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Abstract— We consider a router that uses a shared input queue
and distributes traffic over multiple output ports. Though such an
architecture is subject to the Head-of-the-Line (HOL) blocking
problem, it is very attractive when the router supports both
load balancing over alternate paths and QoS. Therefore, in this
work, we consider per-flow (or destination) queueing which (1)
eliminates the need to further consider per-flow queueing at the
individual destination ports therefore avoids the HOL blocking
problem and (2) achieves QoS.

We model a single traffic class at a routing node as it passes
through a single-shared-input and then assigned to two-output
ports that lead to alternate paths to the same destination. We
assume that the remainder of the network transit delay beyond
the router are different for both paths. Therefore our routing
policy reduces the end-to-end delay by favoring the faster path
by assigning packets to the higher-delay path only if the input
queue length exceeds a given threshold

�
. We generalize the model

by permitting the output port that leads to the slower path
to represent a multichannel link group (e.g., multiple parallel
wavelengths on the same optical fiber). We model our system
as a two-dimensional Markov chain and use matrix geometric
techniques to solve for its stationary probabilities.

Keywords: Markov chain; per-flow queueing; forking node; load
balancing; alternate paths.

I. INTRODUCTION

Alternate path routing can provide load balancing [17], [2],
[13] and route failure protection [16] by distributing traffic
among a set of diverse paths. These benefits make alternate
path routing an ideal candidate for the bandwidth limited and
mobile ad-hoc networks [21], [1]. Therefore, we consider a
router that distributes traffic over two available paths to the
same destination.

Routing in optical networks with WDM links [23], [18],
[12] is another application domain where dynamic alternate
routing thus load balancing may provide a significant per-
formance improvement. In this case, each physical cable
attached to a router’s output port can carry many independent
data streams simultaneously over different wavelengths. More
importantly, the physical layer may support optical cross-
connection of specific wavelengths between adjacent cables,
to create a direct, all-optical, multi-hop Virtual Link between

two physically non-adjacent routers. The Virtual Link can
be established in one of two ways: (1) either the same
wavelengths are available on every link in the physical path,
or (2) all (or some) of the intermediate nodes in the path have
wavelength converters.

Consider node � in Figure 1(a) and assume that all the
traffic from � is routed to node � . In this example all
��� traffic follows the 3-hop physical path ( �����	��
��	��
 ) through
intermediate nodes � and � . However, we might have the
choice between two alternative paths at the logical level, as
shown in Figure 1(c). Path 1 uses Virtual Link ��� to reach �
in a single “router-hop”, after we have configured the optical
interconnects appropriately at intermediate nodes � and �
(Figure 1(b)). Path 2 requires three “router-hops” to reach �
through the logical path ( ��������
�����
 ). Since path 1 avoids
the store-and-forward delay at intermediate routers � and � ,
the remainder of network transit delay — between a packet’s
departure from � and its arrival at � — will be much shorter
if we route the packet along path 1 than path 2.

At the logical level, we refer to node � as a forking node
since it consists of a single input feeding two outputs. We
assume that arrivals join a shared queue and are routed to one
of two input ports when they reach the head of the queue.

Generally, router architecture do not use shared queues
feeding multiple output ports because of the Head-of-Line
(HOL) blocking problem. However, in this work, we assume
that the router supports QoS and load balancing. Moreover, we
consider a single class traffic thus there is no need to consider
per-flow queueing at the individual output ports and eliminates
the HOL blocking problem.

We adopt a routing policy that can reduce the end-to-end
delay for traffic going from � to � that is easy to implement.
Random routing is the simplest routing policy to implement
and analyze. It is known to have tractable analytical model.
However, our findings [4] show that the use of this policy in
asymmetric networks may not provide satisfactory results.

In [8], we introduced the forking node scheduling problem
with paths that have different transit delays. We also compared
the performance of a variety of random, deterministic and
state-dependent routing algorithms in this application, using
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Fig. 1. The physical, design and virtual topologies. Virtual channel ��� uses
optical links
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 ����� ����� between �
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 	���� � ��� � 	�� � � �

simulations. From all the algorithms we tested, a simple gen-
eralization of the well-known Join-the-Shortest-Queue (JSQ)
consistently gave us the best performance according to a
variety of metrics. The generalized ����� is simply to add a
bias � to favor the path with the lower downstream delay. Thus,
it sends the packet on the slower path only when the queue
length is larger than a given threshold � . Thus the routing
policy is referred to as ��������� .

