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ABSTRACT

Multiple access protocols permit a broadcast communications channel to be shared by a
large number of stations under distributed control. [t is assumed that only one message at a
time can be transmitted successfully over the common channel. We derive a local optimality
condition for synchronous multiple access protocols, and show that many known protocols are
special cases of this condition. We include a survey of much of the recent work on infinite
population tree algorithms that use the history of channel activity to carry out short-range
dynamic scheduling. A novel approach is presented for deriving upper bounds on the max-
imum stable throughput with finite average delay for infinite population protocols. Bounds are
found for the case of arbitrarily complex algorithms, and for the restricted (but reasonable)
class of protocols that obey a ‘“‘degenerate intersection’ property. This latter class is quite
interesting. being a slight generalization of first-come first-served that includes all currently pro-
posed protocols. We extend the model to include multiple access protocols aided by a partial
reservation channel.

Particular emphasis is placed on multiple access in the context of local networks. We
derive a new carrier sense multiple access protocol, virtual rime CSMA, and prove it to be the
best possible CSMA protocol under some common assumptions. In virtual time CSMA, mes-
sages are assigned transmission times during the idle periods on the channel based on their
arrival times through the use of variable speed clocks.

In local networks, the cost of each incorrect scheduling decision is reduced. but it may
be the case that the ratio of the cost of scheduling no transmissions to the cost of scheduling
two or more transmissions is far from unity. The implications of this effect have not been
widely appreciated. We show that these differences in the characteristics of the channel can be
large enough to invalidate a straightforward extension of the previously described upper bounds
on capacity to the case of local networks. In particular, we introduce a new class of hybrid car-
rier sense-binary search protocols and show that they can achieve surprisingly high stable
throughputs when the idle-detect time is much less than the collision-detect time.
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CHAPTER 1
Introduction

1.1: Some Trends in the Evolution of Computing Systems

Early computers were expensive, slow and unreliable. Every effort was made to
transform each problem into a form that was easy for the computer to solve. because the cost of
the computer itself dominated the cost of computer aided problem solving. Batch jobs were
prepared off line using (essentially) manual systems to convert the job into a machine-readable
form such as a paper or magnetic tape or a deck of punched cards. After execution. some out-
put in an easily machine-writable form was produced. such as another tape or card deck. or a
printed listing.

Over time. the power and reliability of computer systems increased much faster than its
cost. However, programmers were becoming more expensive and less reliable as many new and
ever more complex applications were attempted [Uzga74a). Because the cost of programmers
had begun to dominate the cost of computing. interactive timesharing systems were developed
to simplify the programming task. Some efficiency of use of the computer resource was
sacrificed in exchange for efficiency of use of the human resource.

This same increase in the power of computer systems also led to greater sharing of
computing resources in an attempt to gain efficiency. Multiprogramming allowed several
independent computations to progress ‘‘simultaneously’’. Furthermore. such applications as
data bases. enquiry-response systems and electronic message systems led implicitly to the
notion of shared data and cooperating processes. Thus, convnunications became an integral part
of computing.

As integrated circuit technology improves, it is safe to assume that both the size and
cost of reasonable ““computing engines ' will continue its sharp decline. It is expected that the
cost of the computer hardware will become negligible compared to the total cost of many appli-
cations. Microcomputers are becoming commonplace in office equipment and are even begin-
ning to appear in the home.

As computing power becomes decentralized, we expect that the sharing of data will
become even more important. Sharing of data is not possible without some sort of communica-
tions network. Since we expect the processing elements that a network is to connect to become
smaller, less inexpensive and more numerous. the network itself should be simple, inexpensive
and capable of operation without central control.



Loosely speaking, a network consists of any medium that supports the exchange of
information between stations together with a set of instructions that describes the way in which
the network is used. In point-to-point networks, such as the telephone network or the
ARPAnet [Klei76al. the medium consists of a set of links connecting pairs of stations, possibly
including some additional switching centers to permit communications between stations having
no direct connection. In broadcast networks, the medium consists of a single channel for send-
ing information. If any station transmits a message, it will be received by every other station.
thereby providing a direct connection between every pair of stations.

Broadcast networks come in many forms, each with different performance characteris-
tics because of the physical properties of the particular type of multiple access channel that is
employed. In satellite networks [Abra73a. Lam74a, Jaco78al, it is assumed that a set of widely
separated ground stations wish 10 communicate by relaying messages through a transponding
satellite. In addition. it is usually assumed that neither the ground stations nor the satellite are
mobile. so that ail ground stations can synchronize their transmissions to arrive at the satellite
within slots of duration equal to a message transmission time. Since all ground stations can
monitor the retransmission of each message as it is transponded by the satellite (including the
sender), both positive and negative acknowledgements are provided at no cost. However,
because of the long round-trip propagation time from the earth to an orbiting satellite and back
to the earth (about 250 msec. for satellites in a geostationary orbit), this acknowledgement will
arrive long after the transmission of the message is completed.

In ground radio packet switching [Robe72b, Kahn77a, Kahn78a]. it is assumed that the
stations are distributed over a small geographic area. In general, the error rate on ground radio
channels is not negligible. In addition, it is often assumed that the stations are mobile. so that
the topology of the network can change rapidly. Since messages are exchanged directly between
nearby stations, the propagation time may be small enough for the *‘leading edge’” of a message
to arrive at its destination long before the end of the message has left its sender. Thus, the sta-
tions can take advantage of the current activity on the channel in making scheduling decisions.
However, because of the caprure effect, it is commoniy assumed that a transmitting station will
be unable to determine whether its messages were received correctly at their destinations (or
**collided™ with other messages) simply by monitoring channel activity.

In local bus’ networks [Metc76a. Chri78a. Raws78a)], broadcast communications takes
place along a coaxial cable or an optical fibre. The bus is used to provide communications in a
small area, such as within a building or a complex of buildings. with a very low error rate.
When a coaxial cable is used. the end-to-end propagation time over the network is much
smaller than a typical message transmission time. providing useful feedback about the state of
the channel to all stations in the network. When an optical fibre is used. transmission speeds
can be increased dramatically. making the channel feedback information less useful. In addi-
tion, because signals propagate in only one dimension (i.e., along the bus), there is no capture
effect. Thus, messages can be coded in a manner that permits transmitting stations to detect
collisions as they occur.



When the network is to support a very large number of *"bursty’” stations, i.e., each sta-
tion has a high peak to average load ratio. the simplicity and potential for sharing of the com-
munications resource of broadcast networks becomes attractive. However, since it is assumed
that the channel cannot support several transmissions simultaneously, such networks require
some cooperation between the stations in the use of the channel. Multiple access protocols
provide such a mechanism for sharing the channel under distributed control. Such protocols
rely on relatively simple algorithms to grant stations access to the channel.

1.2: The Multiple Access Problem

Let us define the ‘multiple access problem to be the efficient scheduling of a broadcast
communications channel that is shared by a distributed population of stations to transmit mes-
sages. The channel is a resource that can transmit successfuily only one message at a time in
any region in space: if two or more nearby stations attempt to use the channel simultaneously,
all ransmissions are destroyed. However, each transmission has a limited range; if the system
is distributed over a much larger region than the transmission range of a typical station, several
widely separated stations can successfully transmit messages simultaneously. The complexity of
the optimal scheduling problem increases dramatically with the “‘dispersion’ of the stations.
We suggest that the following set of problems is representative of this increasing complexity.

0. The single queue environment: All stations are located at the same point in space. Con-
trol information can be exchanged instantly and at no cost in channel capacity, so sta-
tions can form a queue to use the channel. This is just the classical single-server
queueing problem.

1. The one-hop environment: Stations are not co-located in space, but they are sufficiently
close together to share a single, common operating environment. All stations are
within range of their intended destinations: each station hears all transmissions on the
channel, and all simultaneous messages are lost. No access scheme can exceed the per-
formance of a single server queue. but the stations cannot in general form a queue
without using part of the channel to exchange explicit protocol information. However,
we observe that partial control information is available to each station at no cost in
channel capacity by monitoring the activity on the channel.

2. The hidden station environment: All stations are within range of their intended destina-
tions, but each station hears only a subset of the transmissions on the channel. We
define a hearing graph on the network as follows: the stations are the nodes; an arc from
station / to station j will exist if either station can hear the transmissions of the other.
The environment at the destination is no longer the same as at the source. so stations
can no longer reliably determine whether a message will suffer interference at its desti-
nation by monitoring the channel at the source. Successful reception of simultaneous
messages becomes possible, so the single server queue is no longer an upper bound for
the performance of an access scheme. If the stations could form a queue to use the
channel, the optimum use of the channel would require solving an (NP-complete) con-
strained minimal colouring problem on the hearing graph of stations in the queue. (If



have an infinite number of colours corresponding to different time slots. (If we allow
buffered stations. a station with » messages queued for transmission must be
represented by n nodes in the graph.) The capacity of the channel would then be the
average ratio of the number of successful transmissions over the number of colours
(i.e., time slots) used to colour the hearing graph. Note that any channel that allows a
positive rate of transmission has infinite capacity in the hidden station environment if
we allow the ratio of the network diameter over the transmission range of a station to
go to infinity. Hence. we shall often be more concerned with the capacity of a region
covered by a single transmission, than with the total capacity in the hidden station
environment.

3. The multi-hop environment: Stations need not be within range of their destinations, so
messages must be forwarded along a path through a series of repeaters before reaching
their final destination. The environments at the source. destination and each inter-
mediate repeater will be different. The new issues of congestion. routing, connectivity,
locating, and hierarchical organization become important. Even if all stations could form
a gueue to use the channel. solution of the colouring problem above cannot guarantee
the best use of the channel. The flexibility to change the routing of each message
requires us to solve the colouring problem for all possible combinations of paths for the
messages in the queue.

1.3: Previous Work

The behaviour of systems in the single queue environment is well understood in the
domain of queueing theory [Cohe69a,Klei75a, Klei76al. The single-queue environment will
not be considered here, except, perhaps, as a comparison for other systems.

There is a vast literature on the one-hop environment. Several authors
[Mart70a, Heit76a. Klei76a, Klei77b, Klei79b, Toba80a, Lam79a] have attempted to classify vari-
ous protocols and explain their advantages, problems and ranges of applicability. Until very
recently. there have been many separate results for specific operating environments and ana-
lyses of ad hoc access schemes, but no unified understanding of the problem. The results for
the hidden station environment are typically extensions of one-hop systems into the hidden sta-
tion environment. Most results for the multi-hop environment are either gross approximations
dependent on many strong assumptions. or provide only asymptotic bounds for very large sys-
tems [Akav78a, Klei78b].

A key parameter in choosing a particular protocol appears to be the dimensionless pro-
duct of system performance constraints p T [Akav78a. Lam78a], where p is the required average
throughput rate and T is the allowable average delay. From Little’s result [Litt6lal, we know
that under rather general assumptions, the average number in system equals the product of the
average arrival rate and the average time in system. Hence, pT is merely the allowable average
number of messages in the system.



For a stable system, the channel capacity (measured in successful message transmis-
sions per unit time) must exceed the average arrival rate of new messages. Scheduling conflicts
(and hence delays) occur only because of statistical fluctuations in message lengths and arrival
times. We may thus interpret pT as a measure of the ‘‘burstiness™ of our system. The
answers to the multiple access problem in the limits of p 7—0 and p T—oo are clear. If the sys-
tem must deliver messages too quickly to allow any queueing delays, the channel capacity must
greatly exceed the average load: there will be no conflicts, and no arbitration between requests
to use the channel are needed. If unbounded delays are acceptable, no capacity will be wasted
if the channel is split to give each conversant pair of stations a dedicated, conflict-free subchan-
nel whose capacity is proportional to their average transmission rates. Unfortunately. the
definition of optimal (or even good sub-optimal) protocols for the most important case, namely
pT non-zero, finite and reasonably small. remains poorly understood.

The first multiple access protocols were static scheduling algorithms that allowed small
populations of passive stations to communicate with a central controller [Mart70al. The sim-
plest such schemes involve central control using a polling algorithm [Konh74a,Schw77a]. The
class of polling algorithms allows control of the channel to be passed from station to station
according to a cyclic polling list: all stations are offered a turn to use the channel if they wait
long enough. In roll-call polling, the controller has the only copy of the list, and names the sta-
tion to transmit in each slot. In hub polling, each station must be aware of the polling list. The
controller initiates a polling cycle by giving control to the first station in the polling cycle.
Thereafter, each station passes control to the next one until the cycle is completed.

Such polling algorithms can be implemented in a distributed fashion. Time Division
Multiple Access (TDMA), where the channel is split into a series of slors in the time domain
that are assigned to stations in a round-robin fashion, may be thought of as an implementation
of roll-call polling. MSAP [Scho76a.Klei77a] and BRAM [Chla79a] are implementations of
hub polling. Control of the channel is passed between stations according to a cyclic priority list,
and the “‘silence symbol’’ that delimits the end of a station’s transmission signifies that control
is passed to the next station in the cycle.

The class of contention algorithms requires the stations to actively compete for a turn 1o
use the channel — a station can wait forever without having control of the channel explicitly
given to him. In “‘pure” ALOHA [Abra73al, stations can transmit at any time without regard
for the activity of other stations. If they receive no acknowledgement that their transmission
was correctly received within a specified time, they retransmit the lost message, taking care 10
insert a further random delay to prevent two colliding messages from remaining deadlocked for-
ever. Note that pure ALOHA has good delay characteristics under light load, but is wasteful of
channel capacity. Furthermore, it can be shown [Klei75b. Lam75a] that ALOHA is inherently
unstable because of the positive feedback from the retransmission of previously-collided mes-
sages. Fortunately, pure ALOHA is so simple that its performance does not further degrade in
the hidden station or multi-hop environments.



Many extensions to the ALOHA protocol have been proposed to increase its perfor-
mance and improve its stability. Roberts {Robe72a] suggested synchronizing the starting times
of each message to increase channel capacity. In a slotted system, messages either destroy each
other completely or not at all. [f message propagation times across the network are small with
respect to the transmission time of a message, the Carrier Sense Multiple Access (CSMA) pro-
tocols [Toba74a, Klei75¢] can reduce wasted channel capacity in the one-hop environment.
Before transmitting, stations sense the channel for activity to determine whether the channel is
idle (in which case it can transmit) or is already in use. There is still a danger of collisions
between widely separated stations because of race conditions. Whenever a station senses the
channel idle and begins transmitting a message. there is a non-zero propagation delay before
the ‘“‘leading edge’” of the message reaches the other stations. During this time, the other sta-
tions could sense the channel idle and begin transmitting their own messages.

By preventing stations from transmitting when the channel is busy, CSMA introduces
the problem of what to do with the messages that arrive when the channel is busy. Several
CSMA variants have been proposed to handle this problem. notably non-persistent, where sta-
tions sensing the channel busy wait a random time before trying again. I-persistent, where all
stations sensing the channel busy transmit as soon as it is sensed idle. and p-persistent, where
stations sensing the channel busy transmit with probability p as soon as it is sensed idle.
CSMA protocols were first proposed for ground radio packet networks. where a station cannot
detect its own collisions. However, CSMA has also been applied to a coaxial cable where colli-
sion detection is possible [Metc76al. Tobagi has also extended the analysis of CSMA to the
hidden station environment [Toba75a] with a central destination using a technique of sending a
busy tone on the acknowledgement channel.

Static protocols are designed for a particular operating environment; the operating
environment includes the channel load. the size of the user population, etc. Adaptive schemes
change as a function of their operating environment. progressively reducing contention as load
increases. Recently. some good adaptive access schemes for the one-hop environment have
been proposed and analyzed. Hayes [Haye78a] has analyzed an adaptive form of roll-call pol-
ling that involves probing groups of stations in search of ready stations. An entire group with
no ready stations can immediately be ignored for the duration of the current polling cycle;
groups with ready stations are further probed until single ready stations are isolated and allowed
to transmit.

The tree algorithm of Capetanakis [Cape78a] is a distributed analogue of adaptive pol-
ling. The algorithm proceeds in a series of service epochs. A group of stations is selected for
the first slot of a service epoch; should there be a collision, the stations that were involved in
the collision are split up to resolve the collision. and all other stations must wait until that par-
ticular collision is completely resolved before continuing. This ‘split traffic upon collision™
idea is applied recursively to form a binary tree whose leaves are idle and successful slots and
whose internal nodes are collisions.



The URN scheme [Klei78a, Yemi80a] uses a partial reservation channel to find a good
estimate of the number of ready stations. Reservations consist of sending a signal on a ternary
channel of small capacity to announce that the station has received a new message and entered
the ready state. Stations listening to the channel can determine whether zero, one or more than
one station received a new message in the current slot. Each station estimates the number of
ready stations as the difference between the number of attempted reservations and the number
of successful transmissions on the message channel. The estimate is reset at the end of a busy
period on the channel. This estimate is then used to choose the optimum number of stations
to be allowed to transmit in the current slot to maximize the probability of a successful
transmission.

1.4: Contributions of This Work

1.4.1: Local Optimality Conditions for Protocols

We have developed a rather general /ocal optimality condition for all synchronous mul-
tiple access protocols that can be described by an imbedded discrete time Markov chain. This
condition provides a rule for selecting transmission rights for each station that maximizes the
expected channel utilization over all slots during which the system is in that particular state.
Many known protocols are special cases of this general rule, ranging from ALOHA and CSMA
to MSAP, TDMA and the URN scheme. In addition, the method can be used to find the con-
ditions under which each of these protocols is (locally) optimal.

This method can also be extended to the hidden station environment. Below, we show
how this optimality rule can be used to find the optimum transmission probability (ie., its
“‘coin bias”) for each station in a heterogeneous muitihop ALOHA network that maximizes the
capacity of the network for a *‘fixed’” (up to a scalar multiple) traffic matrix.

1.4.2: The Asymptotic Behaviour of Multiple Access Networks

In the past, Kleinrock [Klei79a] has examined the asymptotic behaviour of resource
sharing models under centralized control. He established a “‘scaling effect’”, where the per-
ceived performance of a system for each user improves as the size of the system increases. In
addition, he observed from the “‘law of large numbers’’ that very large probabilistic systems
exhibit a deterministic behaviour.

Below, we address the asymptotic behaviour of multiple access systems under disiributed
control. We identify a new phenomenon in these systems. Let us take a fixed traffic intensity
(below the nominal channel capacity), distribute it uniformly among M homogeneous stations.
and then require those stations to transmit that traffic over the channel. We show that there
exists a level of traffic intensity, called the infinite population channel capacity, beyond which the
average delay grows at least linearly with M for any realizable distributed multiple access proto-
col. Furthermore. for traffic intensities below the infinite population channel capacity, the delay
performance for some recently devised protocols is almost completely insensitive to M. We
have made significant contributions to both the determination of the infinite population



capacity, and to the study of this new class of multiple access protocols.

1.4.3: Multiple Access in Local Area Networks

Many local area networks are now being built using variations of the CSMA protocols
that were extensively analyzed by Tobagi and Kleinrock. A major drawback to these networks
is the long and variable delays inherent in any system that depends on random retransmission to
resolve collisions. This has limited the applicability (or, at the very least, placed severe restric-
tions on the allowable channel utilization) of these networks to such ‘‘real time’ applications as
packetized voice.

We have defined a new class of CSMA protocols, virtual time CSMA, that offers
significantly improved delay characteristics over other CSMA protocols. These virtual time
CSMA protocols obey the local optimality conditions that we described above. In addition, we
have proven that minislotted virtual time CSMA is optimal over all possible CSMA variants
under some commonly applied assumptions.

All CSMA protocols are extensions of the ALOHA protocol, including virtual time
CSMA. It is now apparent that the new class of ‘‘tree’” conflict resolution algorithms offers
significant advantages over ALOHA in the case of constant slot sizes and active acknowledge-
ments. We extend these protocols to the case where a partial reservation channel is provided.
We define a partial reservation request to contain only a few *‘bits’’ of information, such as the
binary message: ‘‘no station began transmitting’” or ‘‘at least one station began transmitting’’
that the initial propagation time in a CSMA network provides. Other mechanisms for providing
such a partial reservation channel for a local area network have also been suggested, including
an auxiliary channel carrying the logical “OR™ of a ready bit {Hama80a], or a sequence of
ready bits [Haye78a, Mark80a], for each station.

We have developed a class of Hybrid Carrier Sense — Binary Search protocols for such
an environment with exceedingly good performance. In fact as M — oo, we show that its per-
formance exceeds a naive extension of the infinite population capacity results to the carrier
sense environment.

1.5: Outline of the Dissertation

In Chapter 2, we give a Markovian interpretation for the operation of synchronous mul-
tiple access protocols. We derive a local optimality condition and examine several well known
protocols to see how they relate to the local optimality condition. Chapter 3 begins the study of
infinite population protocols, and includes a survey of the work on collision resolution tree
algorithms. In Chapter 4 we derive some upper bounds on the capacity of the best possible
infinite population protocols. We consider both arbitrarily complex algorithms, and the class of
“degenerate intersection’” protocols (a slight generalization of first-come first-served that
includes all currently proposed protocols). Other recent work on capacity bounds is also
described.



Chapter 5 introduces the idea of infinite population protocols aided by a partial reserva-
tion channel. We examine both binary and ternary reservation channels, and show that the
binary channel introduces some interesting new problems that were not present in the original
formulation of the infinite population protocols described in Chapters 3 and 4. Chapters 6 and
7 analyze some specific partial reservation-aided infinite population protocols suitable for local
networks. In Chapter 6, we discuss the virtual time CSMA protocol, and show that it is the
optimal CSMA protocol under some common assumptions. In Chapter 7, we examine a family
of hybrid protocols that are specifically designed 1o take advantage of a common characteristic
of local networks, namely that idle slots can be much shorter than collisions. Chapter 8 gives
some specific protocol recommendations for local networks and lists some suggestions for
future work.




CHAPTER 2
Locai Optimality in Protocols

2.1: A Markovian Model of Protocols

Throughout most of this dissertation, we shall limit our discussions to the one-hop
environment. Consider a distributed population of stations using a synchronous multiple access
protocol to exchange messages over a noiseless communications channel. In a synchronous pro-
tocol. all message transmissions fall into constant length slors of duration equal 10 a message
transmission time. Roberts [Robe72a] has shown that this will increase the channel capacity
significantly: messages destroy each other completely or not at all. The transmissions in a slot
can have three outcomes: an empiy slor, when no station transmits, a success. when exactly one
station transmits, and a collision, when at least two stations transmit simultaneously. We
assume that at the end of each slot all stations receive, at no cost. an acknowledgement when-
ever a message is sent successfully and a non-acknowledgement whenever there is a collision.
and that the protocol may depend on the (possibly infinite) history of activity on the channel.

Given a particular number M of stations, an arrival process and a collision resolution
algorithm, such a multiple access protocol may conveniently be described as a discrete time
Markov process. We note that this results in no loss of generality in our protocols, since an
arbitrary amount of information may be encoded into the state description. We say that a pro-
tocol is stable if a stationary probability distribution exists for the Markov process, i.e.. if the
backlog of unserviced arrivals to the system remains finite with probability 1. and we define
capacity 1o be the supremum over all arrival rates such that the protocol is stable. For example,
with a finite number of stations, Tsybakov and Mikhailov [Tsyb80a] have shown that
N 2(my (), ny(0), . .., ny (D), where n;(¢) is the queue length at the i station at time r.
is a suitable state description for the (memoryless) ALOHA protocol [Abra73al. Among other
results. they proved that the capacity of ALOHA is at least e~! by showing the existence of
parameters for which N () is ergodic whenever the sum of the station arrival rates is less than
e .

Efficient multiple access protocols should not necessarily prevent all collisions. Instead.
they should choose strategies that are likely to yield a high channel utilization when there are
waiting messages. Hence distributed algorithms of the following form should be used to
schedule the transmission attempts on the channel.

