
is really interesting to notice that if the the Test Distance
procedure was active from phase II, it could increase the
message complexity above the optimal, i.e., we can think of
N/2 single nodes submitting to a fragment of N/2 size in
such a way that causes O(N?) testDistance messages. This
is the reason why the Leader Distance procedure is activated
only in phase III.

Therefore, the communication complexity of the algo-

rithm is O(E + N - log(N)) and optimal.

4.2 Time Complexity

It is comparatively easy and considerably less exciting to see
that the Counting phase and the first part of the MST phase
are optimal with respect to time (see [Awe87]) and we will
provide only short explanations.

Phase I: In the Counting phase adjacent fragments join
in a way similar to that of [GHS83], but since it is trying
to find just a Spanning Tree it is relatively easy to guaran-
tee that fragments almost never wait for other trees (for a
detailed proof see [Awe87]).

Phase II: In the first part of the MST phase, the size of
the fragments has at most % nodes and the maximum
level is bounded by log(N) — log(log(N)) < log(N). We
can assume that for each of these subfragments, we run in-
dependently a [GHS&3] algorithm for a graph of size %
and thus the termination time, which is the product of the
maximum level and the size of the graph, is O(N).

Phase I1l: we will provide an overview of the proof.

Theorem 3 For the second part of the MST phase, the
length of the time period during which the minimum level
is L is bounded by O(2%) time units.

PROOF (sketch). Let T(L) denote the first time at
which L is the minimum level in the network. We can dis-
tinguish two parts. In each one of them, one of the new
procedures guarantees that the level is increased “on time”.
Note that considering Size(F) = O(2%) can facilitate un-
derstanding.

Part 1. Root Distance Procedure : Consider the min-
imum level fragments after T(L). In some of them, an
initiate message may visit 227! nodes corresponding to 211!
time units and the Root Distance procedure will increase
their level in O(2%) time.

In the rest of the fragments, after c; 2% time where c; is
some constant, they will have found their MOE and all the
nodes have been informed (they have received a change Root
or a MOE found message). Since the fragments are of min-
imum level, they will be able to join in constant time (be-
cause, by now, the node answering their test message must
either be in the Decided state or belong to a higher level
fragment) and either increase their level or invoke the Leader
Distance procedure. (Note that this claim for immediate
joining doesn’t hold the way things are described in [Awe
85]) Therefore, ¢; - 2% time units after T(L), all minimum
level fragments will have increased their level or have sub-
mitted, and nodes of L level are either leaders that have
invoked the Leader Distance procedure or Decided nodes.
In the next part we follow the level behavior of such leader.

Part 2. Leader Distance: if a fragment F' has submitted,
and received an initiate message from the greater fragment
it is an acknowledged part of the latter and the previous
phase takes care of its level upgrades.

If F'is far away from the root that will send an initiate
message, the Leader Distance procedure guarantees that a
level increase will take place in ¢z -2L where c5 is a constant.
It is easy to see that in the worst case a testDistance will
expire after 2 - 2871 time units, and the acknowledgment
message will return to the leader in the same time. Notice
that after T(L) 4+ ¢; - 2L all L level leaders are not Blocked
and there is no delay in the propagation of the message.

Notice that in both phases, the time required for the level
increase to propagate to all nodes of the fragment is bounded
by c- 2% time units where ¢ = ¢; + ¢z . Consequently, after
time O(2%) all nodes will have level greater than L.e

It is not difficult now to prove that the time complexity
of phase III is optimal, by adding the time intervals during
which each level is the minimum level.

log(NV) ‘
Time = Z c-2 §2~c~21°g(N) =2-¢-N

i= N
T log(N)

Finally, we can see the logical steps that the creation of
the algorithm seems to follow. In order to achieve O(N)
time, the Leader Distance procedure was needed. This in-
creased the communication cost and in order to keep it op-
timal we had to demand fewer than log(N) submissions of
fragments entering phase III (enabling Leader Distance).
For this, fragment should switch to phase I11 after obtaining
size %. Therefore, each fragment should be aware of N,
and the Counting phase (I) is necessary.

5 Epilogue

In this paper, we identified some problems with Awerbuch’s
distributed MST algorithm [Awe87], involving both correct-
ness and optimality issues. We then gave a revised algo-
rithm, which introduces several new features to solve these
problems. We also show that with these changes, our re-
vised algorithm satisfies the desired correctness and opti-
mality conditions.

This work arose from our pragmatic efforts to find a good
MST algorithm for real applications reported in [Fal95]. In
that work, apart from discussing theoretical issues, we tested
the performance of several distributed MST algorithms af-
ter constructing detailed implementations of each one in a
simulated communication network environment. Our results

indicate that there is still a lot of room for improvement in
this problem domain.

Acknowledgments — The authors would like to thank
Baruch Awerbuch for his useful comments and encourage-
ment concerning the modifications and Vassos Hadzilacos
for his valuable advice. We would also like to thank Petros
Faloutsos for his keen comments and support.

References

[Awe87]

[CT85]

[Fal95]

[FM95]

[Gaf85]

[GHS83]

[GKP93]

[SB95]

B. Awerbuch. Optimal distributed algorithms for
minimum weight spanning tree, counting, leader
election and related problems. Proc. 19th Symp.
on Theory of Computing, pages 230-240, May
1987.

F. Chin and H.F. Ting. An almost linear time
and o(vlogv + €) messages distributed algorithm
for minimum weight spanning trees. Proceedings of
Foundations Of Computer Science (FOCS) Con-
ference Portland, Oregon, October 1985.

Michalis Faloutsos. Corrections, improvements,
simulations and optimstic algorithms for the dis-
tributed minimum spanning tree problem. Tech-
nical Report CSRI-316, 1995.

Michalis Faloutsos and Mart Molle. Creating opti-
mal distributed algorithms for minimum spanning
trees. Technical Report CSRI-327 (also submitted
in WDAG ’95), 1995.

Eli Gafni. Improvements in the time complexity of
two message-optimal election algorithms. Proceed-
ings of 1985 Principles Of Distributed Computing
(PODC), Conference, Minacki, Ontario, August,
1985.

R.G. Gallager, P.A. Humblet, and P.M. Spira. A
distributed algorithm for minimum weight span-
ning trees. ACM Trans. on Programming Lan-
guages and Systems, 5(1):66-77, January 1983.

J.A. Garay, S. Kutten, and D. Peleg. A sub-
linear time distributed algorithm for minimum-
weight spanning trees. Proceedings of Foundations

Of Computer Science (FOCS), 34, 1993.
Gurdip Singh and Arthur J. Bernstein. A highly

asynchronous minimum spanning tree protocol. to
appear in Distributed Computing, Spinger Verlag
8(3), 1995.