In this work we provide a further generalization of the
JSQ+b routing policy by permitting one of the output ports
to represent a multichannel link group (e.g., multiple parallel
wavelengths on the same optical fiber). For the purpose of
our analysis, we assume that the faster path is a Virtual Link
representing a single channel/wavelength. In this way, we
retain the flexibility to carry traffic over shorter distances on
the remaining channels. The routing policy then has a choice
of sending the packet on the slower path (or path 1) that is
served by a group of  �"!$# parallel servers that we call link
group 1, or on the faster path (or path 2) that is served by a
single server link (  
"% # ) or link group 2. Our objective is
to model the forking node and obtain an exact solution to its
stationary probabilities without resorting to the “brute force”
approach of modeling the node as a two-dimensional Markov

chain and computing its stationary probabilities by numerically
solving its global balance equations (i., e. solving &(' % & ).
The simple case of single-server link groups has been solved
analytically [11]. However, the results obtained are complex
expressions, so by extrapolation, the corresponding results
for the case of multiserver link groups would be even more
complicated, if obtained at all.

Another approach is to solve for bounds and/or approxima-
tions. In [7], we derived bounds for the stationary probabilities
for the multiserver link group problem. In this paper, however,
we show how to exploit the distinctive structure of the state
space to find exact solutions to the stationary probabilities
using the well-known matrix geometric method. We model the
forking node as a QBD process with finite state space when
the queue length is less than � . On the other hand, when the
queue length exceeds � the chain is represented as a simple
birth-death process with death rate equal to )* ����#,+.- .

The rest of this paper is organized as follows. In Section II,
we present our model and the state space. In Section III,
we present an exact solution to the single server link groups
(  � %  
 % # ). In Section IV, we provide a general and a
simplified solution to the multiserver link group 1 forking node
using matrix geometric techniques. In Section V, we compare
the methods computational complexity. In Section VI, we
compute several performance metrics of the proposed method.
Finally, we conclude in Section VII.

II. MODEL AND STATE SPACE

We consider a node where per-flow arrivals join a single
infinite buffer queue. The analysis can be easily extended to
a finite buffer queue by truncating the state space at some
specified maximum queue size. We assume that arrivals are
Poisson and the queue is serviced by the �����/�$� routing
policy for a specified bias � . We further assume that the links
run at the same speed of - .

Let �10 denote the system state at time 2 with �30/4 %5 6
�87:9 , where

6<;>=@?
��#��BA ��C�C�C �D �@E denotes the number of

packets currently being transmitted on link group 1 and 7 ;
=@?
��# �FA ��C�C�C E denotes the number of other packets currently

in the system. G�
H)I7J+ of these remaining packets are currently
being transmitted on link group 2, where we have defined
G l )*KL+NM�OQPSR = K �T l E , and 7VU�G 
 )S7H+ are waiting in the queue.= � 0 E 08WYX can be represented as a continuous time Markov
chain (CTMC). Let Z denote the state space of this chain.
The CTMC for the system and the transition rates are shown
in Figure 2. Clearly, for [\4 % ]^I_a`.b �dc*egf # , the Markov chain
is ergodic.

III. SINGLE SERVER LINK GROUPS

The case of single server link groups (  � % #��D 
 % # ) has
been studied by Lin and Kumar [11] and exact solutions have
been provided. For completeness, we provide a summary of
their results. Using our notation, let &�) 6 �h7J+ , 5 6 �87i9 ; Z , denote
the equilibrium distribution of

= � 0 E . &�) 6 �h7J+ can be expressed
in terms of & � 4 % &�)d#�� ? + as follows:
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&�) 6 �h7J+ %

������ ����� & ����� �	��
 � � � 
��


�� #�� 7���� ��# , 6 % #
&�)d#��B� ��#,+ [ 
������ � 7 !�����A ,

6 % #
& � ���	���� U � ����
 � U � 
���

 � #�� 7���� ��# , 6 % ?
& ��� �� U�#�� ) 6 �h7J+ % ) ? � ? +

where � ��� � 
 � � ��� � 
��! and " are defined as follows� � % � �$# � � � e ]
Fe � 
 % � b # � � � e ]
Fe� � % � �&% `%('���% ` � 
 % %�'	� �%('���% `" % ]e  %*) ` %�+-, '' b ) ' %�+., ''� +-, `
& � �� %