Given the following:

1. a set of M stations,
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2. a set of states corresponding to different levels or phases of channel activity.
3. the current state of the system,

4, for each possible subset of stations. the conditional probability that enabling that
set of stations to transmit in the current slot will lead to an idle slot, a success,
or a collision, given the current state of the system, and

5. a universally agreed upon priority ordering of the stations for the current slot.
Choose:

1. a transmission probability for each member of the population.!

2. the next state of the system, given the current state and the outcome of the

current slot.

Since the next state of the system is assumed to depend only on the current state and
outcome of the current slot, the behaviour of the protocol is Markovian. In general, we may
not be able to optimize over all states simultaneously to maximize the efficiency of the protocol.
Below., we show how to create good suboptimal protocols by partitioning the problem.

2.2: A Local Optimality Condition

Let p, p £ 1, be the mean channel utilization, i.e., the fraction of time that successful
message transmissions (as opposed to idle slots or collisions) are occurring on the channel. A
good scheduling algorithm must be capable of achieving a high channel utilization, and must
deliver messages with only a small average delay, T. For any value of p, T is proportional to
the average number of messages in the system, N, by Little’s result. If the message lengths
are all drawn independently from the same distribution, and if the scheduling algorithm does
not discriminate between messages according to their service requirement (ie.. length). we can
apply Kingman's result [King62a] for GI/G/1 queues to show that mean delays are invariant
with respect to the order in which messages are transmitted, and the variance of delays is
minimized by the first-come first-served queueing discipline. Thus a sufficient condition for a
strategy to be optimal is emptying the system of waiting messages more quickly than any other
strategy. Unfortunately, finding an optimal strategy can be a hard combinatorial problem. We
thus expect that investigating some reasonable heuristics will be profitable.

An optimal strategy must have the highest channel utilization averaged over all states
where there are ready stations. Below, we consider a /locally optimal strategy that independently
maximizes the average channel utilization for each non-empty system state. This uncouples the
various states of the system. The optimization problem is reduced to an assignment of

! Yemini [Yemi80a] has shown that it is best to choose these probabilities to be either 0 or 1,
so we shall often view this assignment of probabilities as enabling a subset of the population to
transmit in the next slot.
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transmission probabilities to each station to maximize the conditional throughput over all slots
when the system is in that state.

[t is easy to see that it is best to choose each of these probabilities to be either 0 or 1.
i.e., a pure’ strategy [Yemi80a]. No “‘fractional’’ messages are ever sent, so after the proba-
bilistic experiment has been performed we are always left with some (possibly random) pure
strategy for each slot. Thus the performance of any probabilistic strategy is given by a convex
combination of pure strategies. Since no such combination of strategies can attain a higher
channel utilization than the best strategy. it is clear that a pure stategy must be optimal.

Any pure strategy may be viewed as enabling a subset of the population to transmit in
the current slot. Since there is an assumed priority ordering among the stations (which may
change at each slot), the optimization problem for pure strategies is reduced to finding the
optimal number &* of stations that should be enabled to transmit in the current slot. Some-
times the selection of the number of transmitters. k. is fixed by other considerations. Here we
have a "‘dual’ problem: select a set of transmission probabilities {p’ ,] so that some fixed k is
locally optimal and the expected channel utilization is maximized for the given k.

This local policy may not be globally optimal however. because it does not do long
range planning to try to remain in ‘'good’’ states. Consider a system where messages arrive as
a sequence of arrival points in discrete time from a single Bernoulli source. Each arrival point
independently contains either exactly one message, with probability p. or no message, with pro-
bability 1—p. Whenever an arrival point contains a message, that message enters the system
and is assigned to one station at random. We assume that the number of stations is so large
that it makes more sense to choose enabled sets consisting of arrival points than stations. (We
shall examine this system in considerable detail in Chapter 4.) Let p be 1/2+¢. 0 < e << 1.
Enabling single arrival points, ie.. “TDMA"", is locally optimal. giving a channel utilization of

p > 1/2." Alternately, pairs of arrival points could be enabled simultaneously. Since bor# arrival
points could contain a message, we have introduced the possibility of a collision with probability
pz. However, since a collision tells us that ar least wo messages were transmitted,-and two
arrival points can contain ar most rwo messages. it follows immediately that both enabled arrival
points must contain messages. These two (colliding) messages can be transmitted without

interference in the next two slots. The channel utilization with this second strategy is given by

E[# successes per service epoch] _ 2p > 2
Ellength of service epoch] 1+2-p? 3

which clearly exceeds the performance of the locally optimal policy. Thus. the performance of
a locally optimal strategy may be significantly poorer than the globally optimal strategy.

Let us characterize the behaviour of our locally optimal scheduling policy in an arbitrary
system state /. (Because it is a local policy, all other states can be ignored). Let py be the
expected throughput in state / if the first k stations in priority order are given permission to
transmit. We shall permit three sizes of slots: we assume that the length of a successful

' We shall use the notation “*a > b’ to represent the relation “*a is slightly greater than b°°.
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transmission probabilities to each station to maximize the conditional throughput over all slots
when the system is in that state.

[t is easy to see that it is best to choose each of these probabilities to be either 0 or 1,
i.e., a ‘‘pure” strategy [Yemi80a]. No “‘fractional’’ messages are ever sent, so after the proba-
bilistic experiment has been performed we are always left with some (possibly random) pure
strategy for each slot. Thus the performance of any probabilistic strategy is given by a convex
combination of pure strategies. Since no such combinarion of strategies can attain a higher
channel utilization than the besr strategy, it is clear that a pure stategy must be optimal.

Any pure strategy may be viewed as enabling a subset of the population to transmit in
the current slot. Since there is an assumed priority ordering among the stations (which may
change at each siot), the optimization problem for pure strategies is reduced to finding the
optimal number k* of stations that should be enabled to transmit in the current slot. Some-
times the selection of the number of transmitters, k. is fixed by other considerations. Here we
have a "dual’” problem: select a set of rransmission probabilities {p’i] so that some fixed k is
locally optimal and the expected channel utilization is maximized for the given k.

This local policy may not be globally optimal however, because it does not do long
range planning to try to remain in “‘good’’ states. Consider a system where messages arrive as
a sequence of arrival points in discrete time from a single Bernoulli source. Each arrival point
independently contains either exactly one message, with probability p, or no message, with pro-
bability 1—p. Whenever an arrival point contains a message, that message enters the system
and is assigned to one station at random. We assume that the number of stations is so large
that it makes more sense to choose enabled sets consisting of arrival points than stations. (We
shall examine this system in considerable detail in Chapter 4.) Let p be 1/24+¢. 0<e<<1.
Enabling single arrival points, ie., “"TDMA", is locally optimal, giving a channel utilization of

p > 1/2.! Alternately, pairs of arrival points could be enabled simultaneously. Since both arrival
points could contain a message. we have introduced the possibility of a collision with probability
pz. However. since a collision tells us that ar least 'wo messages were transmitted, and two
arrival points can contain ar most rtwo messages, it follows immediately that both enabled arrival
points must contain messages. These two (coiliding) messages can be transmitted without

interference in the next two slots. The channel utilization with this second strategy is given by

E[# successes per service epochl — _ 2p 2

= =,
Ellength of service epoch]) 142:p2 & 3

which clearly exceeds the performance of the locally optimal policy. Thus, the performance of
a locally optimal strategy may be significantly poorer than the globally optimal strategy.

Let us characterize the behaviour of our locally optimal scheduling policy in an arbitrary
systemn state /. (Because it is a local policy, all other states can be ignored). Let py be the
expected throughput in state / if the first k& stations in priority order are given permission to
transmit. We shall permit three sizes of slots: we assume that the length of a successful

! We shall use the notation **a > b'" to represent the relation “*a is slightly greater than b*".
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transmission is unity, that the length of an idie slot is a, and that the length of a collision is b.
Because the length of a slot is dependent on the scheduling outcome during that slot, the con-
ditional throughput will not simply be the probability that there is a successful transmission in a
slot randomly chosen from among those with the same state information. However, we can
make the calculation simply by borrowing a technique from renewal theory; we define a virtual
time axis including only those slots during which the protocol has the same state information.
The conditional throughput will then be the probability that an observation uniformly distri-
buted over this virtual time axis intercepts a successful transmission. For brevity. let us define

1 A Pridle slot| permission given to k. state /]

k

S, 2 Prlsuccess| permission given to k, state i] .
k

Cy 4 Pricollision | permission given to k. state /]

Then p, will be

Pk = 01 +1.5,+b6:C, b—(b—a)l, +(1-b)S,

(2.1)

It now remains to find the value of k that maximizes the conditional throughput.

Lemma 2.1:

Let f be a function defined on the positive integers. If either f, 2 f,4; holds whenever
Si—1 2 fi» of fi 2 fr— holds whenever f; .| 2 f,. then f is unimodal.

Proof:

Let f;. f; be two distinct strict local maxima. /.e..
Jici <Si> fisns
and
fi-1<S;> fiw
Without loss of generality, let j>i. Then, by the first condition above, we must have
f,' >f,'_:.1 2 2fj~

which contradicts that fj is a strict local maximum. Similarly, by the second condition, we
must have

f_,'? j-1> Zf,'a

which contradicts that f; is a strict local maximum.
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Theorem 2.1:

The sequence {p,} is unimodal in k.

Proof:

Using Lemma 2.1, to prove the theorem. it is sufficient to prove that
Pr+1 2 Pk
implies that
Pk Z Pr—1-
Let p, > pj_;- Then, substituting Eq. (2.1) into this condition, we obtain
Sk Sk-1

(=) [ +(1-5)S, > b-(b-a)ly_+(1-D)S,_,
or )
S (b—(b—a)I,_) 2 S (b—(b—a)1}).
Since S, = (1—pg) S 1+py [y and I, = (U—p) [y, rwe obtain
b(1=p) Sy +(a—b) pp 12 +bpdi_ = bS,
or

S
el gr1-h -4

Ik—l b [k—l'

Thus, let us assume that p g4 2 py. Using Eq. (2.2), it is equivalent to assume

ey -hh=-££
R e K

But

S, S,_
k k=l Pr .
I Tk 1=

so that to show that Eq. (2.2) holds. it is sufficient to show that

or

1 = (l—pk)

a
-

which is clearly true since a/b is positive and 0 < (1 —p,) < L.
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Since we have now proven that {p,} is unimodal in k, it is clear that the throughput is
(locally) maximized by enabling the first k* stations in priority order to transmit. where k* is
the largest value of & for which p; > p,_, holds. Substituting the definitions of S;_; and /,_;
into Eq. (2.2), we finally obtain k* is the largest value of k for which the inequality

§ A a7 (1-p)) (2.3)
Zil__l’i\l_l_z}:ll —p; .

still holds. We note that in the special case of a = b, this condition reduces to a particularly
simple form, namely

We now show the effect of the priority ordering on the conditional throughput.

Theorem 2.2:

The conditional throughput is maximized by a priority order that ranks stations in order of
decreasing probability of being ready.

Proof:

We proceed by showing that an arbitrary priority ordering can be sorted into the above order in
such a way that the maximum throughput is non-decreasing at each step. Without loss of gen-
erality, let us assume that the stations are numbered in order of decreasing probability of being
ready, ie. p;2p; iff i</, but that the initial priority ordering is arbitrary. Let us define
R A{r, ..., ry) to be the set of station numbers given in the current priority order (i.e., a
permutation of {1, ..., M]}). We observe that pi+ (where k* is calculated with respect to the
initial priority ordering) is invariant with respect to permutations of either of the sets
{ri, ... reed or {rgeyq. .. ..yl Hence, the new maximum throughput after either type of
permutation cannot decrease. Furthermore, since we need only the set {p,‘, e .p,k,} to show
that pg+2p,-4. the new optimal k& with respect to the permuted priority list can only decrease.
We may therefore sort the set {rj,...,r.], recalculate k*. and finally sort the set
{’k'+1’ e ,rM} at any time without decreasing throughput. To complete the proof, it remains
to show that if Proes,” Pr,. (i.e., R is not completely sorted), then exchanging the priorities of
these two stations does not decrease the throughput with &* stations, /.e.,

p’k: > pk.
or
S’k‘[b_(b_a)lk'] 2 Sk~[b—(b—a)['k,]
]._p . l—p . Di*s1— P>
but l’k.=—ulk' and S'p.= K S+ nd 1‘2 I.-, so the condition may be
1=py- 1=py- (1=py)
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rewritten as

Ps 41~ P P41 Pk

[b—(b_a)[ O]] . ; bS -
(1-p-)? ek l=pe ¥
or
1% I..
4_|l—Lt—>s.-=
b l—pkc 1—pk-

but §=(1—pye) Spe_j+p4e [yo_y and I =(1—p;.) Ii._|, so we may finally rewrite the condition
as

21

b I8y 2 Seeoy— e

which follows immediately from Eq. (2.3) and the optimality of £*.
a

To summarize, the locally optimal decision rule. given both the state of the system (for
which we have estimated the conditional transmission probabilities {p,-}) and the priority order-
ing, is to choose the first k* stations in priority order. where k* is the largest integer such that
the inequality of Eq. (2.3) is still true. If we are free to choose the priorities, they should be in
order of decreasing probability of being busy. We are still left with the task of determining the
current state of the system and estimating the set of state-conditional transmission probabilities.
We shall now show how certain ““classical’’ multiple access protocols relate to this local optimal-
ity condition. Many of them can be derived as special cases of Eq. (2.3) when suitable assump-
“tions about the statistical properties of the population and of the allowable states of the channel
are made.

2.3: Slotted ALOHA

Let us assume that ail slots are of fixed size. i.e., a =56 =1, and that all messages are of
fixed length equal to the slot size. We note that this corresponds to a ““central station’ model,
such as the original ALOHANET [Abra73al or a satellite channel [Lam74a], since we require
all transmissions to be perfectly synchronized into the slots. We do not wish to impose any
requirement for coordination between stations. so we shall require all M stations to have equal
priority. This can be accomplished by granting permission to transmit to gach station whenever
it receives a new message without regard for the other stations (ie.. all stations are always
enabled). We see from Eq. (2.3) that this policy is locally optimal if

— < 1
§| I=p;

holds for the current state. This condition is clearly true if the sufficient condition

max{p,} < W holds, or, for statistically identical stations, if the necessary and sufficient condi-
I N

tion
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Pi p\J\J f

holds. In the Poisson limit as p—0, holding A A Mp constant, we obtain A <1 for local
optimality.

2.3.1: Stability of ALOHA

It is well known that ALOHA suffers from stability problems. Consider the following
example with homogeneous stations. Whenever a collision occurs, we know that there are at
least two stations ready to send messages. The probability that any randomly chosen sirgle sta-
tion has a message, given that we know that exactly m out of M stations have a message to

send, is simply % p LM However, the conditional information that a collision has occurred
introduces a dependence in the (new) set of probabilities {p,-]. Thus we cannot use Eq. (2.3)
directly. Fortunately, this dependence has a simple form so that the probability of a success
when N out of the M stations are enabled can still be calculated exactly. This success probabil-
ity is a weighted sum of hypergeometric terms. Let H(1.N,m. M) be the term from the
hypergeometric distribution representing the probability of selecting exactly one busy station
when N stations are enabled. given that exactly m out of M stations were busy originally.
Then

M
> HU.N.m M)-Prlm messages in M |collision]

m=2

N
_mz_'z [m 'l_(l_p)M_Mp(l_p)M_l

Prlsuccess|M . N, p)

Ne|(1= ¥ = (1= 4]

= . (2.4)
- (Q-pM — Mp(1 —p)M~!
In the Poisson limit as p —0, Mp —  and Np —y. we obtain
Prlsuccess|\. y] -] (2.5)
rlsuccess |\, = —_— .
T IS0+ e

It is clear why this probability of success following a collision with uncontrolled ALOHA must
be zero., since the same set of ready stations will surely collide again. We conclude that
ALOHA can only be optimal in a /oss system.

2.3.2: Controlled ALOHA

In the previous section, we showed that uncontrolled ALOHA will deadlock when the
first collision occurs unless blocked messages are lost. We now show how the condition of Eq.
(2.3) suggests a flow control scheme to stabilize ALOHA that assigns probabilistic transmission
rights to each station.
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Suppose we were told the exact number of ready stations, m., at the beginning of each
slot. If each ready station were to decide independently whether to actively seek permission to
transmit in that slot with probability 1/m, then the ALOHA properties of equal priorities and
independent decision-making among the stations would be preserved. Since there are only m
ready stations in the system, it is also a locally optimal policy to grant all active stations permis-
sion to transmit in that current slot. If it could be implemented, such a policy must be stable
when the arrival rate is strictly less than 1/e, even as M —oo. This follows because the average
channel utilization (i.e., service rate) over each non-empty state is (1—1/m)™"1 > 1/e.

In general, the exact number of ready stations is seldom known. For finite M, we can
still achieve stability (at the cost of long delays under light load) without any knowledge of the
number of ready stations. We require that the condition of Eq. (2.3) is met even in the worst
case, and let each ready station independently decide to transmit in a slot with probability 1/M.

2.4: CSMA

As was the case with ALOHA, it is again our goal to define a protocol that permits sta-
tions to operate in a manner that minimizes the amount of coordination required among the
stations. However, we now assume that each station can monitor channel activity through car-
rier sensing, so that unsuccessful slots can be cut short to improve the efficiency of the proto-
col.

Unlike the central destination model for slotted ALOHA, it is commonly assumed in
the analysis of CSMA protocols that every station may wish to transmit to every other station.
Thus. to guarantee that each message will be received within the slot in which it was transmit-
ted. we must adjust the length of each type of slot (i.e., idle, success or collision) to account for
the propagation time. More precisely, the length of each slot is now assumed to be just long
enough to guarantee that every station is aware of its type and thus able to determine the start-
ing time of the next siot. Thus, to distinguish our notation for the arbitrary destination model
from our previous notation for the central destination model, we now assume that the length of
an idle slot is @' (a propagation time), that the length of a slot that carries a successful
transmission (of unit length) is 14+a’, and that the length of a collision is #'+a’. where &’ is
taken to be the fraction of each message that gets transmitted during a collision before the
sending stations abort their transmissions. It is common to assume that 5'=1 in local radio net-
works and 5'=0 in local coaxial cable networks [Metc76a].

For this carrier sense environment, the throughput equation becomes
pk = a"[k+(1+al)’Sk+(b,+a')'Ck - b'+a'—b']k+(l—b')5k )

(2.6)

which is equal to H+a' times the solution of Eq. (2.1) evaluated at a=1_,‘z—;,, b=%. It fol-

lows that the properties of unimodality. local optimality, and optimum priority assignment for
inhomogeneous stations that hold for Eq. (2.1) also hold for Eq. (2.6).
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For homogeneous stations, it can be shown from Eq. (2.3) that an optimal policy con-
sists of picking &*=min(M. [x]) stations to transmit in each slot, where x solves

.\'=1;(1—[1——Z- =1;[1_ (14

When b'=0, this result reduces to £*=min(M. lH). [n the limit as M —oo, -~ becomes the

: (2.7

[l—p]"' b'{)f-,a'

M
optimal Poisson traffic intensity y, where y solves

—_— Y, (2.8)

While this equation does not have a closed form solution in general. an iterative numerical
solution can readily be found. For example, Newton iteration could be used with

YN-]
bl
b'+a

yv=1l+yn- :
e_')’.\'—l

giving quadratic convergence. Since y is also the intersection point of the curves y=1—x and
b' - . . . . g , .

y= S ra e~ ", we see that vy is a unique function of the ratio %,—: y=1 when 6'=0, and, using
+

Taylor series expansions, y==+/2/6’ in the limit as %—-O.

Figure 2.1 shows maximum throughput as a function of the lengths of idle slots and
collisions in the infinite population case. It is clear that reducing the detect times for idle slots
and/or collisions increases the capacity of the channel. We observe that the maximum achiev-
able throughput is more sensitive to reductions of the idle detect time than the collision detect
time. This is most fortunate for system designers since it is easier to design stations that can
distinguish between an idle channel and a busy channel than those that can detect and suppress
collisions. This is especially true on a radio channel. It is not difficult for an inacrive station to
detect energy on the channel. However, because of the caprure phenomenon. an active station
may be completely unaware of any other channel activity because the energy of its own
transmission is (locally) so much greater than any other signal. Thus active simultaneous ack-
nowledgements from an idle observer may be required to detect and suppress collisions.

Because of the same feedback problem described for ALOHA above. CSMA does not
meet our optimality condition unless we have a loss system. Moreover. the variable length of
slots in CSMA introduces a further difficulty beyond stability problems. We have shown that
for CSMA to be locally optimal, the offered load per slor must be a constani, even though the
number of messages available for transmission in any slot depends on the sequence of out-
comes in the past slots. In general, 1-persistent and p-persistent CSMA cannot provide a con-
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For homogeneous stations, it can be shown from Eq. (2.3) that an optimal policy con-
sists of picking k* =min(M, |x|]) stations to transmit in each slot, where x solves

(1= =ip|1—

When 5'=0, this resuit reduces to k* =min(M, Iﬂ). In the limit as M —co, % becomes the
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may be compietely unaware of any other channel activity because the energy of its own
transmission is (locally) so much greater than any other signal. Thus active simultaneous ack-
nowledgements from an idle observer may be required to detect and suppress collisions.

Because of the same feedback problem described for ALOHA above. CSMA does not
meet our optimality condition unless we have a loss system. Moreover, the variable length of
slots in CSMA introduces a further difficulty beyond stability problems. We have shown that
for CSMA to be locally optimal, the offered load per sior must be a constant, even though the
number of messages available for transmission in any slot depends on the sequence of out-
comes in the past slots. In general, 1-persistent and p-persistent CSMA cannot provide a con-
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stant load per slot and thus cannot be locally optimal.! Non-persistent CSMA is locally optimal.
but offers poor delay characteristics. In Chapter 6, we wiil present a new CSMA protocol that
satisfies our local optimality conditions and also offers respectable delay characteristics.

2.5: TDMA

TDMA is a simple static scheduling procedure that periodically assigns each station
exclusive access to the channel in a round-robin fashion, even if it is not ready. It is usually
assumed that messages are sent to a common destination, so that all slot lengths are exactly
equal to a message transmission time. Thus, since a=b=1, we see that k*=I1 from Eq. (2.3)
(and thus that TDMA is locally optimal) when mljn{pi} > . which is the case in heavy traffic.

However. as we shall see in the next chapter, TDMA cannot provide channe! access with finite
delays at any value of channel utilization with an /nfinite number of stations.

2.6: MSAP (and BRAM)

Like TDMA, we wish to guarantee that no collisions will occur by periodically assigning
to each station exclusive use of the channel. However, we now assume that each station can
monitor channel activity through carrier sensing, so that idle slots can be cut short to improve
the efficiency of the protocol. Although it is usually assumed that every station may transmit to
gvery other station, we shall also consider the common destination model.

We note that in MSAP, a station is permitted to transmit a// messages in its buffer
whenever it is given access to the channel, while in BRAM a station cannot transmit more than
one message per round-robin cycle. Recall that in our equations, the values of a and b were
normalized in such a way that the transmission time for a successful message was unity. Thus,
in MSAP, @ and & must be re-normalized with respect to the average transmission time for a
rain of messages; in BRAM the normalization continues to be with respect to the transmission
time for a single message. Thus. for a fixed propagation time, the normalized values of @ and b
will be smaller with MSAP than with BRAM. Thus MSAP can continue to be locally optimal
when the normalized propagation time grows too large for BRAM to be locally optimal.

It is known that the efficiencies of both MSAP and BRAM decline as the population
size increases, and that this sensitivity to M increases as the propagation time increases and as
the average load on the channel decreases. However, we see from Egs. (2.3) and (2.7) that
they are locally optimal as long as each of the {p,} is greater than the solution of

£ _1-Kk-(-p), (2.9)
1-p
where K=7ﬁ:—a, in the arbitrary destination model and K=1—% in the common destination

model. Since Eq. (2.9) is quadratic in p. it can easily be solved to show that

I When 6=1, p-persistent CSMA with p=1/(1+a) is locally optimal. However, when b =1,
this single parameter does not have enough degrees of freedom to achieve local optimality.
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is a sufficient condition for MSAP and BRAM to be locally optimal. In the arbitrary destination
model. this condition becomes

—a' +a%+a'b
g .

(2.10)

which reduces to 1 in the limit as ' —0 when the total cost of an idle slot and a collision

2
become equal. In the common destination model. the condition becomes
zatvab 2.11)
b—a

which again reduces to % in the limit as » —a when the total cost of an idle slot and a collision

become equal. (Recall that the total length of.a collision is assumed to be 4'+a’ in the arbi-
trary destination model, and merely 4 in the central destination model.) We shall see in
Chapter 4, that this policy is globally optimal only when p 2 Tz = .7071.

As a numerical example, consider the arbitrary destination model with a=.01, 6 =1,
and unbuffered stations (so that MSAP and BRAM are identical). This exampie is commonly
used with CSMA protocols (see [Klei75¢c] and Chapter 6). In this example, the smallest p for
which MSAP and BRAM are locally optimal is .1~/1.01 —.01 =.0905. giving a minimum
throughput at local optimality of p/(a+p) = .90 — slightly higher than the capacity of the best
CSMA protocols.

2.7: The URN Scheme

We assume that there is a finite number. M, of homogeneous unbuffered stations. We
also assume exact knowledge of m. the number of ready stations, and no information about

their identities. Under these assumptions, p;= 7 holds for any individual station, but the pro-
i

babilities are not independent. If we were to make the approximation that these probabilities
are independent, then we see from Eq. (2.3) that &* would be the largest solution to

m
k=1 7
M <.
=l p=2n
M

Solving for k, we obtain

k—1< 7[1——]

giving k* = ‘:‘ whnch is the exact result [Klei78al.
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The URN scheme proceeds by conducting a series of lotteries that enable some set of
k* stations to transmit in each slot. While this basic URN rule is locally optimal in the initial
state (ie., when there is no other information available besides m), it is completely memory-
less, and thus cannot continue to be locally optimal unless the messages are randomly redistri-
buted among the stations between each slot.

For example, suppose at some time it became known that every station had one mes-
sage to send, at which point the arrival process was stopped. If we were to remember the iden-
tities of the stations that have already transmitted their messages, the set {pi} would always be
independent so that the local optimality results are exact. Clearly the locally optimal policy
would be to select a different station at every slot for M slots until every station had transmit-
ted its message — giving perfect scheduling of the channel. However, using the memoryless
URN rule, the expected number of slots required to transmit all the messages would be given
by

m=M Pm
where
m\{(M—m
1 J{k*—1
Py =
[
and k*= I% . Using Stirling’s approximation for n! =~2mn (n/e)”, it can be shown that

Py = e-(1=1/m)™1-(1 = m/ M)MIm=1

which is approximately 1/e when 1 << M/m and 1 << m. Thus as M grows large in this
example, the memoryless URN policy would require almost ¢ times as many slots to empty the
system as the locally optimal scheme with perfect memory (i.e.. round-robin).

2.8: Application to the Hidden Station Environment

While our loca/ optimality condition cannot be used to find a globally optimal protocol
for the hidden station environment, it can be used with some protocols (such as slotted
ALOHA) 1o find optimal values of system parameters. In particular, since the slotted ALOHA
protocol is memoryless, local optimality can be used to calculate the set of probabilistic
transmission rights for busy stations, {p,-). that allows maximum stable throughput to be
achieved for a fixed (up to a scalar multiple) traffic matrix for the network.

Figure 2.2 shows the hearing graph of a simple four station network in the hidden sta-
tion environment. We assume that each station generates messages at the same rate. and that
the destination of each message is equally likely to be either of the two nearest neighbours of
the originating station. We also assume that all transmissions are ‘‘omni-directional”’ so that.
for example, A4’s transmissions to B interfere with C’s transmissions to D. By symmetry, it is
clear that we need examine only a single source — destination pair, say the attempts by 4 to
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Figure 2.2: Hearing Graph of an Example Network

send to B.

Since we have ailready chosen to use the controlled slotted ALOHA protocol, and have
specified the relative throughput by each station, the problem can be formulated as follows.
We apply the local optimality conditions at the intended destination, namely B. giving 4
(locally) lowest priority, and look for the largest p such that it would still be locally optimal at
B not to completely disable 4 from transmitting. Assuming constant size slots, 4 will be
granted permission according to the local opiimality rule as long as

2-%@

holds, from which we obtain p < 1/3, giving p*=1/3. Thus, the “‘capacity”’ of this network for
this symmetric nearest neighbour traffic matrix using controlled slotted ALOHA is

Tk _;2=£:._.
4:p*(1—p*) 57 .5926

message-hops/slot.

Using controlled siotted ALOHA is anything but globally optimal for this particular net-
work. however. Careful examination of the hearing graph shows that the true capacity is 2
message-hops/slot. This level of throughput is clearly altainable by simultaneously enabling
any neighbouring pair of stations to transmit to their opposite neighbours (e.g., enabling both
A and D to transmit to B and C. respectively). No higher throughput could possibly be
achieved because each message (including multi-destination ‘*broadcast’” messages) is heard by
exactly two potential receivers. Since a station can receive at most 1 message per slot and no
station can transmit and receive simultaneously. achieving a throughput of 3 message-hops/slot
would require the network 1o contain 3 receivers and at least 2 transmitters — an obvious
impossibility in a 4 station network.
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2.9: An Evaluation of Local Optimality

Above, we have given three examples comparing the performance of the protocol we
obtain by applying the local optimality conditions to a particular operating environment. In two
cases, namely the introductory example in §2.2 and the hidden station example immediately
above, the performance of the locally optimal protocol is much poorer than the globally optimal
protocol. In the third case (in §2.7), local optimality (with memory) gave much better perfor-
mance than the memoryless URN scheme. While we are encouraged that many known proto-
cols appear to obey local optimality, the above performance comparisons clearly do not provide
enough information to judge the merits of this heuristic.

In the sequel, we will return to our local optimality condition several times. In Chapter
3. we will present the locally optimal infinite population tree algorithm. We show that its capa-
city (and, indeed, its behaviour) is very close to the best known infinite population protocol for
Poisson arrivals. Using the results of Chapter 4, where we examine Bernoulli arrival processes
in detail, we see that our choice of the Bernoulli arrival probability in the example of §2.2.
namely p=%+e, is really the worsr case for local optimality in such a system. On the other

hand, local optimality gives the exact globally optimal protocol for all p 2 %2.7071. In

Chapter 6, we will present the virtual time CSMA protocol. This protocol satisfies our local
optimality conditions in a loss system, and we prove it to be the globally optimal protocol for
Poisson arrivals under that assumption. Thus, we feel that, on the whole, local optimality is
probably a reasonable heuristic. In addition, since the state of the system in real networks can
change dynamically in the middle of the collision resolution process as new messages enter the
system or because of the mobility of the stations. the value of any planning that local optimality
fails to perform should not be overestimated.
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CHAPTER 3
Synchronous Protocols without Reservations

3.1: The Inherent Difficulty of the Multiple Access Problem

In a normal queueing system, all the work collects in a queue from which the server
selects customers. [t is implicitly assumed that the server can identify any customers waiting in
the queue. I[n addition, most queueing systems are assumed to be work conserving, i.e., the
server is busy granting useful service to some customer(s) whenever there are customers in the
system. Variability in the inter-arrival and service times causes queueing delays which grow as
the utilization of the system increases, but (in the absence of any overhead) the useful utiliza-
tion of the system can be made arbitrarily close to unity if we are willing to tolerate a
sufficiently-large (but finite) average deiay.

When a distributed population of stations shares a channel, however, there is no
observable queue of messages waiting to be transmitted since these distributed messages cannot
“'see’’ each other. Scheduling the use of the channel becomes difficult, since waiting messages
must first be found before they can be transmitted. Thus part of the channel capacity will be
lost as overhead either directly in the exchange of protocol information, or indirectly by an
imperfect scheduling algorithm that wastes the channel in idle periods or collisions when there
are waiting messages. Thus the price of having a distributed system will be increased delays for
a given level of system utilization. In fact, as first shown by Pippenger [Pipp81lal, there are
conditions under which this overhead is so severe that no realizable protocol can be made to
fully utilize the channel.

Let us therefore define the capacity, C, of a channel. given a particular number M of
stations, the arrival processes for all stations, and a multiple access protocol, to be the
supremum over all channel utilizations such that the average delay is finite. This (new)
definition is consistent with the definition of capacity for the single queue environment.

Care must be taken in defining capacity of systems in the limit of an infinire number of
stations.. In this case, the evaluation of capacity requires that two limits (M — oo, and the
supremum over all utilizations having finite delay) be taken simultaneously. Consequently. we
require a more precise definition of capacity that clearly prevents any possible ambiguities.

Consider the problem of determining the capacity of a channel using round-robin
TDMA for M identical stations as M — oo, The capacity is unity for any finite M. since each of
a finite number of stations has a finite queue (giving a finite average number of messages in the
system) whenever the channel utilization is strictly less than unity. Thus, if we could first find
capacity for M stations and then let M—co, the capacity with an infinite population would
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appear to be unity. However, if we first let M/ —oo, it is clear that the average backlog of mes-
sages will be finite only if the average queue length at each station is zero. Since the expected
channel utilization with TDMA would be zero if the expected number of waiting messages at
each station was zero, TDMA appears to have zero capacity in the infinite population limit.

Maximum throughput is not the only performance statistic of interest for real systems.
Mean delay and the probability of blocking are also important. There has been much recent
interest in new measures of system performance that combine these measures into a single per-
formance statistic. For example., power [Yosh77a,Gies78a, Klei78b, Klei79a] increases with
throughput, and decreases with delay and blocking. The resolution of this apparent ambiguity
in the capacity calculation should be done in a way that favours reasonable delay.

We therefore propose the following method for calculating capacity. Choose any con-
straint < % on the maximum mean delay T(p) (expressed in units of a message transmission
time). We assume that T(p) is an non-decreasing function of the channel utilization p. Define
C. to be the supremum over all p such that T(p) < r. Then the capacity is simply

C 2 supC..
<o

Returning to the previous example, we know [Mart70a)] that for TDMA

M
+—t
2(1=p)°

which is an increasing function of both p and M. It follows that for any 7 < e and any p, we
can find a large enough (but finite) M such that

T(p. M) > 7.

T(p, M) =1

Indeed, this inequality is true for all M exceeding
20 =D (1 —p).
Thus bl{im C.—0 for all r<eo, and hence C ésgp C.=0, and the infinite population capacity

of TDMA is clearly zero.

This apparent discontinuity in capacity as M — oo is really not a discontinuity in a prac-
tical sense. In real systems, there is always some finite upper bound to the tolerable mean
delay. Consequently, it is not C but C,. for some 7 < oo, that is important. We have already
shown that the mean delay grows linearly with M when TDMA is used, so there will always be
a finite value of M beyond which TDMA becomes impractical.
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3.2: Infinite Population Multiple Access Protocols

Results like the TDMA example in the previous section have stimulated considerable
theoretical interest in infinite population multiple access protocols. Protocols suitable for an
infinite population of stations are also of considerable practical interest for systems with a very
large (but finite) number of stations. Their performance in the finite population case is at least
as good as it was in the infinite population case. They are robust in the sense that each station
need not be aware of the addresses of every other station in the system, or even of the exact
number of stations in the system. Thus stations can enter or leave a working system, as would
be required, for example, in a mobile or a dynamic environment — a key property for practical
systems. Furthermore, when such protocols are used, the average message delay for a given
channel utilization is insensitive to even large changes in the number of stations sharing the
channel.

As we have already seen in the TDMA example, any 'protocol that operates in a manner
that creates a positive average queue length at each station will be infeasible in the infinite
population case. The average number of messages in the system will grow without bound as
M — o, and hence the mean delay must also grow to infinity by Little’s result [Litté1a]. Con-
sequently, it makes no sense to represent the message queue at each siarion explicitly when
describing an infinite population multiple access protocol. Instead, the ‘‘queue” should be
viewed as a finite set of ‘“‘real” messages (i.e., messages actually waiting to be transmitted) uni-
formly distributed over an infinite set of **potential’’ messages (i.e., messages thar could be wait-
ing to be transmitted), and service becomes a probabilistic event. In many infinite population
protocols, the elements of these sets are either points on the real time line, each possibly
representing the arrival time for some message, or infinite sequences of binary digits. each pos-
sibly representing the address of some station having a message for transmission (these
addresses may be pre-assigned deterministically or randomly constructed through. say, tossing
coins).

At the start of each slot, the protocol enables (i.e., grants permission to transmit to) a
subset of the population: each station transmits an enabled message if it has one; all other sta-
tions remain silent for the duration of the slot. The choice of which subset to enable may
depend on the outcome of previous attempts. Each attempt to offer service may resuit in a suc-
cessful message transmission if exactly one “‘real’’ message was enabled, or merely provide
some information about the distribution of *‘real’’ messages. The object of a protocol is to
efficiently partition the set of potential messages into subsets each containing one real message.

The slotted ALOHA protocol [Robe72a, Abra73al was one of the first infinite population
protocols studied and implemented. It is also one of the simplest from both a conceptual and
analytic viewpoint. This protocol allows messages to be transmitted without regard for the
actions of other stations or the activity on the channel. Newly generated messages are transmit-
ted in the first slot after their arrival, any message lost in a collision is repeated (i.e.,
retransmitted) after a random delay. This protocol gathers no information from the channel
history, so its performance does not degrade in the hidden station environment. In fact. it
effectively destroys information by randomizing the retransmission of lost messages. In
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exchange for simplicity and small delays under very light load, ALOHA offers poor channel
utilization, with maximum throughput not exceeding 1/e = .37 in the infinite population limit,
and lacks stability (except in a loss system) because the retransmission of lost messages causes
a positive feedback on the input rate that will eventually overload the system
(Lam75a, Ferg75al. Even with a finite population. where the stability issue can be solved,
ALOHA suffers from large, unpredictable message delays with high variance.

3.3: Tree Resolution Algorithms

Recently, a new class of stable ‘‘self-organizing’ synchronous multiple access protocols
has been discovered. These protocols employ scheduling algorithms that dynamically adapt to
the channel history. Such dynamic scheduling algorithms are commonly called wree algorithms
because their state transition diagrams may be drawn as a (possibly infinite) ternary decision
tree.

The performance analysis of tree algorithms has proven to be a difficult task because of
the complexity of the state space. For example, in order to calculate delays, each state must
encode both the relevant information from the past history of channel activity and size of the
current backlog of unexamined "‘potential’ messages. Fortunately, the capacity calculation is
much more manageable. No reasonable algorithm will ever enable so large a set of potential
messages that the expected number of actual messages is infinite. It is a certainty that a colli-
sion will occur when such a large set is enabled — giving no new information about the distri-
bution of messages at the cost of one slot. Thus. for the capacity calculation, we may assume
that the current backlog of unexamined potential messages is so large (but still finite) that the
algorithm is always free to enable as many potential messages as it wishes. The exact size of
the backlog becomes unimportant to the operation of the protocol, so that for the capacity cal-
culation it is sufficient for the states to encode only the relevant past history of channel activity.

Capetanakis [Cape78al defined the algorithm shown in Figure 3.1. Stations can only
join the collision resolution algorithm (i.e., become active) at the start of what we shail cail a
service epoch. All messages generated during one service epoch are transmitted successfully at
some time during the following epoch. Access to the channel within a service epoch is con-
trolled by having the stations toss fair binary coins. Only those active stations that have gen-
grated a particular sequence of coin tosses are allowed to transmit in each slot.

The algorithm proceeds as follows. In the first slot of each service epoch. the protocol
enables all active stations to transmit their message (ie., to transmit, each station must have
trivially generated the same zero-length sequence of coin tosses). One can deduce from an idle
slot or a success that ar mosr one station generated that sequence, thus terminating some branch
of the collision resolution tree. The service epoch ends when all branches of the tree have
been terminated. Whenever there is a collision, however, stations learn that more than one sta-
tion had a common sequence of coin tosses. Each of the stations involved in that collision
must continue tossing to generate a unique sequence, thereby extending the collision resolution
tree. Those stations tossing "*1°" retransmit immediately; the rest wait until the new subtree
that is created by all the stations that tossed 1" terminates. Thus the active stations organize
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themselves by tossing binary coins until each active station has generated a unique sequence of
coin tosses (and thus succeeded in transmitting its message successfully).

In Capetanakis’ protocol, the length (and efficiency) of a service epoch depends on the
number of messages that are transmitied in the epoch. It is characteristic of this protocol for
the average length of a service epoch to become very long under heavy load. The original tree
algorithm [Cape78a] granted a/l stations having a message that arrived during the previous ser-
vice epoch permission to transmit in the first slot of the next service epoch. The first few slots
of such a service epoch are unlikely to contain successful transmissions if the expected number
of arrivals during the previous service epoch, 2 N, is much larger than unity. Thus, it is clear
that the original tree algorithm suffers from a strong positive feedback on N, which limits its
capacity to only = .346 — less than the (unstable, but stabilizable) slotted ALOHA protocol.

Capetanakis also extended the basic tree algorithm to reduce this dependence and its
attendant feedback. Beginning with NV, a function of p and the length of the previous busy
period, the first step of the algorithm immediately splits the traffic into groups, each of which is
to contain =1.1 messages on the average, if possible. This significantly improved the efficiency
of the basic Capetanakis algorithm from = .346 10 = .429.

An improvement to the collision resolution strategy (due to Massey [Mass80a]) is to
skip the certain repear collision that would follow a given collision if the algorithm were to
enable all stations that tossed "0’ in the coin toss following the given collision after finding
that none of the stations tossed 1" in this toss (e.g., slot 5 of the /™ service epoch in Figure
3.1 (a)). A further coin toss is performed immediately, as if the repeat collision had occurred
(after all. this collision is a certainty). This improvement increases the maximum stable
throughput of the basic Capetanakis algorithm from =.346 to =.375 — a result also
discovered independently by Tsybakov and Mikhailov [Tsyb80b] — and of the improved algo-
rithm from = 429 to = 462. However, Massey [Mass80a] has shown that this improvement
leads to a deadlock if there are errors in the feedback channel. If a channel error ever makes an
idle slot appear to be a collision, the algorithm will continue splitting and skipping apparent col-
lisions indefinitely. In this same report, Massey investigates the Capetanakis algorithm and its
extensions in considerable depth, and gives a thorough analysis of their performance, stability
and sensitivity to errors.

3.4: The Gallager-Tsybakov Algorithm

Gallager [Gall78a), Tsybakov [Tsyb79a] and Ruget [Berg80a] independently discovered
an improved FCFS protocol. Access to the channel is controlled by a window based on the
current age of messages. Figure 3.2 shows the operation of the algorithm by plotting the win-
dow currently being explored against real time. Messages are shown as lines of unit slope since
they age at a rate of 1 second per second from their arrival time until they have been success-
fully transmitted. Each window is shown as a parallelogram ‘‘sweeping out’” the range of ages
of messages to be transmitted in that slot. All messages whose current age falls within the win-
dow are enabled in that slot.
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At the start of an epoch, all that is known is the maximum age in slots, a. that any
message could have and still be in the system. An initial window is chosen to enable all mes-
sages whose current age is between « and max{(a—r,0) ., where 7 is a constant chosen to max-
imize the processing efficiency when « is very large. If the initial window is found to have at
most one message, the epoch ends immediately and « is decreased to max(a—7.0)+1. Should
this cause a collision, the window is split into two halves for continued processing. There are
now three cases to consider. If enabling the first half causes a further collision, all knowledge
about the second half is erased: it is effectively unexamined with a Poisson distribution of mes-
sages at the original intensity. Thus the first half is immediately split and the second half is
ignored for the rest of the epoch. If enabling the first half causes an idle slot, the second half is
immediately split — it must surely contain at least two messages. If the first half gives a suc-
cess, the entire second half is enabled. An epoch that begins with a collision continues until
enabling the (undiscarded) second half of some pair gives a success.

The performance of the Gallager-Tsybakov algorithm can easily be found from the fol-
lowing renewal theoretic argument. Let us partition the time axis into the series of processing
epochs used by the algorithm, and distinguish between epochs according to the number of mes-
sages they contain initially. Since the arrival process is Poisson. we assume that the initial dis-
tribution of messages within a window is uniform. so that the probability that j messages are
found in the first half of an window containing / messages is given by

;A U]Z".

Thus the expected number of slots needed to process an epoch with k& messages using the
Gallager-Tsybakov algorithm, 2w, is given by

k=1
Wi = D 014w +py ( (M+w) +pp 1 Q4w ) + 3 pp (14w)
i=2

k—1
1 +pk‘1(l+wk_1) + Zpk,i w;
i=2

= . 3.1
= pro—Pi s

with boundary conditions wg=w;=1. Similarly, the expected number of messages actually
transmitted in an epoch that initially contained k& messages is given by

k=1
Pk ) + 3 oy iy

k 4
=2

Me = prote o (I tme_ D+ ppim = . (3.2)
‘ : o L= Dk 0= Prk

with boundary conditions n; =/ for ;i < 2. Thus the throughput is equal to the probability that a
random observation over the time axis intercepts a success, /.e..

q, .
s el B (3.3)
PEFEm ~ 2 '

Z i Wi
k=0

where g, is the probability that an epoch initially contains & messages. As long as the system
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does not empty (i.e.. we assume that the system is heavily loaded), the number of messages in
an initial window has a Poisson distribution with parameter x independent of the past history of
activity on the channel. In this case

A

qk=—e— .

o (3.4)

Equations (3.1) — (3.4) define a simple numerical procedure for finding the efficiency of the
Gallager-Tsybakov algorithm for any A. Computation reveals that the maximum (i.e.. the capa-
city of the algorithm) is = .4871, which is achieved at the optimum value when A =1.266. If
the average arrival rate is less than .4871 messages per slot, the system must eventually empty
and thus be stable.

3.5: Tuning the Collision Resolution Procedure

We can construct a slightly more efficient tree algorithm by selecting the enabled set at
each step of the collision resolution procedure to satisfy the local optimality conditions defined
in the previous chapter. We assume that at the start of each service epoch. an enabled set £y is
selected so that the distribution of messages in Eg is Poisson with parameter Ag. A service
epoch that begins with an idle slot or a success requires no further service. Thus. each multi-
slot service epoch must begin with a collision. We will permit optimization of Aq to find max-
imum capacity, but require that all other enabled sets within a service epoch be selected to
satisfy the local optimality conditions.

Consider an arbitrary state, say i, within a service epoch. We assume that being in
state / implies that we know from the channel history that some set £; must contain at least m
messages. m € {1,2}. and that the distribution of messages in E; is conditionally Poisson with
some parameter A,;. Recall that the locally optimal strategy for state / is to maximize the
expected channel utilization over all time that the protocol spends in state /. Since we have
assumed that all siots are of constant length. it is sufficient to maximize the probability of suc-
cess in each slot.

If the set £, is known to contain one or more messages, then enabling a superset of E,
can only increase the probability of a collision and clearly cannot be locally optimal. The proba-
bility of success when a fraction p of E; is enabled is given by

)\ik -A
. —e ' —\;p
< (k -1 k! Aipe
ZIIJp(l—p)k = ' o (3.5)
k=1 l—e l—e

Since it is well known that the maximum of the function xe™™ occurs for x =1, it is clear that
the maximum (w.r.t. p) of Eq. (3.5) occurs for p=min{l,1/x,}. Thus, since we expect A; to
be less than unity in the region of interest, enabling a/l of £; will be locally optimal.
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If the set £; is known to contain /wo or more messages, then the probability of success
when a fraction p of E, is enabled is given by

k
A/ —A‘;

— ¢ —A,p —A,
20k) 1 kel X! _aple M —e "]
Ezlllp(l P - , . (3.6)
1

Differentiating Eq. (3.6) with respect to p, we find that

Np=1— e—)\,(l—p)
!

must hold at optimality. While there is no closed form solution for the (locally) optimal p, an
iterative numerical solution corresponding to any A; can readily be found. For example, New-
ton iteration could be used with

14+ (A,p‘\'—]) e_A/(I—pN—I)

l + e—)‘ ipN—l

o= L
N A,
giving quadratic convergence.