���������� ���������
for /10% -


2 354
�
� 3 � � b �3 6 � 3 " ���7� 


)d#aU1" + � [
# Ug[ U � 3

# U1"98
for / % -


2 354
�
� 3 � � b �3 6

A � 3 � [
# U [98

The expressions for &�) 6 �87J+ are quite complex thus, a closed-
form expression for the mean number in the system and
other performance metrics using the above solution seems
elusive. Therefore, numerical solution or tight bounds with
simpler expressions may provide better insight and allow
easier computation. In [7] we derive tight lower and upper
bounds for the stationary probabilities for the more general
case of multi-server link groups (  � ! # and  
 ! # ) and
consequently obtain bounds for the number in the system, the
departure rate from the slower path and the mean average
delay. In the following analysis, we are interested in simple
exact solutions for the stationary probabilities.

IV. MULTI-SERVER LINK GROUPS

We model the forking node as a two-dimensional Markov
chain when the queue size is less than the routing threshold
� and as a simple birth-death process when the queue length
exceeds � .

The CTMC of the system (see Figure 2) shows that the chain
can be partitioned into a lower subsystem Z M = ) 6 �h7J+ 4 ? �6 �  � �

? � 7:� �V� #iE and a higher subsystem Z M= ) 6 �87H+ 4 6 %  � � 71; � � #iE . We model both subsystems
independently and solve for their stationary probabilities. Then
the global solution is obtained by combining both solutions
using a normalizing constant.

1. Solution to the Markov chain defined over Z
In the following analysis, we explore the structure of the

system defined over Z to use matrix geometric techniques and
obtain a closed-form expression for the stationary probabili-
ties. We first present a brief summary of the technique that we
use in our methodology.

1) Matrix geometric solution to infinite state-space QBD
processes: Key to using matrix geometric techniques is for
the model to have a repetitive structure which leads to Markov
models that fit within the matrix geometric framework. In this
work, we are interested in QBD processes [19], [15], [14].

A QBD process is a Markov process with an infinitesimal
generator matrix of the following form:

� %

<=======>
?@ ?A ? ? ? ? ? ? ? C�C�C? ? ?

� @ A ? ? ? C�C�C? ? ? ?
� @ A ? ? C�C�C? ? ? ? ?

� @ A ? C�C�C? ? ? ? ? ?
� @ A C�C�C

...
...

...
...

...
...

...
...

...
. . .

BDCCCCCCCE
The block entries � � @ � A and

?@
are square sub-matrices,

which satisfy the equilibrium conditions
?@GF � ?A�F % ?

� F �@GF � A�F % ) � � @ � A + F % ?
;
F

is a column vector of ones
of suitable dimension.

The state space is generally partitioned into a block of
boundary states � X and the remaining blocks of states �$H��!I !?

that represent the repetitive portion of the Markov chain. We
use the letters “

@
”, “

A
” and “ � ” to describe “local”, “forward”

and “backward” transition rates respectively with relation to
a block of states � H ��I�! # and “

? C ” for matrices related to
states in � X .

QBD processes have interesting structural properties which
can be used to simplify the computation of the stationary
probabilities. Two matrices usually denoted by J and K play a
major role in the general theory. These matrices have important
probabilistic interpretations. An entry )ML �87J+ in K expresses
the conditional probability of the process first entering �NH � �
through state 7 given that it starts from state

6
of �$H [20].

An entry )OL �h7J+ in J is the expected time spent in state 7 of
�&H before the first visit to ��H � � given the starting state L in
�&H � � [14].

Both matrices J and K are minimal nonnegative solutions
of two nonlinear matrix equations (i.e., � � @ K � A K 
 % ?
and

A �PJ @ �QJ 
 � % ?
). Moreover for a QBD process, J

can be expressed as J % U A ) @ � A K3+ � � . Although QBD
processes can be solved by either computing J or K , the first
one is usually used.