Given the locally optimal strategy for selecting the next enabled set from £; as a func-
tion of X;, it remains to define a numerical procedure for finding the efficiency of the algorithm
for a particular choice of Ag. Since we have now permitted the splitting procedure to depend on
the measure of the set E; (ie, A;). it is no longer possible to derive a set of difference equa-
tions of the form of Egs. (3.1) and (3.2) that are based solely on the number of messages in
E,.

Any muitiple access protocol that uses ternary feedback (i.e., idle, success. or collision)
to choose its enabled sets can be described by a ternary decision tree of infinite depth, with
2ach node in the tree representing a state of knowledge for the protocol. Thus, 10 numerically
calculate the performance of a specific protocol for a specific choice of Ay, we may solve the
difference equations for all nodes in the tree up to some finite depth to obtain the probability of
occurrence of each state and the probability of success in that state. We may account for the
infinite "‘tail’” of each path down the tree by approximating the remaining states by a geometric
sum.

To make the programming of this technique manageable, the tree may be represented
by a ternary ‘"heap’ stored in a one-dimensional array. The root node is in location 0; the
three sons of node / are in locations 3/+1, 3i+2 and 3/+3. By convention, if imod 3 =2, then
the set £; is known to contain one or more messages, otherwise £; is known to contain two or
more messages.

Let the protocol choose £'; € E; as the enabled set at node /. If £; had been known to
contain one or more messages, then node 3i+1 is unused, node 3/+2 contains E,— E’;
(corresponding to the case of E’; being empty). and node 3/+3 contains E’; (corresponding to
two or more messages in £7)). If E; had been known to contain two or more messages, then
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node 3i+1 contains £; — E'; (E'; is empty). node 3i+2 contains £, — £'; (£'; contained exactly
one message), and node 3/+3 contains £'; (£’; contained two or more messages). This tech-
nique permits rapid, accurate numerical calculation of both the equilibrium probabilities for
each state and the conditional probability of a successful transmission given that the system is
in that state.

Using this technique for direct solution of the equilibrium probabilities, we have calcu-
lated the capacity of the locally optimal tree algorithm to be = .48714 when Ag=1.266. We
have also investigated several other splitting algorithms, including various combinations of local
optimality, even splitting (i.e., the Gallager-Tsybakov algorithm), and choosing a fraction equal
to the reciprocal of the expected number of messages in the interval. The splitting algorithm
that attained the highest capacity was the arithmetic average of local optimality and even split-
ting (the optimal weights in the average were .493 for local optimality, and .507 for even split-
ting). which achieved a maximum capacity of = .48785 with Ag=1.2768. Humblet [Mose79a]
has performed a similar numerical study, and was able to achieve the capacity of = .48775.

Mosely [Mose79a) used a different approach to optimizing the parameters of the split-
ting procedure. By treating the splitting procedure as a continuous function of the size of the
interval, the technique of value iteration [Howa60a] can be applied to iteratively converge on
the optimal splitting algorithm. It is believed that her optimal policy represents the best possi-
ble first-come first-served protocol.

Mosely’s optimum policy is indistinguishable from the best policy that we found in our
study, namely the arithmetic average of local optimality and even splitting. This optimal split-
ting algorithm is to enable the enrire interval when it is known to contain one or more mes-
sages, or to enable a fraction B()\), given approximately by B(\) =.50109:x —.03466-\2, when
the interval is known to contain two or more messages. While it is tantalizing to try to find
some physical interpretation to explain this coincidence, no such interpretation has yet been
found.
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CHAPTER 4
Capacity Bounds for Infinite Population Protocols without Reservations

In this chapter, we focus on upper bounds on the capacity of arbitrary protocols, not
capacity results for given protocols. We shall continue to examine systems having an infinite
number of stations in which the arrival process is either Poisson or consists of a series of
independent arrival points, each having probability p of containing exactly one message and 1—p
of containing no messages. As the protocol operates. we may be able to deduce information
about the current state of an arrival point from the history of channel activity. Initially, we say
that each arrival point is unexamined, We will say that an arrival point is busy if it is known to
contain a message that has not yet been successfully transmitted, and idle if it is known not to
contain a message or if its message has already been transmitted successfully. We note that if
there are 7 arrival points per slot then in the limit as p—0. n—c and preserving the product
A énp, the arrivals form a continuous Poisson process with parameter \.

4.1: Information Theoretic Bounds

Pippenger [Pipp81a] used an entropy argument to develop an upper bound. fp, on the
capacity of such systems. A message can only be transmitted successfully when the protocol
enables a set of arrival points that contains exactly one busy point. Thus. to bound the
efficiency of multiple access protocols, it is equivalent to consider the problem of partitioning a
set of arrival points so that each element of the partition contains exactly one busy point. By
upper bounding the probability that any particular partition could correctly separate the busy
points in the set, a lower bound on the entropy of valid partitions can be constructed. Any
multiple access protocol must construct a valid partition by enabling subsets of the arrival points
according to a ternary decision tree. A protocol that attains a throughput of ¢ p must take the
“‘success’ branch in the decision tree a fraction & of the time. An upper bound on the
entropy of the identity of the terminal node can be constructed as a function of €p- Since each
terminal node in the tree determines a unique partition of the set, these two entropy results
may be combined to form an upper bound on £p- In the Poisson limit as p—0, Pippenger’s
upper bound on capacity is = .744,

Pippenger [Pipp81al also investigated the case where the protocol can correctly distin-
guish between the events that exacrly 0.1, . .., D—1 stations or ar least D stations transmitted
in a slot, thereby being able to gather more information about the distribution of busy points
from each collision. As D — oo, Pippenger was able to show the existence of protocols with
capacities arbitrarily close to unity.
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This same general information theoretic approach was extended by Hajek [Haje81a) to
give a tighter bound of =.711 in the Poisson case. Humblet [Humb80a] further tightened the
Poisson bound to =.704, and gave a bound on the rate at which capacity approaches unity as D
increases.

[n the next section, we give an even tighter bound, also described in [Moll80al, that
relies on a very different and far simpler method of proof. This result gives both an optimum
protocol and the exact capacity for all p > .568, and further tightens Pippenger’s upper bound
for Poisson arrivals- to =.6731. For small values of the Bernoulli probability, p. we also
describe tighter upper bounds. At this date. the tightest upper bound on capacity for Poisson
arrivals is = .587. However, it is commonly believed that the true capacity is near .5.

4.2: Genie-Aided Bounds

In general it is not obvious how an optimal (in the sense that it achieves maximum
capacity) multiple access protocol should operate. However, it is possible to describe optimal
protocols for systems where a helpful ‘‘genie’’ provides certain extra information at no cost to
the protocol. No protocol that explicitly requires the genie's information to operate is feasible
without the genie. Thus the performance of optimal genie-aided protocols will be an upper
bound on the performance of optimal unaided protocols. As a trivial example, perfect utiliza-
tion of the channel would be possible if we could convince the genie to publicly label each busy
point. The key to this approach is the selection of some particular information that does not
make the contention resolution problem ‘‘too easy’’ but still allows one to make meaningful
statements about the performance of an optimal protocol.

4.2.1: An Optimal Genie-Aided Protocol

Suppose the ‘‘genie’” were to label, at no cost, two busy points (and possibly some idle
points) from each collision. Since a collision implies only that at least two busy points were
enabled, we can get no further information from a collision with genie labelling as long as the
labelling is done in such a way that all unlabelled points remain effectively unexamined with
probability p of being busy.

Let us assume that the genie uses the following algorithm to label points from each col-
lision. If no previously known busy points were enabled. the genie labels the first wo previ-
ously unknown enabled busy points (thus possibly creating some known idle points). If one
known busy point was enabled, the genie labels that busy point plus the first unlabelled (i.e.,
previously unknown) busy point that was enabled (also possibly creating some known idle
points), giving less new information. If at least two known busy points were enabled. the genie
trivially labels any two known busy points. giving no new information. Simultaneously enabling
several known busy points gives a certain collision and clearly cannot be optimal.
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We note that it is convenient but unnecessary for the genie to examine the enabled set
in a first-come first-served order. The genie may examine the arrival points arbitrarily if each
point is labelled idle or busy as it is examined until two busy points are found. Since the Ber-
noulli trials were initially independent. all unlabelled arrival points remain effectively unexam-
ined with probability p of being busy even with perfect information about the labelled points.
Thus, any genie-aided collision resolution algorithm faces only known busy points, known idle
points and unexamined arrival points. [t remains to find an optimal genie-aided collision reso-
lution algorithm and to determine the capacity of a protocol that uses that algorithm.

We now show that without loss of generality the search for an optimal algorithm can be
restricted to those algorithms that separately enable each known busy point. Let 4 be any
genie-aided protocol that sometimes enables both a single known busy point and some unexam-
ined arrival points. Define a new protocol, 4’, that simulates the behaviour of 4 but makes
the following modification. Whenever 4 would enable both one known busy point and & >0
unexamined arrival points — giving a success with probability (1—p)* and a collision (from
which the genie labels one new busy point) with probability 1—(1—p)%X — A’ enables either one
known busy point (and no unexamined arrival points) or all remaining unexamined arrival
points (and no known busy points) with probabilities (1—p)* and 1—(1—p)X, respectively.
Should it choose the former, 4’ resumes its simulation of 4 as if a success had occurred.
Should it choose the latter, there is certain to be a collision from which the genie labels rwo
new busy points; A’ interrupts its simulation for one slot to transmit successfully one such
point and thereafter resumes its simulation of 4 as if a collision had occurred. There is thus
perfect utilization of the channel over all slots for which 4’ interrupts its simulation of 4. In
addition, the simuiation is a faithful probabilistic replica of A: it achieves a successful message
transmission with probability (1—p)% (maintaining the same throughput as 4), and it either
increases the number of known busy points by one with probability 1—(l—p)k, or decreases the
number of known busy points by one with probability (1—p)X. Thus 4’ must have at least as
high a throughput as 4. [t follows that no genie-aided protocol can have a higher capacity than
the best genie-aided protocol that chooses each enabled set to be either a single known busy
point or a set of unexamined arrival points. Without loss of efficiency. this may clearly be done
FCFS.

For any such genie-aided protocol, a new period of activity begins whenever the proto-
col enables some (possibly random) number, N. of unexamined arrival points. Each idle
period takes one slot to process no messages. each success takes one slot 10 process one mes-
sage, and each collision takes three slots to successfully transmit the two genie-labelled mes-
sages. Over all periods where a particular value of N is chosen. the conditional genie-aided
throughput. py, is found from a renewal argument to be

- SN+2C}V _ 2_21‘N_SN =1_ I—SV
PN = I +Sy+3Cy  3-2Iy—2Sy 321y - 25y

4.1

where Iy =(1-p)¥, Sy=Np(1—-p)¥land Cy=1- Iy — Sy are the probabilities that enabling
N Bernoulli arrival points gives an idle slot, a success or a collision, respectively. Since the
unconditional throughput is a convex combination of {y], it cannot exceed p ., where N*
achieves maximum conditional throughput.
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We have thus established that an optimal genie-aided strategy is to enable the first
known busy point if there is one, or to enable some fixed number N* of unexamined arrival
points otherwise. This optimal strategy also transmits all messages in a first-come first-served
order. [t remains to determine N* for all p.

Theorem 4.1:
For any fixed Bernoulli probability p, the sequence {p N} is unimodal in V.
Proof:

Let F-)N = 5N+l‘ Then

l-———21-
3-2Iy—2Sy 3=21y41=2Sn41

or
But Iy, =(1-p) Iy, and Sy = ply + (1—p) Sy. so that Eq. (4.2) gives
Sy = Iy =21y

or

IL_’; > 3-21,. 4.3)
Using Lemma 2.1, to show unimodality, it is sufficient to show that py 2 py4, implies
Ppn+ = Pn+p- Hence, to show that py 4y 2 py4o, it suffices to show
(N+1)p
1-p

Because of Eq. (4.3), this inequality holds if

> 32y, = 321y +2ply.

or

% > (1—p)N+, (4.4)

which is clearly true for p 2'4. We thus assume p <'A. Since /[y < 1. it must be the case

from Eq. (4.3) that N > %— 1. Thus to show Eq. (4.4), it suffices to show that

% > (1-p)-(1—p) W/P)=1, (4.5)

Let » A1/p > 2. Since it is well known that (1—1/v)*"! decreases monotonically from 1 to
1/e as v increases from | to oo, Eq. (4.5) follows for ail v if it holds for the smallest value,
namely v=2, where it is clearly true.
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Theorem 4.2:

For fixed N, there is a unique solution, py, to pn(p) =py4(p) for p in the range 0 < p < 1.
If p < py, then pn(p) <pp41(p); if p > py, then py(p) >pn41(p).

Proof:

If py(p)=pyn41(p), then Eq. (4.3) must be true as an equality. Let f(p) é—ljilz and

g(p) A3-2(1—p)¥ be the left and right sides of Eq. (4.3), respectively. We now show that
assuming the existence of two solutions, f(p;)=g(p;) and f(py)=g(py) for 0<p;<p,<I1,
leads to a contradiction. Since f"(p)=N/(1-p)? and g"(p)=—2NN-1A-p)N=2 £(p) is
strictly convex while g(p) is strictly concave for 0 < p < 1. For any pg such that 0<py<p,,
choose « to satisfy py=apgt+(1—a)p,. Then, by convexity,

S(py) < af(py) +(1-a) f(py).
Similarly. by concavity,
g(p) > aglpy +(1-a)g(py).
Thus
f(pp)>2(pp)

for all py. Since f and g are continuous and differentiable for 0<p<1 and f(p)—0 and
g{(p)—1 in the limit as p—0. we have an obvious contradiction. There can thus be at most one
solution. py. Such a solution must exist, however. since f(p)—oo and g(p)—3 as p—1.

[ |

Corollary 4.1:

N?*. the optimal number of unexamined arrival points to enable simultaneously, is a non-
increasing function of p.

Proof:

Choose any p and determine N*(p). By Theorem 4.1, py-2py-4+;. By Theorem 4.2, since
equality can occur for only one value of p. py«>py+4; must hold for all p’>p. But py is uni-
modal in NV, so N*(p ) <N*(p).

]
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Corollary 4.2:

For p >0, N* decreases in unit steps as p increases.

Proof:

It is sufficient to show that py <py_;. We thus assume py>py_; and consider
p € (py_1.py). Then by Theorem 4.2 we must have py,| > py since p < py, and py_| 2 py
since p > py_y, which contradicts that p is unimodal in N.

n

We have thus established that py is an upper bound to capacity for all p in the interval
[PN»PN_l)-

4.2.2: Calculating the Bounds

Before computing some specific upper and lower bounds on the capacity of optimal pro-
tocols, we wish to establish that capacity (of optimal protocols) must be a non-decreasing func-
tion of p. This is true because we can always simulate an arrival sequence with Bernoulli pro-
bability p, given an arrival sequence with p > p;. The next arrival point in this simulated
arrival sequence is independently defined either to be the next arrival point from the real arrival
sequence (with probability p)/p,) or to be empty (with probability 1 — p;/p,). Thus the perfor-
mance of any protocol for p; can be achieved given p, by applying the protocol to the simu-
lated arrival sequence.

We note in particular that if p; >0 then the randomized binomial straiegy for p, that
selects k arrival points with probability [1;:] (py/pP*(1—pi/py) N—k (0 < k < N. enables exactly
n busy points with probability

g,,[];‘l] (Pl/Pz)k(l —Pl/pz)N—k[/’f‘]pg(l —Pz)k_" _ [],:" prQ —Pl)N_”.

This distribution is identical to the probability of enabling exactly »n busy points by the fixed
strategy for p; that selects N arrival points. Similarly in the Poisson case where p;=0. the ran-
domized Poisson strategy for p, that selects & 2 0 arrival points with probability

k
()\/pz) e_sz
k!

achieves the same distribution for the number of enabled busy points as the fixed strategy for
Poisson arrivals that enables a set with parameter A. It follows that the performance of the pre-
viously described optimal genie-aided protocol for p; can be attained given p, > p| by defining
a randomized genie-aided protocol. However. since the throughput will be a convex combina-
tion of the throughputs of several fixed strategies, there can be no advantage in randomization.
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We now consider a Bernoulli arrival process with p > %2.7071. We note from

Eq.(4.1) that p,= 20 <p forall p> —5.— But since p; =p and j, is unimodal in N, no
1+2p? V2 :

genie-aided protocol (and hence no unaided protocol) can achieve a throughput exceeding p for

any p > % However, enabling individual arrival points (N =1, ie.. “TDMA") achieves a

capacity of p, does not require the genie’s help, and is thus feasible and optimal. We note that

—\}—5 must also be an upper bound for p < % since we have shown that the capacity is a non-

decreasing function of p.

Similarly pairwise enabling (i.e., N=2) is optimal for p between % and the solution of

- 3p=p  2p .
P3 1+6p%—4p* 1+2p? i

namely p =.568. where p,=p3=.6904. We can clearly label two busy points from a collision
if only two arrival points were enabled, so pairwise enabling is feasible without the genie’s help,

and thus this is an optimal protocol in the range .568 < p £ % We may continue to numeri-

cally evaluate the boundary where N 2 3, but the optimal protocols now do require the genie’s
information. In the Poisson limit where p—0. N becomes infinite and thus the maximum
genie-aided throughput is

- _2=Q+Ne™
© 320140

This maximum occurs at A = 2.89, the solution of 3— A =2e~* Hence for the case of Poisson
arrivals, the throughput cannot exceed p.,=.6731. This completes the calculation of an upper
bound on capacity for all p.

We now find a lower bound on capacity in the region .568 > p > 0. where optimal
genie-aided protocols simultaneously enable more than two arrival points. Since we cannot
label two busy points without the genie's help if a collision occurs when N 2 3. the perfor-
mance of an optimal genie-aided protocol need not necessarily be attainable without the genie's
help. However, the performance of any feasible protocol does form a lower bound on capacity.
We have also shown that capacity is a non-decreasing function of p. so the capacity of Mosely's
algorithm for Poisson arrivals [Mose79a], =.488. can be used as a lower bound for all p. We
thus obtain a lower bound by taking the maximum of the capacity of Mosely's algorithm and
the capacities as a function of p of TDMA and pairwise enabling (the N=1 and N=2 cases.
respectively).

The feasible region can be expanded upwards slightly by considering contention among
more than two Bernoulli trials. We consider three obvious FCFS collision resolution algorithms
for N=3. For the first case. assume that when a collision occurs. individual arrival points from
the collision are enabled until two messages are transmitted. (There can be no advantage in
separately enabling the third arrival point if the first two points were busy because it is
effectively unexamined.) Two extra slots resolve the collision if the first two arrival points are
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busy. Otherwise three extra slots are required. Hence, for this first algorithm, the throughput
is given by
Jp—p’ Tl (4.6)
1+2(p3 +p2(1=p)] +3[2p201—p)] 1+8p2—6p3

In the second case. we immediately enable a pair of arrival points whenever a collision occurs.
There will either be a success if exactly one of the first two arrival points is idle (and we are
done after enabling the third arrival point. now known to be busy). or a further collision if both
are busy. Here again, the collision is resolved after exactly two messages have been transmit-
ted, giving a throughput of

3p—p’ ) ol 4.7
143003 +p2(1-p) ] +202p2(1=p))  1+7p2—4p3

Finally, we may first enable a single arrival point from a collision. If that arrival point is idle.
the remaining two points (now known to be busy) are separately enabled. If it is busy. both
remaining arrival points are enabled, possibly resulting in a further collision. In this case, colli-
sion resolution takes two extra slots if either of the last two arrival points is empty, three extra
if the first point is empty, and four extra if all arrival points contained messages. All messages
in the enabled set are always transmitted, and the throughput is

3p _ 3 (4.8)
1+202020=p) 1 +3[p20=p)) +4[p%]  1+7p2—-3p3

As one can easily verify, Eq. (4.8) exceeds both Eq. (4.6) and Eg. (4.7) in the range
206 < p < 430 where Eq. (4.8) exceeds both the throughput of pairwise enabling and the
lower bound obtained from Mosely’s algorithm.

Figure 4.1 plots throughput p against the probability p of a message arriving at an
arrival point. Pippenger’s upper bound is shown. In addition the new upper bound presented
above is shown delimiting the unattainable region. Mosely's FCFS algorithm, the above FCFS
algorithm for N=3, pairwise enabling (the N=2 case described above), and TDMA on arrival
points {the N=1 case described above) delimit the attainable region.

4.2.3: Extension to Non-Constant Slot Lengths

Let us now consider a more general model of synchronous protocols in which the ratios
of the average length of an idle slot to a success (2 a), and of the average length of a collision
to a success ( 2 b) are arbitrary. When a=»b=1, this reduces to the case of the previous sec-
tion.

Unlike the previous section, we must now require that each station attempts to transmit
only complete messages. When both the idle- and collision-detect times are unity. it is obvious
that this restriction does not reduce capacity — there is no reason to attempt to transmit any-
thing that is not a complete message if every slot is long enough to have transmitted a complete
message. However, when the ratio of idle detect time to collision detect time is far from unity,
it is conceivable that some form of ‘‘reservation’ strategy. in which some slots are required to
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carry only short reservation requests rather than complete messages. may be more efficient.
(We will. in fact, describe a family of protocols in Chapter 7 that take advantage of a short pro-
pagation time by using short reservation bursts on the channel to improve scheduling. When
al/b << 1, we show that the capacities of these protocols can exceed this “‘naive’’ extension of
the genie-aided upper bound.)

Since Eq. (4.1) is based on a renewal argument, it can easily be extended to the case of
non-constant slot lengths. In that case, the average channel utilization becomes
PN =0l +Sy+(6+2DCy  aly+Sy+(b+2)Cy

(4.9)
and a similar, albeit more tedious, argument can be used to prove its unimodality, as follows:
Theorem 4.3:

The sequence {5y} is unimodal in N.

Proof: Let py 2 py4y- Then

aIN+] + bCN+1 a]N + bCN
aly g1+ Sy + (0D Cyyy = aly+Sy+(b+2) Cy

or
bSN— (a+b)SN1N+1—2a1N > bSN'H_ (a+b)SN+1[N—2(11N+1. (4.10)
But 1N+1 = (1_p)IN, and SN‘H =p]N+ (l—p) SN‘ so that Eq (4.10) giVCS
bSN ? IN(2G +b—(a+b)lN)

or

% 2 2a+b—(a+b)ly. (4.11)
Hence. to show that py 41 2 p 4o, it suffices to show

(N%l;bp 2 2a+b—(a+b)lyy =2a+bAla+b)ly+(a+b)ply.

The inequality holds if
b
ﬁ > pla+b)y
or

b

> _ A yN+]
atb Z (1—p) . (4.12)

which is clearly true for p 2 ﬁ. Therefore assume that p < %b' Since [y < 1, it must be
a

the case from Eq. (4.12) that N = %[%— 1]. Thus to show Eq. (4.12). it suffices to show that
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b (a/b6)((1/p)—1)
—_— _ a p
a+b = (1=p)

or
b \¥a -
21" s (=py W, 1
[a+b] (1-p) (4.13)

Let » 21/p > 1 +b/a. Since it is well known that (1 —1/»)*~! decreases monotonically from 1
to 1/e as v increases from 1 to = Eq. (4.13) follows for all v if it holds for the smallest value
(where it is clearly true).

|

Figure 4.2 shows a family of contours based on Eq. (4.9) that upper bound the capacity
of “‘reservation-free" protocols for various combinations of idle detect time and collision detect
time. We observe that if idle detect times exceed collision detect times, an unlikely event from
physical constraints, the bound is almost completely insensitive to the idle detect time. We
further note that as the idle detect time decreases significantly below the collision detect time, a
common ocurrence in a radio environment, the sensitivity of the bound to the collision detect
time is reduced. This is. of course, encouraging for system designers, since idle detection is
much simpler to implement than collision detection.