Let & % ) & X �T& � ��CSCIC + be the stationary probability vector
of a QBD process with infinite state space where & H is the
sub-vector of stationary probabilities for states in block I .
Under general assumptions, the elements of this vector have
the following matrix geometric property [14],

& H b � % & HSR J �TI ! ?
(1)

2) Matrix geometric solution to finite state-space QBD
processes: Z can be viewed as finite state space Markov
chain that can be modeled as a QBD process. For finite state-
space QBD processes however, the situation is quite different
from the infinite state space due to the presence of additional
boundary states. Thus, it is not possible to guarantee in
general that the stationary distribution has a matrix geometric
structure of the form of Equation (1). Several methods have
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Fig. 2. The CTMC for the single shared queue model with threshold routing when � �����@� � 	���� and ���	� .

been proposed in the literature to solve for the stationary
probabilities of QBD processes with a finite state space [10],
[9], [3], [22]. In the following we present a simple method that
has a lower computational complexity than the one provided
in the literature [5].

The state space Z can be further divided into blocks I where? � I � �:� # of size  �:� # . Each block is composed of states
) 6 ��I:+ � ? � 6 �� � � # for a given I . Coordinate I denotes the
‘level’ and
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the ‘phase’ of state ) 6 ��I:+ . In this case we have

��� # levels.
The generator matrix � of this finite state space process has

the following block-tridiagonal structure:

� %

<===========>
?@ ?A ? ? ? ? ? C�C�C?
� @ A ? ? ? ? C�C�C?

� @ A ? ? ? C�C�C? ?
� @ A ? ? C�C�C? ? ?

� @ A ? C�C�C
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .
C�C�C C�C�C C�C�C C�C�C C�C�C C�C�C @ A �C�C�C C�C�C C�C�C C�C�C C�C�C C�C�C � � b � @ � b �

BDCCCCCCCCCCCE (2)

The upper boundary block entries
?@

,
?A

and
?
� and the non-

boundary block entries � � @ and
A

and the lower boundary
block entries � � b ��� A � and

@ � b � are square matrices of
dimensions )  ��� #@+�
 )* ��� #@+ .

If the underlying Markov chain with generator matrix �
is irreducible, then the matrices

@ � ?@
and

@ � b � along the
diagonal can be shown to be nonsingular [14].
� Global balance Equations. The stationary probabil-

ity vector & for � is generally partitioned as & %5 & X � & � � & 
 ��CSCIC �T& � b � 9 , where the sub-vectors & H �@) ? �I � � � #,+ are of dimension  � � # . Solving & � % ?
along with the normalizing equation & F % # , yields the
following set of equations in matrix form:

& X
?@ � & �

?
� % ?

(3)

& X
?A � & � @ � & 
 � % ?

(4)

& H � � A � & H @ � & H b � � % ? A � I f � (5)

& ��� � A � & � @ � & � b � � � b � % ?
(6)

& � A � � & � b � @ � b � % ?
(7)

� Computation of the rate matrices. Here, we assume
that Equation (8) holds among the stationary probability
vectors & H for states in set � H , and J H is a square matrix
of order )  � � #@+ ,

& H % & H � � J H �TIQ!<# (8)

By simple algebraic manipulation of the global balance
equations we obtain J H ’s as follows.

– From Equation (3) and assuming that
?@

is nonsin-
gular, we get,

& X % U & � ?� ?@ � � M & � J"X (9)

– Equation (7) leads to the following expression for
& � b � and J � b � where

@ � b � is required to be non-
singular,

& � b � % U & � A � @ � �� b � M�& � J � b �
– Equation (6) leads to the following expression of & �and J � ,

& � % U & ��� � A ) @ U A�@ � �� b � � � b � + � �% U & ��� � A ) @ � J � b � � � b ��+ � �M�& ��� � J �
– Finally, from Equation (5) we obtain a general rela-

tion between & H � � , & H and J � b � ,
& H % U & H � � A ) @ � J H b � � + � �M�& H � � J H�� A �PI f �J H can be computed using Algorithm 1.

In Algorithm 1, 
 represents the identity matrix of
dimension )  � � #@+�
 )* � �/#,+ . We also assume that
U ?@ � � and U @ � �� b � are nonnegative matrices. Moreover,
if ) @ �PJ H � + is stable then it is nonsingular. Note that
the rate matrices J H��1I % ?