4.2.4: Further Genie-Aided Bounds

In the previous section, we assumed that the genie identifies the exact location of
enough messages to completely explain each collision. More recently, other authors
[Cruz80a, Berg8la] have obtained tighter bounds on capacity using more complex. ‘‘less help-
ful” genies.

The information provided by these new genies is less specific. Consequently, more
complicated genie-aided protocols must be considered. It has not been possible in these new
systems to find an optimal genie-aided protocol explicitly and calculate its capacity. Instead, the
proofs have relied on indirect arguments.

As a protocol operates, it gathers information about the set of arrival points. This
information may be represented as a set of “‘states of knowledge'’. The action of a genie will
be to provide additional information (besides the ternary feedback from enabling subsets to
transmit) to limit the complexity of the state space. For example. the states for our original
genie-aided system are simply the number of known busy points.

In the initial state, no messages have been transmitted and the protocol has no condi-
tional information about the distribution of messages. In the final state, all messages have been
successfully transmitted and there is again no conditional information. Each enabled set may
result in a successful transmission with some probability. In addition, the state of knowledge
will change. In general, those enabled sets that have a high probability of success will “‘use up’”
conditional information. Such sets cannot be enabled more frequently than the prerequisite
conditional information becomes available to the protocol. Thus. bounds on capacity are
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obtained by solving a form of max-flow min-cut problem.

Cruz and Hajek [Cruz80a] assumed that the genie would identify exactly one busy point
from each set known to contain one or more messages, and enough messages from overlapping
sets, each known to contain two or more messages, to explain away the overlap. With the aid
of this genie, a collision resolution algorithm faces only known busy points, disjoint sets known
to contain mwo or more messages, and unexamined arrival points. For this system, they were
able to show that the capacity of any genie-aided protocol cannot exceed = .6126. This work
was later extended by Berger and Mehravari [Berg8la] by relaxing the assumption that the
genie always identifies one message from any set known to contain one Or more messages.
Thus, a collision resoiution algorithm aided by Berger's genie must also handle sets known to
contain one or more messages. Using a similar argument, they were able to bound the capacity
to = .587.

4.3: The Tsybakov-Mikhailov Bound Extended to Bernoulli Arrivals

Very recently, Tsybakov and Mikhailov [Tsyb81a] introduced a new combinatorial
method to prove that = .5875 is an upper bound on the capacity of infinite population multiple
access protocols for Poisson arrivals. Since it is easy to extend their method to bound the capa-
city of a number of different systems that we will introduce later, we will now present their
results in some detail.

Unlike the extensions of the '‘genie’” argument described in the previous section
[Cruz80a, Berg81al, this combinatorial method does not depend on the fact that Poisson arrivals
can occur arbitrarily closely in time. Consequently, the method can be extended to the case of
Bernoulli arrivals in a straightforward manner. even though Tsybakov and Mikhailov examined
only Poisson arrivals. Below we present an extension of their result to the case of Bernoulli
arrivals.

Recall that in the Bernoulli multiple access problem, arrival points occur in discrete
time, each independently busy with probability p, p>0. and idle with probability 1—p.
Without loss of generality, we may assume that exactly one arrival point occurs at each of the
positive integers. /™, and that there are no other arrival points. Define the set of busy points to
be X &{x;.xy -}, where x;€/% x;<x;< ---. and the interarrival distribution is
geometric with parameter p.

A protocol. 4. is a synchronous algorithm for processing a finite interval, which we can
assume to be [1, M] without loss of generality by the independence of the arrival points. At
each time r=1,2..---. the protocol enables E,. E, C[1,M]. We define the function
O(r) 2(8,(E), ...,6,(E)) to give the sequence of outcomes from enabling Ey, ..., E,.
Thus 6,(E,) =0 if enabling E, gives an idle slot (ie., E, (M X=92). §,(£) =1 if enabling £,
give a success (ie. £, (M X contains exactly one busy point), and 8,(E,) =2 if enabling E,
gives a collision (i.e., £, (0} X contains more than one busy point).
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Whenever 8,(E,) =1, we will delete the point X () £, from X. The algorithm will
have completed processing [1,M] when X N [1,M] is known to be empty. We define
=1(4. M) be the first time this is the case. Then E[7(4, M)] is inversely proportional to the
efficiency of 4. An alternate characterization of = can be made as follows. Each time
8,(E) €{0,1}. it becomes known to all stations that E, () X = for all future time. Define

H
D, A U E
s=]
8,(E)=2
to be the accepred set at time (. Thus r may also be found from the relation

r =minfr:[1,M] C Dr}'

Since the expected number of busy points in [1.M] is clearly Mp. we define the
efficiency of 4 to be

A fim o Mp
Pa = M F DT

[t follows that the capacity of the channel for the given p must be

C, A Supp 4.
To complete the proof, it remains to find an upper bound on p 4 for all p.

Lemma 4.1:
For all ¢ € 7, given any protocol A, any M, and any sequence of past outcomes @(¢r—1). the
probabilities that choosing any enabled set E, gives an idle slot or a success obey

Prig,(E)=0l0(—1)] < (1—-p)¥,

_ Np(1—p)N-!
Prig,(E)=1|0(:=DI < |1 — Prig,(E) =0|0(:~D]| v
1 —(1-p)!
where N 2mes(E,— D,_)) is the measure of (ie.. the number of arrival points in) that subset
of the enabled set disjoint from the accepted set.

Proof:

Since D,_, is known not to contain any busy points. either including or excluding points from
D, can have no effect on ¢,(E,). Thus. without loss of generality. we can assume that
E, N D,_;=2 forall r.

We now form the set {B|, ..., Bg} by enumerating all minimal intersections of any
members of {£, . .., E}, ie.,
R t
1 LJ] B; = LJ] E
(= 5=



2. Vie{l,....R}. Vs€{l,... ¢}, it must be the case that either B; () E;, =B, or
B, E—2@.

3. Vizj€{l,..., R}, there exists an s €{1, ..., 1} such that either both B, (N E;= B,
and B; (| E; =@ are true, or both B; (N E;=@ and B; () £;=B; are true.

Let /={i}, ..., ig} be the index set that specifies all members of {B;} that are contained in £,,
ie.,
K
El = U Blj'
J=1

Define 6¢(B;) to be 0, 1, or 2 if the outcome of enabling B; at =0 would have been idle, suc-
cess, or collision, respectively. Then

is an ordered set whose elements depend on the initial distribution of busy points in X. Since
each element in m can take on at most three values, there can be at most 3R=K such sets,
exactly one of which corresponds to any particular initial distribution.

Recall from the law of total probability that, for every protocol 4 and any outcome
y €10,1,2}, it must be the case that

Prl8,(E) =y|0(:=1)] = 3 Prl8,(E) =yIn=ny. ©G—=D1-Prin=m,10G=D].
k

Thus, to prove the lemma, it is sufficient to prove that both

Prio,(E) =0ln=m,. 0¢-1] < (1 -p)¥

and
_ ZyN-1
Prig (E) =1ln=n,k ©(=D] < [1 = Pr6,(E) =0ln=mn,. ©(—1)] %
—u=p
hold whenever Pr{n=mn,|0(t—1)} >0, where N 2mes(E,— D,_,).
Define
i€l,B,CE,

to be the number of messages known to be in E;. s=1, ...,7—1, by examining {B;} given the
event that n=m,. Given oy, s=1,...,7—1, we can separate the previously enabled sets E
into five classes, Wy, . .., W,, as follows:



Wl = {S:OS(ES) =1)
Wy=1{s:0,(E)=2,0,22]
={s5:0,(E)=2,0,=1}
Wy=(s:0,(E)=2,0,=0]
Since we have assumed that E, () D,_; =@ for all ¢, all busy points from E; that were in X at
t=0 must still be in E;, at s. Thus, the event m=m, implies §,(E)=0c; for all
s€ WylU W, U W, However, (o) depends only on arrival points digjoint from E,. The
arrival points were initially independent Bernoulli trials, so the distribution of busy points on dis-
joint sets must remain independent. It follows that the events {n=n,.0(:—1)} and

{n=m. [0,(E,), s € W3 |J W,yl} are equivalent. To complete the proof, it remains to show
that the desired resuit holds in each of the following three cases.

1. W, = @:
It must be the case that 6,(E,) =2, since there exists a previously enabled set, Eg say,
with §,(E;) =2 and o, =0, ie., E; contains no busy points from X not also in E,.

2. Wi\U Wy=02
No previous step gives any extra information about E,, Thus
Prig,(E,) =0|n=m,, ©(=1)] = Prle,(E) =01 = 1—p)N
and
Prig (E) =1ln=m,, (=11 = Prl8,(E) =1] = Np(1—-p)N~L.
where N 2mes(E,— D,_)).
3. W,#=o, W;=0

Clearly 6,(E,) #0, since E, is known to contain at least one busy point from some £
with 8, (E;) =2 and o, =1. Define

BAEN| (‘)VES].

Then it is clear that 8,(£,) =1 can occur only if the set B contains exacily one busy
point from X and the set £,— B contains no busy points from X. Let mes(B) = n.
Since

Prig (E)=1.1=mn;,00=-1)] = Prin=n,)-np(1—p) "~ 1-(1 - p)N="
and

Prin=7,.00G-D] 2 Prin=m,.0(-1).6 (B)#O]



= Prin=m,)-(1 = (1-p)"),
it follows from the law of conditional probability that

Prig (E)=1,n=mn;,00(-1)]
Pr[n=nk,®(r—l)]

Prio,(E) =1|n=7,,00-1] =

— N1
< np(1—p)
11— (10-p)”
NI
< Np(1-p) -,
1-(1-p)
where the last inequality follows from the fact that 1—71"7 is a non-decreasing
—U=p

function in n.
| ]

Lemma 4.1 has established an extremely useful result. Intuitively, this result states
that the conditional information obtained from the history of past attempts by the protocol can
only increase the density of busy points. The following theorem applies this result to produce
the desired upper bound.

Theorem 4.4:

Define h(q) as

A (N+q)-Np(1—p)N! _ N, _ (N+q)p(1=p)V
h(q) £ sup Y + N(1—-p)*¥ max{0, I —a-p"

Then for any given p,

. h(q)
< —_—
G <may, iy

Proof:

When 4 completes the processing of [1.M] at 7, all arrival points from [1. M] (and possibly
some additional points) must be in the accepted set D_. Tt must also be the case that all busy
points in X () [1. M] must have been deleted. Since the same strategy need not maximize the
marginal progress towards each of these two goals at every step. we shall combine both require-
ments in the following objective function. Define

vy, 2mesD, + q-s,

where s, gives the number of successes up to ¢ and ¢ is any real number. The parameter ¢
serves to weight the relative importance of accepting points into D, and of successfully
transmitting messages. We note that if M < oo, then Pr(7 < ] =1 for at least a few protocols.
Since Els.] = Mp. it follows that



Ely.] 2 M(1+4p). (4.14)

Having thus lower bounded E[y,] for any given ¢, we continue by finding an upper bound on
the incremental increase in the objective, y, —y,_y, at each step.

It is clear that if E, is enabled at ¢, mes(E,—D,) =N, theny,—y,_;, = N if §,(E,) =0,
y,—vi1=N+gq if §(E)=1, and y,—y,_, =0 if §,(E)=2. Let y(1) &y ...,y).
Then for every t < 7,

Ely,—y,qlv=-Dl= Y Ely,—y,_1ly(t=1,00G=D] Pri©:—1)|y(:—1].
8(i-1)

Since ©(r—1) and E,...,E,_; together determine y(r—1), Ely,—y,_;ly(t—=1)] may be

rewritten as

> [N-Pr[o,(E,)=0|®(t—l)] + (N +)-Pr(8,(E) =110 (—D]| Pri® (1) |y (r—=D].
e(r-1)

If we can now upper bound the bracketed expression for all ®(r—1), we will have upper
bounded the expected incremental increase at any step. Thus, applying Lemma 4.1, we obtain

Ely,—y,_1ly(1=D]

(N+q) Np(1=p)N- 1

< N-Prl9,(E) =0l0(:=D)] + [1 - Pr[9,(E,)=0|®('—1)]]

1-(1-p¥
_ N-I _ yN-1
- WA MU=PT" | prg () ~o0l0(r-]|N — LD MU =p)
1-(1-p) 1-(0-p)
< H(N,q),
where
. a1 _ N
H(N,q) A (N+q)-Np(l {’l) +N(1—p)N'maxI0. 1— (N+4q)pQ1 [e) .
1 —(1-p) 1-(1-=p)
It follows that for every ¢ < 7.
Ely,—y,ly—-D] < h(q) 2 %u>%H(N.q). (4.15)
We shall now establish that
Ely.]
Elrl 2 ——. 4.16
[~] ) (4.16)

Define 8, 2y, —r-h(q). Hence. from Eq. (4.15). it follows that
E[S,—S,_IIS,_I, P ,50,1<T] S 0.

If we could now show that E[min{3,,0}] > —co for all . we will have proven that {§,} is a
supermartingale [(Karl75al. This condition can be assured by restricting ¢ so that
t < tp 2min{T.7}. where 71 is a Markov time for §,. Thus, from the properties of supermar-
tingales, it follows that £18, 1 <8, =0. Hence
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Els, )= E['y,7J—h(q)-E[Tr] < 0.

and
Ely,]
hiq) ~
Since }iﬂlE[yfA =E[y_], we have shown that Eq. (4.16) holds. Combining Egs. (4.14) and
(4.16), we obtain

E[T] P E[TT] 2

M@ +q-p) < Ely,] < h(g)-Elr],
and hence that

Pa = I TA T S Tp+a

must hold for every protocol 4 and every q. Thus the channel capacity for the given p, Cp,
must satisfy

. h{q)
C. < _n\q)
P ST g
giving the desired upper bound.
|

Figure 4.3 shows the numerical value of the upper bound implied by Theorem 4.4 for
all p. For p > .42, this new bound is weaker than the genie aided argument of Section 4.2.
For p < .42, the bound is stronger than the previous result. As shown by Tsybakov and
Mikhailov, this bound converges to = .5875 in the Poisson limit.

4.4: Tighter Bounds for the Class of Degenerate Intersection Protocols

4.4.1: Degenerate Intersection Protocols

In this section, we prove a stronger bound on the performance of a restricted class of
protocols, which has been described in [Moll81a]. These protocols must choose each enabled
set to satisfy the following degenerate intersection property. Following the notation of the previ-
ous section. define 9,(S) to be the smallesr number of messages that could be contained in S.

given the complete channel history up to the start of the 1" slot. We assume that at the start
of the " slot, there are exactly n, distinct minimal busy subsets (not necessarily entirely dis-
joint), BY.Bj, ..., By, for which 6,(B)) >0. We now require that the enabled set at the tth

slot. E,. must satisfy
E, N B!elE,. B! o}

forall i=1,2,...,n, Itiseasy to see thatif n;=0, then for all + > 0 the partition of the set
of arrival points induced by E, and B’ A{B] forms a forest. Thus the intersection operation
never generates any new sets.
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All currently proposed protocols satisfy this degenerate intersection property. For
example, Hayes [Haye78al examines ambiguous binary addresses of increasing length in an
attempt to isolate busy stations. Each new probe appends a further digit to the end of the last
previous ambiguous address that may still specify some waiting ready stations. Thus each set of
enabled stations will always be a subset of the last previously enabled set of stations that is not
yet known to be completely served. Capetanakis [Cape78a] uses sequences of coin tosses to
resolve collisions at random. The set of arrival points consists of all possible infinite sequences
of coin tosses, and the enabled sets specify the outcome for a finite subsequence. Like Hayes,
Capetanakis’ algorithm always enables a subset of the last previously enabled set of stations that
still could have waiting messages. Gallager [Gall78a], Humblet, and Mosely [Mose79a] use the
real time axis to represent the set of arrival points, and each enabled subset obeys the FCFS
property.

Lemma 4.2

For all 1 >0, if B/ (") B/ @ then B/ (N B;=2 and B/ () B; =@ for any distinct sets in B'.
Furthermore. when B/(M Bj= o, it must be the case that §,(8/(M B)=1, and that
BI(BI! U Bj,) =2.

Proof:

We show by induction on ¢ that B’ consists of disjoint sets for which 6,(-) €{1.2}, and of
nested pairs of sets as described above. Since the claim is trivially true at r =1, assume it true
at t=r and consider B87*!. We consider four cases for £,.

L. E_M B7=a forall B € B™
If enabling £ gives an idle slot or a success, then B™tl=87 If enabling £_ gives a col-
lision, then B™*' = B7 | J {£,}, and 6.,,(E,) =2.

2. E.CB7and £, (M Bf =2 forall B] € B"— {B7}:
If enabling E. gives an idle slor, then B™'=(B"—{B7) | (B7—E.), and
0..(B7—E.)=0.(B7). If enabling £, gives an success, then B"*'=B8"—{B"} if
6.(B7) =1, or if 8.(B7) =2 and there exists B € B" —{B;7) such that B C B (for
which 8_(B;) =1 by the inductive hypothesis): otherwise. B7*! = B7 and 6.,,(8) =1.
If enabling E. gives a collision, then B7"'=(B7—{B7)) |J (E,). and 6,,,(E)) =2.

3. There exists one busy set B;" C £, but 87 @ E_ for all B]" € B — {B):
Clearly enabling £ cannot give an idle slot because _(B8;7) > 0 by assumption. If ena-
bling £, gives a success, then B""'=B7—{B7] if E_ N B =@ for all B] € B"—{B/}.
and B™*' =(B"—{B7. B/)) \J |B] —E,) if E.C B]. If enabling £, gives a collision,
then B™*'=B7 if 9. (B7) =2, B"*' =B Y (E,} if 9.(B7) =1 and E, N B =2 for
all B € B"—{B), and B™"'=(B"—{B/) \J (B - E,) if E. C B/.



4. B7CE.and Bf CE_ for B = B € B™
Enabling £7 must result in a collision, so B7t! = 87,
[ ]

This degenerate intersection property defines a strict superset of the class of FCFS pro-
tocols. This is true even if we ignore trivial extensions obtained by transforming both the
arrival points and the enabled sets (such as implementing the Gallager-Tsybakov algorithm by
tossing fair coins rather than by splitting time intervals) or permuting the order in which the
independent sets are enabled. In particular, a FCFS algorithm may reach a state in which a
nested pair of sets, B{ C B3, are known to contain messages. and 6,(B{) =1 while 8,(B) =2
(Mose79al. By the FCFS property, this can happen only if B{ contains the “‘oldest’”” message,
so a FCFS protocol is required to enable a subset or superset of B{ in the next slot. The
degenerate intersection property, however, permils us to consider protocols that could choose
1o enable a subset of B4 — B{. which would have be forbidden under FCFS.

We now show that if 4* is optimal over the class of degenerate intersection protocols
for some p. and if the capacity of 4* exceeds .5, then 4* must never enable a strict superset of
any known busy set. To simplify the proof, we must temporarily consider degenerate intersec-
tion protocols for the following genie-aided problem. Whenever a genie-aided protocol enables
a strict superset of exactly one known busy set, not necessarily disjoint from all other known
busy sets (ie., case 3. in Lemma 4.2, above), we assume that this (new) genie will examine
E,— Bf in some prearranged order and publicly label the first busy point in £, — B/, if any. We
note that this may also create some known idle points. It is clear from Lemma 4.2. above, that
B! for any genie-aided protocol must contain only mutually disjoint sets. some of which may be
single points that have been previously labelled by the genie.

We now show by contradiction that a genie-aided degenerate intersection protocol 4*
that enables supersets of known busy sets cannot be optimal if its capacity exceeds .5. Consider
the behaviour of A* over a randomly chosen sample execution. Each time the genie labels a
new busy point from £, — B/, let us *‘tag™ the /" slot, the newly-labelled busy point, and the
(future) slot during which this tagged point is transmitted successfully. We note that the above
rule for tagging slots is such that we can choose to tag the " slot only if enabling E, gave no
new information about B/ In addition, let us also tag all idle points that are labelled by the
genie, even if the slot in which they are labelled is not a tagged slot, or if there was a success so
the genie’s labelling information is redundant.

We now choose to determine the performance of 4* over that sample execution by
considering its performance over the ragged slots and points separately from its performance
over the untagged siots and points. Clearly the efficiency with which the tagged busy points are
transmitted over the tagged slots is exactly .5. If the genie labels only idle points. we tag the
idle points but not the slot. If the genie labels also one busy point, we tag rwo slots to transmit
one one busy point (i.e., the slot in which it is tagged and the slot in which it is transmitted suc-
cessfully). We now examine the efficiency with which the untagged points are transmitted over
the untagged slots. The untagged slots and points may be viewed as a sampie execution of



another protocol, A4’ say, which never enables supersets of known busy sets. We note that A’
must be a valid protocol. even withour the genie, because the tagged siots, which we have
ignored, gave no information about any untagged points, and because even complete informa-
tion about the tagged points, which we have also ignored. gives no information about the
untagged points by the independence of the arrival points.

[t is clear by construction that the efficiency of 4* over any sample execution cannot
exceed the maximum of .5 and the efficiency with which 4’ transmits the untagged points.
Since we have already assumed that the capacity of 4* exceeds .5, and since a convex combina-
tion of two unequal numbers is strictly less than their maximum, it follows that A* must have a
lower capacity than 4° — which contradicts the optimality of 4*.

Thus, for any Bernoulli p for which there exists a degenerate intersection protocol with
a capacity of at least .5, we have shown that there must be an oprimal degenerate intersection
protocol that never enables supersets of known busy sets. This result also allows us to form an
upper bound for all p on the capacity of arbitrary degenerate intersection protocols. This upper
bound is simply the maximum of .5 and the capacity of the best degenerate intersection proto-
col that never enables supersets. It now remains to find the best degenerate intersection proto-
col for all p that never enables supersets. Such protocols process each known busy set indepen-
dently, so without loss of generality. we need examine only FCFS protocols.

Recall the FCFS protocols from Section 4.2 that were used to lower bound capacity as a
function of p. Since the capacity of the “‘triple enabling protocols (ie., N=3) is above .5
over the relevant values of p, we know from this last result that the optimal degenerate inter-
section protocol for N =3 cannot enable supersets of known messages. Thus the optimal
degenerate intersection protocol for N =3 can clearly be found by enumerating all possible
FCFS protocols for ¥ =3 that do not enable supersets.

Whenever a collision among three arrival points occurs, any such protocol must enable
either a single point or a pair of points. Enabling a single point from the original collision must
give either an idle slot or a success. If it is idle, the two remaining points must be enabled
separately to avoid a certain collision. If it is a success, the two remaining points, now known
to contain at least one busy point. may be enabled separately or together. If they are enabled
separately, there is no point in separately enabling the third point if the first two points were
busy — it is effectively unexamined with probability p of being busy. Enabling it corresponds
to mixing the N =3 protocol with an independent N =1 protocol, which cannot be as efficient as
the best of the two strategies. Enabling a pair of points from the original collision must give
gither a success or a collision. If it is a success, we have no choice but to enable the last
remaining (busy) point. If there is a collision. we should again ignore the third point, now
effectively unexamined, and separately enable each of the first two (busy) points.



Having thus enumerated all candidates for the optimal degenerate intersection protocol
for N=3, we see that all the candidates have already been examined in Section 4.2. Thus the
best of these three ““triple enabling’’ protocols from Section 4.2 really is the optimal degenerate
intersection protocol over the relevant values of p. However, our goal was to construct the
complete capacity curve for degenerate intersection protocols. Consequently, we must also find
optimal protocols for all N 2 4. It is clear that the combinatorial explosion required for exhaus-
tive enumeration rapidly makes this approach impractical as N increases. We are thus led to
consider yet another genie-aided problem in order to upper bound the capacity of degenerate
intersection protocols.

4.4.2: Optimal Genie-Aided Degenerate Intersection Protocols

We now assume that a genie examines the points in each busy set B/ for which
8,(B)) =1, in some prearranged order, and publicly labels the firsr busy point in B/. This infor-
mation may also create some known idle points. It is clear from Lemma 4.2 that any genie-
aided degenerate intersection protocol faces only known busy points, disjoint busy sets for
which 6,(-) =2, and unexamined arrival points.

The information provided by this genie is a strict superset of the information provided
by the other genie described earlier in this section. Consequently, the same argument can again
be used to prove that degenerate intersection protocols aided by this new genie cannot be
optimal if they enable supersets of known busy sets and their capacity exceeds .5. Similarly, we
can form an upper bound on the capacity of genie-aided (and. thus, also unaided) degenerate
intersection protocols for all p from the maximum of .5 and the capacity of the best genie-aided
degenerate intersection protocol that never enables supersets of known busy sets. Without loss
of generality, only FCFS protocols need be considered.

Any genie-aided FCFS protocol that never enables supersets begins a new period of
activity whenever it enables some (possibly random) number N of unexamined arrival points.
Each idle period takes one slot to process no messages. and each success takes one slot to pro-
cess one message. However, unlike Section 4.2, we now require the protocol to search for the
Jirst busy point involved in each collision before the genie identifies a second busy point. Con-
sequently. each collision takes ar least three slots to process two messages (one for the collision,
at least one to find the first busy point, and one more to transmit the busy point that is labelled
by the genie). Thus, to find an upper bound on throughput for genie-aided protocols, we must
find a lower bound on the expected number of slots in a collision busy period.

Suppose a FCFS protocol is faced with a set B, for which 6,(B') =2. We assume that
B! contains N arrival points. each initially having probability p of an arrival. By the FCFS pro-
perty, the protocol must enable some subset £/ C B! containing M <N arrival points. The
probability of an idle slot when E, is enabled can be found as a weighted sum of hyper-
geometric terms. ie.,
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Similarly, the probability of a success when £, is enabled is
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and the probability of a collision when E| is enabled is

Pr{collision|N, M, pl =1 — Prlidle|N. M, pl — Prlsuccess|N, M, pl.
In the Poisson limit as p —0, Np — X and Mp — vy, we obtain
3—7[1 — e~y _ (A—7) e~ (A=7)

Prlidle|\.y] =
Ay 1—(1+A)e R

»

Pr(success|n, y] e
risuccess |\, = —
Y 1—(1+A)e >

and

Prlcolision|x,y]l = 1 — Prlidle|\, v} — Pr{success|x.y].

Finding the minimum expected number of slots until the first message in B’ is success-
fully transmitted. o *y, is a multistage decision process that can be solved using dynamic pro-
gramming [BellS7a]. It is well known that optimal solutions of multistage decision problems
must obey the following principle of oprimality. No matter what the initial state is. and what ini-
tial decision is made, a policy cannot be optimal unless the remaining decisions represent an
optimal policy for the new state of the process that resuits from the first decision.
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Thus, for any N and any Bernoulli probability p, o *y can be found numerically from
the following recursive equation:

oty 21+ 0<r’{1v}‘r<1Av{Pr[idle|N‘ M, pl-a*y_y + Prlcollision|N, M, pl-o *M}

under the initial condition o*, 21. In the Poisson limit, we have

* A : : P ror, R
c*, 21+ Oirl;gk{Pr[ld/elk.y] o *\—, + Prlcollision|x, y]-o y]

with the initial condition lim o *,-—2.
A—0

Over all periods where a particular value of N is chosen, the conditional genie-aided
throughput. py, is found from a renewal argument 1o be
o Sy+2Cy

PN T+ Sy +(2+0 ) Cy

[

4.17)

where [y =(1-p) N Sy=Np(1-p)¥and Cy=1—1y— Sy are the probabilities that enabling
N independent Bernoulli arrival points gives an idle slot, a success or begins a collision busy
period. respectively. Since the unconditional throughput is a convex combination of {[)N], it
cannot exceed p y-, where N* achieves maximum conditional throughput.

We have thus established that an optimal genie-aided strategy is to enable the first
known busy point if there is one, or to enable some fixed number N* of unexamined arrival
points otherwise. Figure 4.4 shows the upper bound for all p in the range 0 < p < .375. where
the performance of genie-aided degenerate intersection protocols with N > 4 exceeds the per-
formance of TDMA. “‘pairwise enabling’’, and ““triple enabling’’. Computation reveals that
= .508 is an upper bound on the capacity of degenerate intersection protocols for Poisson
arrivals. Since protocols with capacity = .488 are known to exist [Mose79al. only a small range
of uncertainty in the capacity of degenerate intersection protocols remains.

4.5: Infinite Population Results as the Asymptotic Behaviour of Large Finite Systems

Recently. a number of adaptive multiple access protocols have been proposed in which
the rules for selecting the enabled set varies with the (short-term) average load on the channel.
For example, the URN scheme [Klei78a] adapts from slotted ALOHA under light traffic to
TDMA under heavy traffic. Finite population adaptive tree protocols
(Haye78a. Cape79a. Mark80a] have a similar behaviour.

[t is instructive to compare the throughput-delay curves for such adaptive systems as
the number of stations, M, grows larger. In spite of vast differences in the details of the proto-
cols, these curves all exhibit an unmistakable ‘*knee’’ in the middle range of channel utiliza-
tions. Furthermore, as M increases. it is characteristic of these curves for the knee to become
sharper and move towards lower values of utilization and higher values of delay simultaneously.
(See, for example, Figure 3.2 in [Cape79a] or Figure § in [Klei78al. Figure 3 in [Miu8lal is
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particularly interesting, since it shows a family of delay curves for M =10, 20, 50, 100.)

The explanation for this phenomenon lies in the results that we have presented above
for infinite population bounds on capacity. When the channel utilization is well below the
infinite population capacity of the protocol for Poisson arrivals, the delay will be essentially
independent of M. This result forms the steep face of the knee.

However, we have proven above that TDMA is globally optimal with Bernoulli arrivals
when we can select a single busy point with high enough probability. Since the probabilities of
individual stations being busy is an increasing function of the channel utilization in the finite
population case, TDMA must also be a globally optimal protocol for high enough values of the
channel utilization. Thus the delay curve for any adaptive protocol must eventually be lower
bounded by the corresponding delay curve for TDMA.

To lower bound the delay curve for intermediate channel utilizations, we note that the
adaptive mechanism in all of the above protocols limits the number of contending messages in
any single slot to some value that is a decreasing function of the channel utilization. Thus. for
M sufficiently large, a first order approximation of the behaviour of any such protocol shows
that an individual station is dormant for a long (random) time between each opportunity to
transmit a message. The time between periods of activity dominates the time to resolve any
conflicts for transmission rights with other stations having overlapping periods of activity.
Thus, by the law of large numbers, as M — the coefficient of variation of the time between
opportunities to transmit decays to zero. The Bernoulli bounds presented above show by how
much we can reduce the apparent number of stations in the cycle through "‘local contention”,
and hence reduce the delay to some fraction of the value of TDMA.

For example, when the perceived utilization of an individual station as observed by the
protocoi (i.e., p) is 1/2, we see from $4.2.2 that pairwise enabling can attain a channel utiliza-
2-:(1/2)
1+2:(1/2)?
rather than TDMA, the average time to complete a round-robin cycle would decrease to 3M/4
slots compared to M siots for TDMA. This permits a channel of lower capacity to support the

same number of stations with the same mean delay.

tion of =2/3. Thus, for M sufficiently large, were we to use pairwise enabling

In general, if each station is ready to transmit with probability p. and for the given p,
the protocol can achieve a channel utilization of p 2 p, then the number of stations in the
equivalent TDMA network, M’, is given by

pM =pM,
or

M = f-M. (4.18)
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Thus for large M. the delay equation is approaching

a fraction of the corresponding result for
TDMA:

v Mp
4 =1+ - = .
Tiplp M) =1 20=p) ~ 2p1-p)

Figure 4.5 shows the limiting behaviour of T18/ Trpagq as M — o
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CHAPTER §
Protocols with a Partial Reservation Channel

5.1: Reservation-Based Protocols

In previous chapters, we examined protocols that operate without the exchange of any
explicit protocol messages. However, many practical protocols rely on more information than
just the passive observation of channel history. In this chapter we examine reservation-based
protocols.

We identify two classes of reservation-based protocols, pure reservation and partial
reservation strategies. Pure reservation strategies restrict the contention problem in multipie
access to a reservation sub-channel. Each reservation request is large enough to identify the sta-
tion that attempted to make the reservation. It may also provide some: information about the
message. Such a reservation request requires exclusive access to the reservation channel.
Although one could conceive of a multi-level reservation protocol. at some point a non-
reservation multiple access protocol must be used to control access to the reservation sub-
channel. Some, like reservation-ALOHA [Lam80a]. are not applicable for the infinite popula-
tion case, for no station will have a backlog of waiting messages. Like [Tsyb80c], most pure
reservation protocols may be thought of as a device for increasing channel utilization by, in
effect, decreasing the idle and collision detect times. As first observed by Capetanakis
[Cape78al, such pure reservation protocols cannot solve the multiple access problem without
appealing to another, non-reservation protocol operating on the reservation channel. Pure
reservation protocols are also sensitive to errors in the receipt of reservations. Inconsistencies in
the distributed “‘reservation queue’ will lead to catastrophic results! We shall therefore not
attempt to design or analyze yet another pure reservation protocol, bearing in mind that our
other protocols could easily be used to control access to the reservation channel in any pure
reservation scheme.

Partial reservation strategies are based on the exchange of imprecise reservation requests
conveying only a few “'bits’ of information. Such partial reservation requests require little
bandwidth on the channel. Their size can be made independent of the number of stations in
the network. It may also be possible to encode them in a manner that does not depend on
granting each such request exclusive access to the reservation channel. However. a partial
reservation request does not necessarily contain enough information to identify the requesting
station uniquely. Thus protocols that use a partial reservation channel may require both the
reservation sub-channel and the message channel to completely solve the multiple access con-
lention problem.
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An alternate approach is to construct pure reservations for each message from a
sequence of partial reservations. Such protocols can work well with small populations, but are
inherently inefficient with very large populations. The tree algorithms of Hayes [Haye78a) and
Mark (Mark80a] require a sequence of log,(M) binary reservations to exactly determine the
identity of a ready station, thus exhibiting a logarithmic degradation in efficiency as M
increases. Various forms of round-robin scheduling under distributed control also fall into this
category. MSAP [Klei77a]l and BRAM [Chla79a] pass a ‘‘silence token’ of length equal to a
propagation time across the network between the stations, requiring a total of M binary reser-
vations per round-robin cycle. Hamacher [Hama80a] proposed an auxiliary channel for the
binary reservations, on which signals are actively propagated in only one direction. This
reduces the overhead per round-robin cycle since the ‘‘token’’ need only propagate to the next
active station. However, to prevent race conditions. a small constant delay must be inserted for
each station. Thus. in the limit, round-robin scheduling protocols exhibit a linear degradation
with M in the channel overhead.

5.2: Ternary Reservations

5.2.1: The Inefficiency of the URN Scheme

The URN scheme [Klei78a] is perhaps the most well known protocol that uses a partial
reservation channel. Each station announces the arrival of new messages on a slotted ternary
channel that is monitored by all stations. These announcements are received as ‘0. ‘17", or
“g”> — corresponding to no request, a single request, or a multiple request, respectively. This
information provides an estimate of the number of stations that are ready to send messages.
The URN policy then enables just enough stations to maximize the probability of selecting
exactly one ready station. We note that in the limit of very large systems, the URN policy is,
in some sense, the “‘dual’’ of optimally-controlled ALOHA: where optimal ALOHA chooses
the probability with which each active station should (independently) choose to transmit given
the number of active stations, the URN policy selects the number of stations (not necessarily
known to be active) that should be granted permission to transmit given the probability that a
station would transmit if it were granted permission.

A serious limitation to the URN scheme is its dependence on a ternary reservation
channel. Stations in a radio environment suffer from a sarurarion effect. Whenever a station
transmits, its own signal overpowers all others in its immediate neighbourhood. Consequently
stations are unable to determine whether their own arrival announcements are received as single
or multiple requests by the other stations. Thus only inactive stations can reliably estimate the
number of ready stations in the network — and. of course. they have the least use for the
information!

More importantly, if you are willing to provide a ternary reservation channel. the URN
protocol discards almost all the information that it provides. All stations can (trivially) com-
pletely order the slots on the reservation channel by rime. However, some reservation channel
slots carry multiple reservation requests. Thus, the ordering of the reservation channel slots
defines only a partial ordering on the messages. Thus, for each multiple reservation, two or
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more messages remain mutually incomparable. The minimal amount of further work required
of a muitiple access protocol is just to order these incomparable messages. The URN scheme.
on the other hand, discards all of this ordering information. Only an estimate of the number of
messages remains. Consequently, the URN scheme is efficient only when the system is either
aimost full — which is not allowed with an infinite population — or almost empty. Mittal and
Venetsanopoulos [Mitt81a] have studied the transient behaviour of URN using a fluid approxi-
mation. To improve its efficiency, they describe a dynamic entrance control policy to force the
system to remain lightly loaded. Below we show that this is not necessary, and that it is in fact
undesirable.

5.2.2: Multiple Access with a Partially Ordered Queue of Messages

The URN scheme operates with limited storage. Only a single integer N. the estimate
of the number of ready stations, is required. However, significantly improved performance is
possible by using the ordering information from the reservation channel to form a parrially
ordered queue of messages. Such a queue is illustrated in Figure 5.1. All reservation slots that
contain no requests require no further service, and are ignored: all reservation slots that contain
one or more reservation requests join the queue for access to the message channel. With a ter-
nary reservation channel, it is also necessary to save a one bit “‘tag’’ for each entry in the
queue to distinguish between single (tagged **0'") and multiple (tagged **1") reservations.

ARRIVALS
“TAG" BITS
J DEPARTURES
‘ NON-EMPTY
o RESERVATIONS
\ . °

’UUUUUUL.JUUL.J@'* e

A TRAIN OF TERNARY RESERVATIONS 1

Y

EMPTY
RESERVATIONS

Figure 5.1: Using Reservation Requests to Form a Partially Ordered Queue

To implement such a queue in a distributed manner. it is sufficient for each station to
maintain a count @, of the current backlog of unserviced reservation requests. For each reser-
vation slot containing one or more reservation requests, Q, is incremented by one; at the com-
pletion of service for each queued reservation (using some collision resolution algorithm) Q, is
decremented by one. To gain access to the channel, a station announces the arrival of its new
message on the reservation channel and joins the queue for the message channel. Its position
in the message channel queue is given by the value of Q, just before this announcement.

68



When its reservation request reaches the head of the queue, the station is allowed access 10 the
channel according to the rules of the collision resolution algorithm.

Maintaining a partially ordered queue of messages has two advantages over the input
controlled URN scheme [Miu8lal. First, the input control procedure rejects some newly-
arriving messages to limit the number of messages in the system. If a performance analysis
based on equilibrium conditions is to make any sense, the regeneration times for these rejected
messages must be large enough to minimize the positive feedback on the arrival rate. A realis-
tic analysis must include the regeneration delays for rejected messages in the delay calculation.
Maintaining a partially ordered queue of messages never rejects any newly-arriving messages, so
we expect real delays to be greatly reduced. Second, the efficiency of known collision resolu-
tion algorithms decreases monotonically as we increase the number of messages that must be
handled simultaneously. Mittal's input control procedure tries to take advantage of this fact by
limiting the number of messages in the system. However, since this control procedure works
by rejecting messages rather than queweing them, the control procedure must tolerate a larger
average number of messages in the system if it is to limit the number of times that the system
empties and remains idle for a (possibly long) inter-message generation time. Maintaining a
queue of reservations allows individual reservations (each representing a only a few messages)
1o be resolved separately, and thus more efficiently, without emptying the system until the
entire queue of reservations is exhausted.

The composition of a queue of reservations can be found as follows. We assume that
the input to the reservation channel is a sequence of independent Poisson samples with parame-
ter A. Each non-empty sample will be queued for the message channel. Thus, each queued
reservation is an independent Poisson sample (conditioned on being non-empty) with parame-
ter A, where samples of exactly one message are distinguishable from samples with more than
one message by the one-bit tag mentioned above. Thus, for k& > 0, the probability that a non-
idle reservation represents k messages is given by

A

e
.1 (5.1)

The curve in Figure 5.2 labelled ‘Ternary Reservations, Tagged Queue’ shows the aver-
age utilization of the message channel as a function of A under heavy traffic (i.e.. another non-
empty reservation is always available at the end of each service epoch) when each multipie

reservation request is tagged, and the Gallager-Tsybakov algorithm! is used on the message

! This algorithm may discard some messages from one epoch and process them in a later epoch.
So were we to just process the queue of reservations directly, we would have a loss system.
Like ALOHA, this would require randomized retransmissions to preserve the Poisson statistics
of the arrivals. However, we can extend the model to avoid this loss, and its attendant
problems of instability and long delays, without affecting the capacity of our system. In the
spirit of the original algorithm. let a window control access to the reservation channel. Thus if
the algorithm subsequently discards any part of this window, the discarded portion can be
included in the next reservation channel window.
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channel to resolve collisions. Here the reservation channel eliminates the epochs with no mes-
sages and the knowledge of multiple requests eliminates the initial collision in processing
epochs where k > 1. The sets {n,} and {w,} are given by Egs. (3.1) and (3.2), and the
throughput for any A is given by

2 Qi N
k=1

p= (5.2)

2w — (1—qy)
k=1

The capacity of this partial reservation system when exactly one (free) reservation request per
message slot is provided is the value at which the average input rate, A. equals the average util-
ization of the message channel, ie., =.755. We note that this is considerably more than the
capacity of either the Gallager-Tsybakov algorithm (= .487). which requires no reservation
channel. or the URN scheme (1/e with an infinite population). which also requires a (free) ter-
nary reservation channel. However, it may be necessary to store arbitrarily many "‘tag’" bits.

We can eliminate the need to store tag bits by modifying the above protocol. For each
multiple reservation request, let the reservation window be split immediately and Q be
increased by two. Then only the single integer Q is required. The algorithm then proceeds as
if each queued reservation initially contains one message. This strategy still avoids the certain
initial collision when k& > 1, but an empty reservation is queued with probability p; o+ Py -
We have provided no way to remember the dependence between the two half-windows result-
ing from an multiple request, so a collision that would have been avoided by the previous pro-
tocol is introduced with probability Py 0 Thus storage requirements are reduced at the expense
of some loss of efficiency. The throughput as a function of X is now reduced to

w k
aym+ X2 i+ )
k=12i=0

(5.3)

p= = &
Gy wi+ 22 di b (Wi we_)

k=2i=0
The capacity of this modified system, assuming one (free) reservation request per message slot,
has been reduced from =.755 with the “tag’ bits to = .711 without them.

The performance of the above protocols improves as the number of reservation
requests per message slot increases. The Poisson sample size at the reservation channel can be
decreased, reducing the likelihood of (ambiguous) multiple requests. while still producing
enough non-emply reservations to keep the message channel occupied. The capacity with 7
reservations per message slot can be seen as the intersection in Figure 5.2 of the throughput
function with the line p=mA. One can easily see that the capacity asymptotically approaches 1
as n—oo. However, the Gallager-Tsybakov algorithm can also be run directly on the ternary
reservation channel to generate conflict-free reservations. If an independent use of the
Gallager-Tsybakov algorithm were to control the unreserved slots of the message channel, the
system would have a capacity of .487 n+ (1 —.487 v) .487. When 5=, the capacity is =.737.
which is intermediate between our two previous protocols. Here, however. the improvement is
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linear in 7m: full utilization of the message channel becomes possible as soon as the raie of
reservations exceeds 1/.487 = 2.05 per message slot.

5.3: Binary Reservations

We shall now consider the more realistic case of binary reservation channels, i.e., only
“‘no requests’’ and “‘at least one request’ can be distinguished on this channel. It avoids the
difficulty of implementing a ternary reservation channel in a radio environment. It also reduces
the amount of information that must be stored. A single integer Q, the current backlog of
non-empty reservations, preserves all the information provided by the reservation channel.

The curve in Figure 5.2 labelled ‘Binary Reservations’ shows the average utilization of
the message channel as a function of A under heavy traffic (so that the supply of binary reserva-
tions does not run out) when collisions on the message channel are resolved by the Gallager-
Tsybakov algorithm. No information besides the count Q is required. Here {n,} and {w,]} are
given by Eqs. (3.1) and (3.2), {q,} is given by Eq. (5.1), and the throughput as a function of A
is given by Eq. (3.4). Again, the capacity of the system, assuming one (free) reservation slot
per message slot can be found graphically from Figure 5.2 to be =.662. The capacity of this
system with = reservation slots per message slot is shown in Figure 5.3. While it is clear that
the capacity asymptotically approaches 1 as n— oo, one can see that the marginal 1mprovernent
from increasing 7 decays rapidly. Two other curves are shown for comparison.

Instead of resolving collisions with the Gallager-Tsybakov algorithm. we could also
choose the *ALOHA"™ approach and just discard collisions. Here each non-empty reservation
is given exactly one slot on the message channel: any message that suffers a collision is
immediately destroyed and must be regenerated after a long, random delay. Thus, the proba-
bility of a successful transmission given a non-empty reservation is simply

AeTh
he b (5.4)

The probability of having a non-empty reservation available must be min(n(1—e™),1) by con-
servation of flow. which we can represent by the constraint:

or
< =In(1-1/9).

Recalling that there can be no useful throughput if all the non-empty reservations have been
serviced, the throughput as a function of % and A must be

p(n,A) =nre ™

For any positive », the capacity of this system can be found as a constrained optimization over
the feasible values of A using the method of Lagrange multipliers [Luen73al. For any 7. we
see that the optimum value of A must be either A=1 or A=—In(1—1/). However, since it is
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well known that A =1 maximizes the function Ae™ it is clear that A =1 is optimal whenever it
is feasible. Thus the capacity of this ALOHA-based system is

n < 1
e s l_e—l
C.'7 = 1 (5.5)
—(n—Din(1-1/7) n> o
—e

[t is not hard to see that a minislotted CSMA protocol is one implementation of an
ALOHA protocol fed by a binary reservation channel. Each binary reservation costs one propa-
gation time, 2 4. on the channel so that the performance curves in Figure 5.3 must be scaled

down by a factor of I +1 p, Since there is considerable interest CSMA protocols for local net-

works, we will devote the following chapter to exploring the performance of a new CSMA pro-
tocol based on this binary reservation channel model.

5.4: Bounding Capacity if a Binary Channel Announces New Arrivals

Figure 5.3 allows us to compare the capacity as a function of n when collisions on the
meSsage channel are resolved using the Gallager-Tsybakov algorithm and ALOHA. It is clear
that ALOHA rapidly improves and gives better performance than the Gallager-Tsybakov algo-
rithm when n > 3. While this may seem counter-intuitive at first, the third curve on Figure 5.3
demonstrates an even stronger result. Below we extend the Tysbakov-Mikhailov bound on
capacity for Poisson arrivals to the case of protocols that receive their input from a binary reser-
vation channel at rate 7.

Let us assume that we have bulk arrivals to the system. such that the number of mes-
sages in each bulk is drawn independently from a Poisson distribution with parameter A, and
that bulks of size zero may be distinguished immediately from bulks of size greater than zero at
no cost to the protocol. We assume that the messages in each bulk arrive uniformly distributed
over a set of measure A, and that these sets are disjoint. Such a system is exactly equivalent to
a genie-aided Poisson multiple access problem in which the genie partitions the time axis into
disjoint sets of measure A and announces at no cost whether each such set is empty or contains
some messages. Below we apply the proof technique introduced by Tsybakov and Mikhailov 1o
find an upper bound, C,. for any infinite population protocol operating in such a system.