��CICSC �B� � # are obtained
through purely algebraic manipulations starting from the
global balance conditions; they have no probabilistic
interpretation and therefore do not coincide in general
with the rate matrix introduced by Neuts. Moreover, the
rate matrices J H introduced here are not always positive
and this could lead to some numerical instabilities.
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Algorithm 1 Compute JQ)-I:+
1: J � b ���>U A�@ � �� b �2: if I ;$# then
3: for 7 % ��� I � # do
4: J 
 �>U A ) @ � J 
 b � � + � �
5: end for
6: � F 2����	� J H �>U A ) @ � J H b � � + � �
7: end if
8: if I % % ?

then
9: return J X � U ?� ?@ � �

10: end if
11: if I % % # then
12: return J �
� 

13: end if

It is worth noting that the solution to the rate matrices can
be generalized to the infinite state space solution given
in [14]. For infinitely large number of blocks ( ���
� ),
the rate matrices J H will converge to J which is the
minimal nonnegative solution toJ % U A ) @ � J � + � � (10)

This condition is equivalent to the following nonlinear
equation introduced in [14]A � J @ � J 
 � % ?

(11)

� Stationary Probabilities

Theorem: for any QBD process with finite state
space, having an infinitesimal generator matrix given
by Equation (2), the stationary probabilities are
given in matrix-geometric form by

& H % & � J �H (12)

where J �H % � H
 4 � J 
 and J 
 is computed using
Algorithm 1.

Solving Equation (3) and (4) for & � leads to,

& � � J"X ?A � @ � J 
 � � % ?
(13)

Thus, after substitution and mathematical manipulation,
Equation (14) follows from the normalizing condition� b �2H 4 X & H F % # and Equation (9).

& �
�� J"X F � � b �2H 4 � J �H F��� % # (14)

Solving the system of linear equations given by Equa-
tions (13) and (14), we solve for & � , and from Equa-
tion (8), we obtain & H as,

& H % & H � � J H% & H � 
 J H � ��J�H% & H � 
 J H � 
�J�H � ��J�H...
% & � J � C�C�C�J H � 
 J H � � J H% & � � H
 4 � J 
 % & � J �H

(15)
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Fig. 3. CTMC of the shared queue forking node defined over � when
� � ��� , � 	 � � and � � � .

Algorithm 2 is used to compute the stationary probabili-
ties & .

Algorithm 2 Compute &
1: for 7 % #�� I do
2: J 
 � ���  ����L2 F JQ)I7J+
3: & 
 � & � J 

4: end for

3) Simplified Solution Methodology: Now we customize
the general solution procedure to a simple case problem. The
CTMC for the system and the transition rates when  � %��
and  
g% # are shown in Figure 3 and the corresponding
block matrices are given as:

� %
<==> - ? ? ?
? - ? ?
? ? - ?
? ? ? -

BDCCE � A %
<==> / ? ? ?
? / ? ?
? ? / ?
? ? ? /

BDCCE �

@ %
<==> U3)O/ � -�+ ? ? ?

- U3)M/ ��A -�+ ? ?
? - U3)O/ � A -�+ ?
? ? - U3)M/ � Ai-�+

BDCCE �

?@ %
<==> U�/ ? ? ?

- U3)O/ � -�+ ? ?
? - U3)M/ � -�+ ?
? ? - U3)O/ � -�+

BDCCE �

?@ � b � % <==> U3)O/ � -�+ / ? ?
- U3)M/ � Ai-�+ / ?
? - U3)M/ ��A -�+ /? ? - U Ai-

BDCCE �?
� % � � b � % � �

?A % A � % A C
Note that matrices ��� � � b ��� ?

� � A � A � b � and
?A

are
diagonal and can be expressed as

� % � � b � % ?
� % - 
A % A � % ?A % / 
YC
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This is very fortunate, since having � and
A

be diagonal
matrices means that their inverse can be trivially computed by
forming the scalar inverse of their diagonal elements. For the
rest of the analysis, we assume that  
 % # and  � ! # .
The block matrices corresponding to the generator matrix �
are therefore, dependent on  � . The larger  � , the larger the
matrices sizes are.

Moreover, note that � � � � b ��� ?��� A � A � b � and
?A

are non-
singular diagonal matrices.

We solve the global balance equations given by Equa-
tions (16-18) and obtain a unique solution to the stationary
probabilities

= & H E�X�� H�� � b � .� The global balance equations are given as follows,

& X
?@ � - & � 
 % ?

(16)/ & H � � 
"� & H @ � - & H b � 
 % ?
� I % # ��CSCIC �F� (17)/ & � 
V� & � b � @ � b � % ?

(18)

� The stationary probabilities are,

& � % U �e & X
?@ M�& X J �

& 
 % U �e & X )M/ 
V� J � @ + M�& X J 

& 
 % U �e & X )M/ J ��� J 
 @ + M�& X J 


...