Theorem 5.1:

Define h(g) as

ala+gqg)
e?—1

a+tgqg
e?—1

h{g) = sup + a e” % max {0\ 1— .
a>0

Then for any given A,
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h(q)
9 l—er+g

Proof:

Since we have already presented the proof technique of Tsybakov and Mikhailov in complete
detail in Theorem 4.4 (in which we extended their proof to the case of Bernoulli arrivals) we
will only sketch the changes required here to prove the new result. Recall that D, is the
accepted set up to time ¢ (ie., the set of points known from the past history, ®(r—1), not to
contain any messages). The objective function is to be

y, A mesD, + q-s,,

where s, is the number of successful transmissions up to time ¢ and ¢ is any real number. In
this new model, Tsybakov's upper bound on the expected incremental increase in the objective
at any step, h(q), still holds. To complete the proof. it is necessary to find a lower bound on
Ely,]. the value of the objective function when the protocol has completed processing all the
arrival points, for this new system.

Let the measure of the set of arrival points to be processed by the protocol be M.
Since this set is composed of M/\ disjoint subsets. each known to contain one or more mes-
sages according to a conditional Poisson distribution with parameter A. the expected number of
messages in M is given by

A
Mo i M
Els]l=—=Y1i - . (5.6)
T A ,2.1 l—e ™ 1—e
Thus
M l+g—e?
> — ~T4g €
Ely) > M+q—"— = M| =8 | (5.7)
Combining Egs. (5.7) and (4.16), we obtain
— oA
M l-i-q—f] < Ely.] € hig)-El7]
1—e™? i
and hence that
M (1+g—e 2
<
PR e ] < Elrl. (5.8)

Combining Egs. (5.6) and (5.8). it follows that for any protocol, 4. and any A >0

Els,] h(q)
2 i — < q
pA')‘ /\/{n—noo E[T] l — e_}‘+q

must hold. Thus the channel capacity for the given A, C,. must satisfy



9 l—e M4+ q
giving the desired upper bound.
]

We have now derived an upper bound, C,. on the efficiency of arbitrary multiple access
protocols (which operate entirely on the message channel) given a sequence of binary reserva-
tions from a Poisson source with parameter \ as input. To plot this bound on Figure 5.3, it
remains to find 7. the required reservation rate, as a function of A. But, from conservation of
flow. the rate at which messages arrive on the reservation channel must be at least as large as
the rate at which they are transmitted successfully on the message channel. Thus

(e V) —r
C,sn(-e )l—e_"

or

>C (5.9)

A plot of this bound in Figure 5.3 shows that for n >> 1. the capacity of ALOHA with binary
reservations approaches this upper bound on capacity more quickly than the bound approaches
unity.

5.5: Summary

We have introduced multiple access protocols that use partial reservation channeis. We
have shown that any infinite population multiple access protocol can operate entirely on a rer-
nary reservation channel, yielding perfect utilization of the message channel when the reserva-
tion rate exceeds about two reservation requests per message transmission time. Thus a ternary
partial reservation channel provides about as much useful information as a pure reservation
channel in the infinite population-case, so that studying ternary reservation channels provides
little new insight into the multiple access probiem.

A binary reservation channel would be much simpler to provide, particularly in a radio
environment. Unfortunately, binary reservations do not provide enough feedback information
for any infinite population protocol to operate: one can never be sure that a non-empty reserva-
tion slot corresponds to a single request without allowing the actual message transmission to
take place. Thus some part of the collision resolution algorithm must take place on the mes-
sage channel.

One feasible approach is to resolve collisions entirely on the message channel using
some multiple access protocol. However, for high reservation rates. we found it to be more
efficient to discard colliding messages than to resolve collisions with the best known multiple
access protocol (i.e., the Gallager-Tsybakov protocol). Indeed, the capacity of the simple loss
system rapidly approaches our extension of the Tsybakov-Mikhailov upper bound results as the
reservation rate grows large.

76



CHAPTER 6
Virtual Time CSMA

6.1: Introduction

In this chapter, we apply some of our results on partial reservation protocols from the
previous chapter to develop a new class of CSMA protocols for local networks. Recall that in
local networks, it is assumed that the propagation time across the network is much less than a
message transmission time. Thus, multiple access protocols suitable for local networks can take
advantage of the rapid feedback of the result of each scheduling decision. Depending on the
communications medium, it may be possible to distinguish between an idle or busy channel
(i.e., the carrier sense environment), or even to discriminate between successful and interfering
transmissions while they are in progress (i.e.. carrier sense with collision detect).

After devoting several previous chapters to the study of tree algorithms, which are
known to have better performance characteristics than ALOHA, the reader may be wondering
why we now intend to study a CSMA protocol in some detail. Many operational local networks
employ CSMA protocols, including the Department of Defense PRnet packet radio network
[Kahn78al, and the Ethernet coaxial cable local network [Metc76a]. Indeed. the IEEE is
currently involved in an effort to standardize a protocol for local networks, and. among others,
is considering a scheme based on the Ethernet implementation of 1-persistent CSMA. [n addi-
tion, CSMA protocols can operate asynchronously on an unslotted channel, whereas all tree
algorithms can only operate on a slorred channel. Since maintaining accurate slot synchroniza-
tion in a distributed local network has proven to be a difficult problem. asynchronous protocols
are often used in real networks. Thus, it seems clear that an improved CSMA protocol should
be of some practical interest.

In addition, the characteristics of known tree algorithms make them unsuitable for
many types of networks, especially those subject to random noise or whose stations may
dynamically enter or leave the system. Massey has shown that many of the more efficient tree
algorithms. including the Gallager-Tsybakov algorithm, can deadlock in the face of errors in the
feedback information (e.g., when an idle slot is mistakenly interpreted as a collision). More
significantly, this same deadlock can also occur if stations are ever allowed to discard messages
that are waiting for retransmission after a previous collision. This situation could arise when a
station left the network in the midst of a service epoch (possibly due to failure of the station or
because the stations are mobile). A more serious problem is that of higher level protocols that
permit stations to “"give up’’ trying to transmit a message after some timeout has elapsed. The
random retransmission strategy of CSMA protocols is insensitive to both errors in the feedback
information and dropped messages. Finally, the current state of the system in many tree algo-
rithms can depend on the channel history over an unbounded number of previous slots. Thus
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for many tree algorithms, it is difficult for stations to join (or rejoin after an interruption) a
working network. Consequently, we feel that tree algorithms are most suited for relatively
noise-free channels (such as a coaxial cable or optical fibre). At the current state of the art,
CSMA protocols seem better suited for packet radio networks. Thus. even from an academic
point of view, we find many strong reasons for studying CSMA protocols because of their ran-
dom times of retransmission.

While the ability to monitor channel activity can clearly be used to force stations to
refrain from transmining when another transmission is already in progress (and hence to reduce
the number of collisions), it has not been clear how this information should best be used to
decide when a ready station s/iould begin transmitting a message. Several families of CSMA
protocols were first analyzed by Tobagi and Kleinrock [Toba74a.Klei75¢c]. The analysis was
later extended to include collision detection by several authors [Toba79a. Lam79a]. The non-
persistent CSMA protocol permits ready stations to access the channel only if it is idle when the
message arrives. [f the channel is busy, the station acts as if a collision occurred and reexam-
ines the channel only after a random delay. The 1-persistent CSMA protocol permits ready sta-
tions to access the channel immediately if it is idle when the message arrives, or as soon as the
channel becomes idle if it is busy. The p-persistent CSMA protocol also grants stations immedi-
ate access to the channel if it is idle when their messages arrive. However, if the channel is
busy when a message arrives, the station waits until the channel first becomes idle and then is
permitted to transmit only with probability p. If the channel remains idle for a further end-to-
end propagation time, the ready stations again choose whether to begin transmitting with proba-
bility p, or to delay for another propagation time. [f the channel subsequently becomes busy
before the station begins transmitting, the station acts as if a collision occurred and repeats the
algorithm after a random delay. Below we present a new algorithm for selecting transmission
times using this same information in a way that is both efficient and fair. A fair algorithm
prevents a subset of the stations from monopolizing the channel to achieve a better grade of
service than the remaining stations. Our algorithm achieves fairness by granting stations per-
mission to access the channel in the order in which their messages became available. The algo-
rithm can also be easily extended to provide priorities when it is required.

In general, a multiple access protocol is an algorithm for partitioning the set of mes-
sages in a network until each message is sufficiently isolated to be transmitted without interfer-
ence [Pipp8la, Moll80a]. Current CSMA protocols depend heavily on randomization to achieve
this partitioning. When randomization is used. message delays are inherently highly variable
and can be very long. Consequently, CSMA networks are unsuitable for such applications as
packetized voice that are sensitive to both the mean and variance of delay. The intent of the
virtual time CSMA protocol is 1o improve the delay characteristics by reducing the need for
randomization. We achieve this goal by observing that the differences in generation rimes
between messages are usually large enough for a protocol to distinguish between the messages.
Our protocol operates in a way that preserves these differences, allowing messages to be
transmitted FCFS after some queueing delay, so random rescheduling is only required in the
rare event that several messages have arrived "too closely’ in time.
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6.2: The Virtual Time CSMA Contention Resolution Algorithm

Let each station be equipped with two **clocks’, C and C', giving real time 7 and vir-
tual time 7', respectively. Initially, we assume both clocks begin at 0. The real time clock runs
continuously at real time while the virtual time clock behaves as follows. Whenever the chan-
nel is sensed busy, the virtual time clock is disabled; whenever the channel is sensed /dle, the
virtual time clock is enabled (to run at some rate —see below). We consider both synchronized
and unsynchronized systems. In the unsloned case, the virtual time clock runs continuously,

whenever it is enabled, at a rate n (> 1) times real time if +' < 7, or at real time otherwise.

In the minislorred case.! the virtual time clock advances in discontinuous jumps. Stations must
defer to channel activity that began in the previous minislot, so the minislot size (i.e.. the time
between jumps) is chosen to be the worst-case propagation time. a. across the network. Each
time it accumulates another a units of enabled real time, the virtual clock advances by the
minimum of a fixed quantum « 2 a7 and the instantaneous backlog Q 2+ —7'.

When each new message. /n, is generated, its real generation time T n IS recorded. We
shall permit this message to be transmitted as soon as the virtual time clock first exceeds Tm-
Thus Q is proportional to the expected number of messages queued for access to the channel at
any time. and the virtual clock provides a method for spreading out the transmissions of these
messages. Each message will be delivered successfully unless some other transmission begins
during the vulnerable period (a) before its signal has propagated to all parts of the network.
Should a collision occur, all the affected messages are retransmitted after some random delays.

We note that the behaviour of the clock in the minislotted case is similar to the window
mechanism defined in [Gall78a] as a FCFS way of granting permission to transmit to messages.
Such mechanisms have the desirable property that the set of messages selected for transmission
in any slot depends only on the current instantaneous backlog and can be freely chosen to
optimize the efficiency of the protocol. Furthermore, since the operation of the protocol is oth-
erwise independent of the details of the past activity on the channel, both the analysis and
implementation of the protocol are simplified.

Figure 6.1 shows an example of the clock readings and channel activity during the
operation of the minislotted virtual time CSMA protocol. [t is assumed that the propagation
time a is 1/7 of the transmission time. that there is no collision detection, and that the virtual
clock runs at twice real time. The real clock reading is shown as a line of unit slope since it
advances continuously at a rate of 1 second per second. Activity on the channel is shown as a
series of blocks extending above the real clock reading. Eaph block represents a transmission
attempt; those that result in a collision are shaded. The virtual clock reading is shown as an
irregular “‘staircase’ line at a vertical distance Q below the real clock reading. While the chan-
nel is idle, the virtual clock waits for time a, then advances by min{Q.2a}. While the channel

! We shall follow (Klei77al] in calling these short time intervals minislors rather than sfors as
defined in [Toba74a, Klei75¢c]. This avoids some confusion with the meaning of slors in the
slotted ALOHA protocol [Robe72al, where it is assumed that all slots are large enough to
accommodate the transmission of a complete message.
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Figure 6.1: The Operation of Minislotted Virtual Time CSMA
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is busy, the virtual clock remains stopped. Messages arrive to the system at some time r,,
i=1,2, - - -, begin transmission when the virtual clock passes t,, and finally leave the network
(after a total time in system of D;) when the transmission has been completely received at their
destination after a further time of 1+a. When a collision occurs, we assume that the messages
are either lost or retransmitted after some random delay.

Given this brief description of the protocol, we must now calculate its performance to
permit meaningful comparisons with other CSMA variants. Let us assume that the number of
stations in the network is very large. We may approximate such a network as an infinite
number of stations generating new messages according to a Poisson process with intensity S.
and look at the ‘*pseudoequilibrium”’ throughput and delay curves. (Recall that we assume the
transmission time for messages to be unity.) We note that this requires the *‘*bold"” Poisson
assumption [Mass80al that the total offered load on the network is a Poisson process with
intensity G, G 2 §. This is certainly true in a loss system, where messages are destroyed if they
collide. Here the arrivals consist entirely of new messages (not all of which will be transmitted
successfully). so that G =S > p. When we resolve collisions with the aid of some randomized
retransmission algorithm, we assume that all messages will be transmitted successfully (possibly
after many unsuccessful attempts) so that G > S=p. In this latter case, the Poisson traffic
assumption is not completely correct. Nevertheless. the Poisson assumption is common in
estimating the performance of protocols, including this one. However. it will become clear that
our protocol distorts the arrival process much less than was the case with previous protocols
where such an analysis was performed [Klei75¢c. Robe72a. Abra70a, Klei75bl. We note that if
the arrivals on the real time axis were Poisson with intensity G, then the actual message
transmission times recorded by the real time clock would still form a Poisson process that gen-
erates arrivals only when the channel is sensed idle. It would have intensity G if the virtual
clock had caught up to the real time clock, and nG if it had fallen behind.

We begin by finding the capacity of both the minislotied and unslotted protocols. Let
propagation across the network require a fraction ¢ < |1 of a message transmission time. When-
ever a collision occurs, let the sending stations stop transmitting after a fraction » <1 of each
message has been transmitted. We assume the ‘arbitrary destination’ model from Chapter 2, so

that collisions occupy the channel for a total time of a+54.! As we approach capacity, the system
will almost always have a backlog. Therefore for this capacity calculation we may assume that
the arrival rate is always G’ 279G. For any value of G’, we can find the pseudoequilibrium
throughput from renewal theory as the probability that a random observation along the time
line intersects a successful transmission. The probability that we observe a particular type of
period is proportional to the product of its relative length and relative frequency of occurrence.

In the unslotted case, we view the time axis as a renewal process with idle periods alter-
nating with busy periods. By definition a busy period begins when some station first begins
transmitting a message over an idle channel. In this capacity calculation, we may assume that
each idle period has an average length of 1/G’. (Recall that the virtual clock speed is ailways 7

! Since we will not consider the ‘central destination” T el from Chapter 2 in this chapter or
the following chapter, we shall drop the " for notationai simplicity.

81



for systems operating at maximum capacity.) A busy period will be a success if and only if no
other message transmission begins within the vuinerable period (a) before the other stations
have detected the start of the first transmission. Thus, each busy period will be a success with
probability e~2C¢" or a collision with probability 1 —e~?C". In calculating the length of a busy
period. we shall assume the worst case [Klei75c]. namely that each transmission occupies the
channel for a duration of 1+a. Thus the length of each busy period having a successful
transmission is assumed to be l+a. For each busy period having a collision, we must also
account for the /ag between the starting times of the first and last messages involved in that col-
lision to begin transmission (see [Klei75c]). Let Y be the expected value of this lag time (in
end-to-end propagation times). Then the expected length of a busy period having a collision is
assumed to be a(1+Y) + 4. It remains to find Y.

Let Y be the random variable representing this lag time. Since stations are forbidden
to begin any new transmissions once the channei is sensed busy, it must be the case in every
collision that 0 < Y < 1. If we again make the worst-case assumption [Klei75¢] that all other
stations in the network will remain free to begin a new transmission for a full end-to-end propa-
gation time after some station first begins transmitting a message (thereby ending an idle
period) then the distribution of starting times over this vulnerable period will be conditionally
Poisson with intensity G'. Thus

eaG'-y -1

_ ,aG"y
PriY>2yl=1- : £ - -
7 PL edG" — 1

= 1
Since Y 3 E[Y] = j(; PrlY = yldy, we finally obtain

1-(1-¢796)/aG’
aG’ :

Y =

1—e™

When 6 =1, this result for Y clearly reduces to Eq. (7) in [Klei75¢] if we are careful to note

that in [Klei75¢], Y was averaged over all busy periods (including successes where its value

must be zero), and that message slots rather than propagation times were used as the time unit.
Thus, in the unslotted case. the throughput equation becomes

G'e—aG'

= . - (6.1)
GRa+b+(1-b)e 90 +¢79C

p

In the minislotted case, time is divided into a series of intervals of varying lengths, each
of which is independently idle, a success. or a collision with probability e™9G" 4G'e™9C" and
1'=(1+aG") e, respectively. Since each idle interval has duration a, each success has dura-
tion 1+a and each collision has duration b6+a, we may immediately write down the throughput
in the minislotted case as

aG'e=90

= , : . (6.2)
b(1 —e~9C") + g +aG'e=9G'(1 - p)

P
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Setting b=1 in Egs. (6.1-6.2). these throughput equations become identical to the
throughput equations for non-persistent CSMA without collision detect [Klei75¢]. Thus virtual
time CSMA must have the same theoretical capacity as non-persistent CSMA. This is not
unexpected, since both analyses assume that there is a Poisson arrival process that is disabled
whenever the channel is sensed busy. In fact, since the only difference between non-persistent
CSMA and virtual time CSMA is the method by which the arrivals are disabled when the chan-
nel is busy, it should be clear that both protocols could be used on the same network. Below
we show that a message is much more likely to be successfully transmitted on any attempt with
virtual time CSMA than with non-persistent CSMA. It follows that we can only improve the
stability and delay characteristics of a network by replacing some stations using non-persistent
CSMA with an equal number of stations using virtual time CSMA.

Consider the example from [Klei75¢] of a system with a=.01, b=1. Optimizing Egs.
(6.1-6.2) over G', we find a capacity of = .815 in the unslotted case when G’ =9.45. and capa-
city of = .8655 in the minislotted case! when G’'=13.45. Thus, for the minislotted virtual
time CSMA protocol operating at capacity, the probability that a message is successfully
transmitted at any attempt (which we assume to be independent of the number of attempts) is
e~9G = 874, giving == 1.144 as the expected number of attempts per message. Slotted non-
persistent CSMA enjoys the same probability of success whenever a message is transmitted.
However, should the channel be sensed busy when a station wishes to transmit a message, the
message is not transmitted and immediately suffers a further random delay before another
attempt is allowed. The probability that a message is transmitted at a random attempt for slot-
ted non-persistent CSMA is

__a
1—e"9G 44’

which declines to only = .0736 at capacity, giving = 15.5 as the expected number of attempts
per message. In this example virtual time CSMA reduced the expected number of attempts per
message by a factor of = 13.6 at capacity {compared to slotted non-persistent CSMA) by allow-
ing queueing. Consequently, if the new arrivals were to form a Poisson process, the total
offered load with virtual time CSMA would still be approximately Poisson. since each message
need ‘‘arrive’’ only about 1.144 times. This is probably not the case with slotted non-persistent
CSMA, however, since at capacity each message circulates an average of 15.5 times before
being successfully transmitted.

6.3: Delay Characteristics

Let us now examine two models for estimating the mean queueing delay. The first
model is easy to solve but does not follow the detailed system behaviour exactly. The second,
more detailed model is used to validate the first model. We shall restrict our analysis to the
minislotted case for mathematical convenience. We shall also fix n to a value chosen to
achieve maximum capacity. Since we calculate maximum capacity by optimizing over G' 274G,

! Under these same conditions, the capacity of slotted non-persistent CSMA was stated as .857
[Toba74a, Klei75¢c]. However, a more precise optimization of the same throughput equation
shows that its capacity is really .8655.
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n cannot be uniquely determined without invoking some additional boundary conditions.
Recall that to attain maximum capacity, the virtual clock must be run only at a rate 7. How-
ever, the virtual clock runs only during those periods in which the channel is sensed idle by the
stations. Thus, we choose n so that on the average, the virtual clock can just keep up to real
time.

We view the “‘initial propagation time’ at the start of each slot as a binary reservation
process, through which the collision resolution algorithm learns that either no station or at least
one station has requested to transmit a message. Such reservations share the channel in the
time domain with successful transmissions and collisions: each non-empty ‘‘reservation’’ is fol-
lowed immediately by the transmission of the corresponding messages before the reservation
process is allowed to continue.

For our first model, let us make the approximation that there is a separate subchannel
in the frequency domain for reservations. Reservations and message transmissions are uncou-
pled. The reservation channel merely determines the arrival process to the message channel.
This arrival process consists of a sequence of equally spaced independent Bernoulli trials. each
producing a reservation with probability p A 1— e~9G". We account for the reservation over-
head by assuming that this subchannel utilizes the same time-frequency product as was required
by the original time division reservations at capacity. Thus, if the original model achieved capa-
city with an arrival rate aG*, this approximation requires that the reservation rate be
1/p* = (1—e79G")~1 Bernoulli trials per message slot, and that the reservation overhead

duces message channel t hput by a factor of ————.
redu age channel throughp y a factor o T5a/p"

This first model may be described as the following queueing system. Non-empty reser-
vations arrive independently and join a queue to gain access to the message channel. The
transmission time for the message(s) represented by each reservation contributes to the busy
time of the message channel (ie.. the utilization p/p* of the queueing system). However, each
reservation independently represents a success or a collision with probability aG'e'“G'/p and
1—aG’e'“G'/p, respectively. Should it represent a success. the transmission time for that sin-
gle message will contribute to the channel throughput. Should it represent a collision, all mes-
sages will still be transmitted. but there will be no contribution to the channel throughput.
Thus the throughput on the message channel is given by

p 2 min{p/p*. 1}:aG'e%%"/p = min{1/p*, 1/p}-aG'e9C,

which will in general be less than the busy time on the message channel. We note, however,
that message delays depend directly on the busy time on the channel and not the throughput.

Since we have assumed that the probability of success on any transmission attempt is
identical, let us focus on an individual transmit attempt. If we require the transmission times
on the message channel for both successful transmissions and collisions to be evenly divisible
by the transmission time for a reservation on the reservation subchannel, then this first model
corresponds exactly to a discrete time M/G/1 queue. This model gives an exacr expression for
the delay in a variation of minislotted virtual time CSMA in which we require virtual clock to
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advance only in steps of size w, thereby delaying each "“tick™ of the virtual time clock for a
period of max {0, w—Q]J. In addition, this model gives a lower bound on the mean delay for the
more conventional model of virtual time CSMA described above.

In the Appendix, we show that the average time in system in such a queue, normalized
by the mean service time, is given by :

(CE+1) -
EA P Al B (6.3)
X

2(1 -p)

where p is the utilization of the queueing model (i.e., the fraction of time that the channel is
not idle), and C,,2 is the coefficient of variation of the service time. Eq. (6.3) has a particularly
simple form when there is no early collision detection. In that case C,,2=0 since all reserva-
tions require the same service time — be they successful transmissions or collisions. If early
collision detection is possible. then let n; and n,. to be the number of minislots to service a suc-
cess or collision, and let b; and b, be the probabilities of a reservation representing a success or
a collision, respectively. Then letting x = b,-n. + b n;, we obtain

b.b(ng—n.)?

Cb2=p -

and the relevant time in system becomes T/ ng.