& � % U �e & X )O/ J ��� 
 � J �7� � @ + M�& X J �& � b � % U �e & X )O/ J ��� � � J � @ + M�& X J � b �
which can be generalized to the following form:

& H % & X J H�� I % ?
��C�C�C �F� � # (19)

where J H ’s are computed using the following procedure:�� � J"X % 
J � % U �e
?@J H % U �e )O/ J H � 
N� J�H � � @ + � I % A ��CSCSC �B� � #

Note that Equation (18) can be expressed as,

& X )O/ J � � J � b � @ � b � + % ?
(20)

Therefore, & X can be obtained by solving Equation (20)
along with the following normalizing condition:

& X � b �2 354
X J 3 F % #

2. Solution to Markov chain defined over Z
The Markov chain defined over Z is a simple birth-death

process with arrival rate / and service completion rate )d# �
 ��+.- . Therefore, the solution to its stationary probabilities= &��LE�� ��� _a`.b � b �
	 can be easily computed and is given by:

& �\% &��:[ � � � � ;
� (21)

where � is the number of packets in the system including the
ones in service (if any) and � %  ��� #N� � .

Finally, to obtain the general solution of the Markov chain
defined over Z , a normalizing constant can be easily computed
to combine the solutions to the stationary probabilities given
by Equations (19), or (15) and (21).
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Fig. 4. Comparison of the running time to compute the stationary proba-
bilities using the general and the simplified method for variable number of
servers at link group 1 (or variable block size)

V. COMPARATIVE ANALYSIS

The methods proposed in this paper provide an exact
solution to the stationary probabilities. To verify our results,
we computed the probabilities for various values of  � and
� using our methods and using brute-force method (i. e.,
& % &(' ). The solutions were exactly the same.

The general method proposed in this paper assumes that?@
and

@��
are nonsingular matrices. Moreover, if

?@
and

@��
are non-negative the system will be stable ( J H positive). One
of the advantages of this method over several methods in
the literature is that it does not need to solve any quadratic
non-linear equation to obtain the stationary probabilities. The
simplified method is derived from the general method when
� �

?
� ��� � � A � ?A and

A � � � are nonsingular matrices.
We compare the methods based on their computational

complexity that we express in terms of the number of matrix
operations performed by each method: number of matrix
multiplications, additions and inversions.

Since the block size (or number of states in a given level)
is equal to )  � � #,+ , we assume that the addition and the
multiplication of two )* � ��#,+�
 )  �N��#,+ matrices requires
respectively, )  �J� #@+ and )* � � #@+ 
 operations. The inversion
of an )  � � #@+�
 )* � � #@+ matrix, on the other hand, requires
)* � � #@+ 
 operations.

With regards to the general method proposed in this paper,
to compute the stationary probabilities, we have to computeJ H���I % ?

��# �FA ��CICSC �F� ��# (see Algorithm 1) which requires )h� �
A:+ matrix inversions, )��J� ���:+ matrix multiplications and ) � �\#@+
matrix additions. Therefore, the computation complexity of the
general method can be easily computed to be ) �N� A:+�)  �N�
#@+ 
 � )��H�����:+�)  � ��#@+ 
 � )  � � #@+�) ����#,+ . Since link group
2 is served by a single server, we expect the optimal routing
bias to have a small value, therefore we can safely claim that
the asymptotic complexity of the general method is �Q)* 
 � + .

Likewise, the simplified method requires � ) �a�$A:+ matrix
multiplications and � )h�H� #@+ matrix additions. No matrix inver-
sion is required. This leads to a total computation complexity
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equal to � )h�N� A +�)  � �<A:+ 
 � � )h� �/#@+�)  � �/#@+ or �Q)* 
 � + .
This result represents a huge computation improvement over
the general method.

In Figure 4, we plot the computation complexity of the
methods for various values of  � and for a given state space
size � % )h��� A:+�)* � � #,+ . The general method has the worst
performance. Moreover, we notice that the performance gap
between both methods increases as  � increases.

VI. FORKING NODE PERFORMANCE EVALUATION

The objective of this section is to use the obtained closed
form expression for the stationary probabilities, and compute
several performance measures at the forking node. We com-
pute the delay at the node and its behavior as a function of the
node’s throughput. We are also interested in the proportion of
traffic that joins the queue and uses the faster path we also
study its sensitivity to the routing bias.

1. Average delay.

We assume that packets entering the forking node will have
an average delay � . The delay represents the average time
packets spend at the forking node (that includes the queueing,
the processing and the service delays). We can compute the
average number of packets at the forking node and then apply
Little’s theorem. Thus for a given arrival rate / we have,

� %
� / (22)

where
�

is the average number of packets at the forking node
including the ones in service (if any). Using first principles,
we compute

�
which is composed of two terms (1)

� X , the
number of packets at the lower states defined over '�X , and (2)� � , the number of packets at the higher states defined over
' � . � X and

� � combined using a normalizing constant lead
to

�
.
� X can be obtained from the following expression,

� X % & X � XN� � b �2H 4 � & � �� H�
 4 � J 
 �� ��H
% & �

��
)MJ X	� XN� � ��+�� �2H 4 
 J �H ��H ��

where � H is a column vector of length )  � � #@+ and its
6 0��

entry represents the number of packets at the forking node
when its current state is at level I � ? � I � � � # with phase6
. � � on the other hand can be obtained from Equation (23),

� � % �
2

�
4
_a`db � b 
 & � � [ � � �

% ^I_a`.b � b 
Dc � ^I_a`.b � b �Tc��^ � � �Bc ' [ & �
(23)

The delay-throughput for various link group 1 sizes (  � )
and a given routing bias � is presented in Figure 5. Note that
as the number of servers on link group 1 increases, the average
delay at the forking node decreases drastically. This, obviously
represents a performance improvement at the forking node.
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Fig. 5. Delay-throughput (in log-scale) operating curves for the forking node
for different values of � � .

However as  � increases, more packets are being transmitted
on the slower path which means that either the queueing delay
(time waiting to be served by the fast path server) is much
higher than the slower path downstream delay or the routing
bias has to be adjusted (increased or decreased) to account
for and balance between the delay at the forking node and the
slow path delay. Such a balance guarantees an overall network
performance improvement [6].

2. Proportion of departures from the fast path.

Our assumption in this work is that packets that are trans-
mitted on link group 1 (or the fast path) are subject to a lower
network downstream delay. Figure 6 shows that for various
number of channels on link group 1, for low network load,
100% of the traffic uses the fast path. As the network load
increases, the queue builds up and exceeds � . Thus the routing
policy sends more and more packets over the slower path.
At high network loads, the routing policy does not seem to
differentiate between the fast and the slow path, i. e., all servers
are busy.

Figure 6 shows that the proportion of departure from the fast
path is not sensitive to the number of servers in the slow path.
Actually, as we see in the next subsection it is only sensitive to
the routing bias. The proportion of departure from the fast path� X , computed over state space ' X is given by Equation (24)
and the one computed over state space ' � , � � , is given
by Equation (24). � X and � � combined using a normalizing
constant lead of the overall proportion of departure from the
fast path.

�
3
%

������ ����� e
] & �

� b �2H 4 � J �H F 6 % ?

e
] �

2
�
4
_ ` b � b 
 &�� [ � � � F M - [

# U [ & �
F 6 % #

(24)
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Fig. 6. Proportion of packet departure from the fast path for different values
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Fig. 7. Effect of the routing bias on the proportion of packet departure from
the fast path for � � � � � .

3. Effect of the routing bias on the use of the fast path.

When link group 2 is served by a much smaller number of
servers than link group 1, the routing policy can take advantage
of the routing bias � to improve the forking node performance.
Figure 7 shows that the proportion of traffic that uses the fast
path is very sensitive to the routing bias at low network load.
As � increases, more packets are allowed to wait in the queue
for the fast server (as dictated by the ������� � policy).

At high network load, an increase in � has no clear effect
on the proportion of departures from the fast link. All servers
are constantly busy and the queue length is always larger than
the routing bias � .

VII. CONCLUSION

In this paper we provide a simple procedure based on
matrix geometric techniques to compute exact solution to the
stationary probabilities of a per-flow routing node with a single
input and two outputs. Packets are transmitted on one of two
link groups when they reach the head of the queue based on
a threshold-type routing policy. The main contribution of this

paper is that it is a generalization of the solution obtained
in [11] to the single server output links to a single server link
group 2 and a multiserver link group 1. We show that when
simple solutions do not exit by solving the system Markov
chain by brute force i. e, &(' % & , exploring the structure
of the system may lead to simpler solution procedures using
matrix geometric techniques.
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