Figure 6.2 shows the delay for a single transmission attempt as a function of throughput
for two models when a=.01 and b=1. Since we have already shown that G*=13.45 for this
choice of parameters, we find that 1/p*=7.95. We are thus exceedingly fortunate in that
rounding 1/p* to an integral number (i.e., 8) of reservation slots per message slot introduces
almost no error in our model. (It follows that the protocol should use w=1/8, and thus
n=w/a =12 — see model two, below.)

These same values for a and b have previously appeared in numerical ¢xamples by
Tobagi and Kleinrock [Toba74a, Klei75¢c]. It is assumed that all messages will eventually be
transmitted successfully, so that S =p and G/S is the average number of transmission attempts
per message. While it would be helpful to compare the total delay for this model with the total
delays presented in those previous analyses, their chosen values for the retransmission.delay
parameters are not available for the comparison. Since D = (G/S—1) R+1, we were able to use
Figures 11 and 12 of [Klei75c] to obtain R < G/S as a first order approximation to D. With
this admittedly crude approximation, our total delay curve should be D= T-G/S. (Recail that
with these parameters. G/S < 1.144 even at capacity. Since the backlog must exceed one
transmission time after a collision, we may absorb the randomization time into the queueing
time.) We thus expect that our total delay curve differs only slightly from our per attempt delay
curve when we account for retransmissions. Our Figure 6.3 reproduces Figure 12 from
[Klei75¢c] with this approximate analytic curve added for comparison. The apparent improve-
ment in delay performance over all previously considered CSMA protocols is significant.
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For our second model, we attempted a direct solution of the discrete time random walk
over the instantaneous backlog Q, (measured in units of one transmission slot) at the end of
the " slot. We found this approach manageable for a carefully chosen set of system parame-
ters. In particular, let @ =.01, let each transmission occupy the channel for one unit of time
(of which .01 is the propagation time overhead), and let w=.12=1/8. Then not only do we
have a discrete state random walk (since all allowable values of Q are multiples of .01), but the
set of reachable states is actually very small. Let the initial state be Qy=.01. If an interval of
length .01 is idle (with probability P00 A ¢79G) the next state will again be .0l since one inter-
val of length .01 was ‘‘served” over a period of .01. If it is busy (with probability
Po9=1—pgp), its service lasts a period of 1.00, increasing Q by .99. If an interval of length
is idle (with probability p_ A gm0l Q must decrease by .11 since an interval of length .12 was
served over a period of .01. If it is busy (with probability p,=1-p_), Q increases by
1.00—.12=_88. It should be clear that the backlog can only take on values equal to .11k +.01
for some k=0.1, - - -. We may thus reduce our state space by a factor of 11 and change vari-
ables to obtain the following equations of motion:

Poomo t+ pP_my k=0

DT+ 1<k <8
Tk T |p_mo+ pogmo ¥ Py k=9

Pyl t DyTp_g k210

where m is the probability that the backlog is .11k +.01. Taking the z-transform of these bal-
ance equations, we find the transform of the equilibrium distribution of = to be

i

A Pooz=|1--9
N(z) & ¥zl =m|l + 2.2 2 L-: P+
=0 P+ ix l—:
where
1-9p,
Tn = —m,
0" T=95, +9p09

Unfortunately. we were unable to invert this transform and thus could only find {7rk} numeri-
cally. This can easily be done, however. since m has a closed form solution, and the remaining
{n-k} may be solved as a triangular set from the balance equations.

Given {nk}. it remains to find the system throughput, p. and mean time in system. T,
using renewal theoretic arguments. Define the normalization constant K to be

Then the throughput is given by

—aG -wG
p=% WO_aGe + (1 —mg) wGe ™7

| — G |—e @G|
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The expected delay may also be found from {=,}, although we were unable to obtain a
closed-form solution. We now find it convenient to return to our original measure of backlog.
Recall that 7, gives the relative frequencies of finding a backlog of .11k +.01 at the end of a
slot. Consider the conditional expected queueing delay for a message that arrived in a slot end-
ing with a backlog of .11k +.01. If that slot was idle, it must have had a duration of .01 so our
message must have arrived during the last .01 of the backlog. Since w=.12. our message
suffers a queueing delay of |.11k/.12]-X, where X 2.01+.99p, is the average service time. If
the slot was busy. our message could have arrived anywhere over the last 1.00 units of the
backlog. Its queueing delay will thus be somewhere in the range

Jdlk

A2

<

‘X,
busy =

l.llkl-;.03 _8'.}< "

which we will approximate as = (11k/12—4)x. Thus, the normalized time in system (meas-
ured in transmission times) is given by

T R
==1+=2 w.m,,
x K :z'o KTk
where:
Wg = .005'(p0'07r0+p_7r|)
wp = p_m 4 |-005+ llelg f] 1< k<8
J1k - 11
wg = (pgomg+pim):|.5+ T—4 x| + p_mp[-005+ ik
we = (pamp_g)| S+ %—4 T + pomyar | 005 +| <3 10< k

The mean delay for a single transmission attempt as a function of throughput for this second
model is also plotted on Figure 6.2. We note a surprisingly good agreement with the previous,
much simpler delay model. We thus feel confident that the ‘'separate reservation channel”
model gives us a meaningful picture of the performance of the minislotted virtual time CSMA
protocol.

6.4: Simulation Results

A simple finite population simulation mode! with 50 stations was used to test the vali-
dity of the above analysis. The time parameters and retransmission strategy were chosen (o be
consistent with Tobagi’s numerical calculation of the equilibrium throughput-delay curve for
slotted non-persistent CSMA presented in Figure 6-2 of [Toba74al. In both models, it is
assumed that when collisions occur. each message is scheduled for retransmission after a
further time of K-a according to a geometric distribution with parameter v. In Tobagi's model,
each station either has no message and is in a *"thinking'’ state or has one message and is in an
“active™ state. The arrival of a message activates a thinking station: the station transmits a
new message immediately, and thereafter attempts to retransmit its message in each successive
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minislot with probability » until it is transmitted successfully. In our model, the minislotted
virtual time CSMA protocol controls access to the channel at each station. We say that a mes-
sage is activated when the virtual clock passes its time of arrival, and re-acrivated when the vir-
tual clock passes the time at which it is scheduled for retransmission following a collision. Each
station transmits a newly-activated message immediately; and thereafter attempts to retransmit
the message each time it is re-activated. In this model, we assume that the virtual time clocks
shall continue to run at each station during the period in which a message is waiting to be re-
activated. However, we shall permit each station to have only one message at a time that is
either activated or waiting to be re-activated, so that a few newly activated messages may be
blocked. (It follows that at most one message per station can be scheduled for transmission in
a single minislot.)

The results for both protocols are shown in Figure 6.4. However. they are not directly
comparable. Tobagi’s model assumed that the stations were unbuffered, so that all new arrivals
to stations already having an undelivered message are blocked. Since any message that would
suffer queueing delays is lost, the delay performance of his modeli is somewhat optimistic. Our
model permits any number of messages to be queued within a station. but still exhibits some
blocking. In our model, any newly activated message must be blocked if the station already has
a message waiting to be re-activated. We thus expect our delay predictions to be more realistic
than Tobagi's but still optimistic.

Tobagi's results for slotted non-persistent CSMA considered a range of values for the
retransmission parameter, ». Our model used a constant value of » just small enough for the
system to achieve maximum throughput with stability when infinite queues are permitted at
each station [Tsyb80al. This value is obtained by observing that 50 blocked stations is
effectively an “‘infinite’” number as far as convergence to the limiting value of stable capacity is
concerned. When there is a backlog (which is very likely at capacity). our protocol grants per-
mission to all messages whose scheduled transmission times fall within a window of length w
(recall that w 2a-n). For stability, the expected number of arrivals in that window should be
close to the optimum Poisson load in the infinite population case when all stations have a mes-
sage waiting for retransmission. Thus, for ¢ =.01 and w=.12, and recalling from §6.2 that for
maximum throughput we choose aG' = .1345. we require 50-12-» = .1345 for stability. Conse-
quently. we chose v=.0003 for our simulation. We observe that our simulation points fall
closely in line with Tobagi’s »=1/100 curve. While this is good evidence that our protocol
does not hurr performance. we must point out that Tobagi's chosen values of » are too small
for stability. Recall that the series (1-1/N)¥"1 N=1,2,---, converges rapidly 1o
1/e=.368 - - - . Thus, when v=1/50 and all stations are attempting to retransmit a message,
the probability of any minislot being idle is (1 —1/50)3%= 1/e, and the probability of any min-
islot initiating a successful transmission is (1—1/50)%=1/e. Similarly. when »=1/100, the
probabilities of an idle minislot or a success are (1—1/100=1/Ve and
(50/100)-(1 —1/100)4°==1/(2-v/e ). respectively. Thus, even if we were o ignore the time
spent in idle minislots, the stable throughput (when we permit queueing) is still limited to only

90



PACKET DELAYS

100~

50 i~

20—

10 —

Y] }

CHANNEL THROUGHPUT

Figure 6.4: Finite Population Model Performance

91

x = MINISLOTTED VIRTUAL TIME CSMA
v = .0003 -
w=.12 -
a= .01
M= 50 -
i
X -
SLOTTED
NON-PERSISTENT

CSMA
y=1/10 ‘ -
i
v=1/12 —
v=1/15 ]
v = 1/20 b

X v = 1/50
X y v=1/100"
X
X
/
: | | | | ] | |

1 2 3 4 5 6 7 8 9 1



1/e

T—1/s = 58
with »=1/50, and only
/Qe) _ 4,
1-1/Ve

with »=1/100. Maximum stable throughput is achieved only for v =.1345/50 =1/372, which
would probably give somewhat higher delays than »=1/100. To summarize, our simulation of
minislotted virtual time CSMA achieved a similar delay performance to Tobagi's »=1/100
curve while doubly handicapped because it used a smaller value of v and it allowed queueing of
messages within a station (with some probability of blocking) which was prohibited in Tobagi's
model. We therefore conclude that there is again some evidence that minislotted virtual time
CSMA gives better delay performance than slotted non-persistent CSMA.

Some recent results by Marathe [Mara80a] provide some indirect evidence of perfor-
mance gains with virtual time CSMA protocols. As part of a simulation study of Ethernet-like
networks, he compared several different “backoff"” algorithms for randomly rescheduling mes-
sages after a collision. In all cases. access to the channel at each attempt was controlled by the
standard 1-persistent CSMA protocol used on the Ethernet [Metc76al. so his results are not
directly applicable to virtual time CSMA. However, we can get some useful information by
comparing the performance of the standard Ethernet algorithm with a proposed *'stop backoff’
algorithm. Both of these are variations on the binary exponential backoff algorithm in which
retransmissions are uniformly distributed over an interval whose length increases exponentially
as a function of the number of previous (unsuccessful) attempts to transmit the same message.
However, the latter algorithm requires each waiting station to stop its backoff timer should
some other station begin a conflict-free transmission immediately. The remaining waiting time
is to be spent at the end of the successful transmission. This strategy approximates using a vir-
tual clock to control the transmission times of retransmissions but not of new messages.

Marathe's comparison of backoff algorithms examined short messages (ie., a
“timesharing”” workload) and long messages under both light and heavy loads (p=.4 and
p=_.7, respectively). With the timesharing workload, the performance of the two algorithms
was indistinguishable under light load. Under heavy load. the stop backoff algorithm reduced
the average service time by 9%, reduced the 90 percentile of service time by 10%, reduced the
90 percentile of the number of attempts from 4 to 3. and reduced the percentage of packets
aborted after 16 unsuccessful attempts from 0.2 to 0.0. With long messages, the performance
of the two algorithms was almost the same except for the percentage of packets aborted. This
percentage dropped from 0.9 to 0.0 under light load, and from 5.3 to 0.0 under heavy load.

Marathe's results for an approximation to virtual time CSMA are encouraging for two
reasons. First, unlike the standard algorithm, the stop backoff algorithm always delivered the
messages successfully within 16 tries, while the standard algorithm aborted a significant number
of “‘problem" messages. No penalty was associated with aborting messages [Mara81al; it was
assumed that each message would be retransmitted instantaneously if it was aborted. Thus, we
expect the performance statistics for the standard algorithm to be optimistic. Since the standard
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algorithm still did not provide better service, an unbiased comparison would show that the stop
backoff algorithm was even better. Second. our analysis of virtual time CSMA ignored the
specific details of the retransmission backoff aigorithm. As long as the backoff algorithm ade-
quately spreads out retransmission attempts, we showed that our virtual clock mechanism can
significantly improve the performance of the network. I[n particular, we showed it that works
extremely well if messages are aborted after one unsuccessful attempt. These simulation
results showed that adding a virtual clock mechanism to control a backoff algorithm did not
degrade any of the performance measures. We therefore believe that the virtual time CSMA
protocols will continue to show excellent performance characteristics when we account for the
retransmission backoff algorithm in detail.

6.5: Optimality Conditions for Virtual Time CSMA

Actual operating conditions are exceedingly difficult to model accurately. Conse-
quently, most analysts make a number of strong assumptions and consider the behaviour of
protocols only under these somewhat idealized conditions. While it may be argued that some
common assumptions are unrealistic, such analyses have nevertheless led to many interesting
results. Below we prove the optimality of the class of minislotted virtual time CSMA protocols.
given some common (but perhaps questionable) assumptions. It follows that no ‘‘better’’ pro-
tocol can be found unless a more realistic set of assumptions is considered.

Theorem 6.1

Assume:
Al The protocol supports an infinite population of homogeneous stations.

A2, Each message is immediately and irretrievably lost after its first transmission attempt on
the channel, whether or not it was successful. (This strong assumption makes the total
traffic a stationary Poisson process. and is equivalent to selecting a uniform retransmis-
sion density over the interval (7, ).)

Al. No explicit protocol messages may be exchanged over the channel: stations may only
announce that they have a message to send by actually transmitting it.

A4, All transmissions are synchronized to start at the beginning of a minislot, ie., each
transmission starts at a time K-a. K =0,1, - - -, where a is the normalized propagation
time between stations in the network.

Then for any given valuesof a >0 and 1 2 6> 0:

1. No protocol can achieve a higher capacity than the best virtual time CSMA protocol,
which we obtain by optimizing n as a function of a and & (ie., virtual time CSMA is
both locally and globally optimal under these assumptions).

2. For any feasible value of throughput, there exists a virtual time CSMA protocol that
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achieves the lowest probability of loss of any protocol.

3. Given any constraint on the maximum probability of loss for messages in each slot not
exceeding the loss probability at maximum capacity, there exists a virtual time CSMA
protocol that achieves the lowest average delay for unblocked messages at all feasible
values of throughput.

4, The optimal virtual time CSMA protocol described immediately above also achieves the
lowest variance of delay for unblocked messages over all protocols that achieve the
lowest average delay.

Proof of 1:

By Al, the protocol can ignore the identities of the stations (the expected number of messages
at a station must be zero for the average message delay to remain finite) and merely concen-
trate on the messages themselves. The only available discrimination between messages is their
times of arrival. so the problem reduces to partitioning a Poisson arrival process. By A2, the
history of past activity on the channel provides no useful information about the arrival times of
the remaining messages in the system other than an estimate of G. which we assume is given.
Thus. using A3, the set of arrival points selected by any feasible algorithm for transmission in,
say, the i minislot must be independent of the actual distribution of messages over the
enabled set so that the number of messages transmitted in any minislot must have a Poisson
distribution with some parameter A. Using a renewal argument, the conditional average
throughput over all slots where the protocol chooses a particular value A = A is given by

=X
}\Oe 0

b(1— ™) +a +rge (1-5)

le

(6.4)

Pxo

The probability of loss for a message chosen at random from those transmitted in a slot where
A=A is given by

B=B(Og =1-¢
Hence e M=1-8 and Ag=—In(1-B). We may thus rewrite Eq. (6.4) t0 give p as a function

of B:

—In(i — B)-(1-1B)

P 2 Bra—(I-B-U-B) (-0 6.5)

A real valued function f over a convex set X C R” is said to be swrongly quasiconvex if
[Avri76a]

Flgyx! + g3 < max[f(xD), f(xD)]

for any two points x' € X, x2€ X. x!# x? and for any positive weights ¢, >0, ¢,>0,
q1+q>,=1. A function f is strongly quasiconcave if —f is strongly quasiconvex. [t is also easy
to show that a non-negative function f is strongly quasiconvex if and only if 1/f is strongly
quasiconcave. A strongly quasiconcave function f defined on a convex set X C R” attains its
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maximum on X at no more than one point. If we can show that p is a strongly quasiconcave
function of B over the closed convex set 0 < B < 1 then since p is continuous and bounded to
at most 1, p must attain that maximum for some value B*. Thus to show p is strongly
quasiconcave, is suffices to show

b:B +a
—in(1 = B)-(1-B)
is strongly quasiconvex. Since adding a constant has no effect on the strong quasiconvexity of a

function, and a positive linear combination of strictly convex functions is strictly convex and
thus strongly quasiconvex, it suffices to show that both

-6+

1
—In(1-B)-(1-B8)
and
B
—in(1-8)-(1-8)

are strictly convex. Taking the second derivative of each with respect to B, we obtain

—~In(1=8) +2[1+In(1 - B)})?
(-In(1-B8)-(1-8))3

and
—Bin(1=B) —2(1 +In(1 — B))[-In(1 = B)-(1 = B) — B{1 +in(1—B))]
[-In(1 - B)-(1-B)]13
_ In1-8)-(B=2) +2(B—1) +2(1+In(1 - B)}?
[-in(1 - B)-(1 - B)]? '
which are clearly positive for 0 < B <1 since In{1 — B) <0.

We have thus established that there is a unique value B* for which p achieves its global
maximum p *. Consequently, no protocol can achieve a higher throughput than any protocol
that always chooses A *. Whenever there is sufficient backlog (as would almost always be the
case as we approach capacity). minislotted virtual time CSMA always chooses some fixed quan-
tum w. If the actual arrival rate is G per unit time. G 2 A *, then the virtual time CSMA pro-

*

tocol with w= % achieves maximum capacity. possibly with infinite delays if G is too large.

Proof of 2:

If we can now show that p is a strictly concave function of B over the convex set 0 < B £ B*,
we will have proven that for any average value of p < p,, y. the average value of B is minim-
ized by any protocol that chooses the same blocking probability (and hence the same probability
of success) at every slot.

95



Puax b — - - — e ——

THROUGHPUT (p)

[ Bg B’ * [

N : ~— |

| i

| STRICTLY CONCAVE |

'l BLOCKING PROBABILITY (B) '|

\ _J
Y

STRONGLY QUASICONCAVE
Figure 6.5: Throughput vs. Blocking Probability in Virtual Time CSMA
If we write Eq (6.5 as p= %, where a 2-In(1-B)-(1-B) and
8 A b-B+a—In(1—B)-(1—-B) are functions of B. then

p' A %‘2_"‘& >0

for 0 < B <£B* and

o A (a8 — aB’182 —

B

la'8 — aff1288
n .

Since " < B"<0and 8= a 20, "B - «f"1p? is non-positive. Since p’ 2 0 and since g’ < 0
implies o’ < 8’ € 0. it must be the case that 8’2 0. Thus '8 — «B'12B8' is non-negative, soO
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that p” < 0 and hence p is strictly concave for all B < B*. Consequently, for any feasible p, B
is minimized by a virtual time CSMA protocol whose capacity is p.
]

Proof of 3:

Applying Little’s result [Litt61a] to busy periods (i.e., those intervals of time where the backlog
Q remains positive) we observe that no other feasible protocol can have a higher throughput
(since p is an increasing function of B for B < B*) or a lesser number customers in the system
that will be served successfully (since it is a decreasing function of B), and hence that no other
protocol can achieve a lower average delay.

B

Proof of 4:

This result follows directly from proposition 3 above, since it can be shown [King62a] that
FCFS minimizes the variance of delays for G/G/1 queues.
) ]

We may apply these results to the various known slotted CSMA protocols to predict
their relative capacities. We have already shown that both slotted non-persistent and minislot-
ted virtual time CSMA allow the same Poisson sample size to be selected in every slot at capa-
city, and hence achieve maximum capacity by optimizing G. Since slotted 1-persistent CSMA
selects a sample of size aG if the previous slot was idle and a sample of size (1+4) G if it was
busy. it is clear that slotted 1-persistent CSMA must have a lower capacity than either of the
previous two protocols for any finite value of a.

The behaviour of p-persistent CSMA with arbitrary p is rather complex. In the first
minislot following a busy slot, the Poisson sample size is p-G{(1+a). If that is idle. the next
sample size is p(1—p)-G(1+a) +p-aG. and so on. This relation allows us to easily calculate
the optimum p that maximizes the capacity of p-persistent CSMA by equating the Poisson sam-
ple sizes in two consecutive minislots (the first of which must be idle). giving

pGl+a)=p(l—p)-G(1+a)+p-aG

or

a
l1+a’

p=

Substituting this value for p into the derivation for the throughput of p-persistent CSMA from
[Klei75¢] gives us Eq. (6.2). Thus optimum p-persistent CSMA protocol can achieve optimum
capacity. but only when b=1. ie., when there is no collision detection. We note, however,
that its delay performance is inferior even to siotted non-persistent CSMA. Where slotted
non-persistent CSMA immediately discards the set of messages that arrives during a busy slot
(which is Poissonly distributed with parameter G), p-persistent CSMA discards the set of mes-
sages still “tossing coins'’ at the end of an idle period — which, for the optimum p, is again
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Poisson with parameter G. Consequently, these lost messages suffer an additional fixed delay
of an idle period compared to slotted non-persistent CSMA. Furthermore. the set of unblocked
messages is transmitted in random order, rather than FCFS. increasing the variance of the
delay.

Figure 6.6 shows the sensitivity of capacity to the propagation time, a, when b =1 for
the various CSMA protocols. Similar results were shown in Figure 10 of [Klei75c], but the
curve for slotted non-persistent CSMA was shown incorrectly. As predicted in Theorem 1, it
forms an upper bound on performance at all values of a. In addition, we show the correspond-
ing curves for both slotted and unslotted ALOHA. Since stations are allowed to transmit to any
other station, we note that the capacity of slotted ALOHA should be 1/((1+a)e). which
decreases to 1/2e at a =1. Thus the capacity of minislotted virtual time CSMA clearly exceeds
the capacity of slotted ALOHA for all a if 5 <1 (which is clearly possible by avoiding collision
detection if necessary) since the denominator of Eq. (6.2) is less than 1+a. We note that
since minislotted virtual time CSMA is locally optimal in a loss system. Figure 2.1 shows iis
sensitivity of capacity 1o both a and b.

[t is worth noting that, unlike minislotted virtual time CSMA. unslotted virtual time
CSMA is by no means an optimal protocol. For example, unslotted 1-persistent CSMA enjoys
a higher capacity when a > .2. The reason for this is evident from examining the behaviour of
1-persistent CSMA. Under heavy load, a significant fraction of the messages arrive when the
channel is busy, and are thus transmitted as soon as the channel goes idle. Since this event
occurs all at once according to the model [Klei75¢c]. there will be a momentary “‘spike” in the
traffic intensity at the end of each transmission. These traffic spikes will tend to produce trains
of partially synchronized packets with little intervening idle time. thereby increasing the
efficiency of the protocol. Thus a good “‘unslotted’” CSMA protocol will gather the messages to
produce a periodicity in the arrival process, with the minislotted case occurring in the limit.

6.6: Synchronism, Variable Rate Clocks and Priorities

Throughout our analysis, we have assumed that the virtual time clocks at every station
remain completely synchronized (or, in the unslotted case. that they at least reach the same vir-
tual time reading within a propagation time). This global synchronism guarantees the fairness
property of the protocol. ie., the FCFS transmission of messages. Since the expected queueing
delay for a message depends only on the difference between the readings of the real and virtual
time clocks when it arrives, it is easy to see that absolute synchronism is not required. Fairness
still holds if for each pair of stations there is a constant difference in both their real and virtual
time readings. Thus new stations can easily join a working network since accurate synchroniza-
tion of the clocks at every station is not required. Indeed each ““clock’’ can be implemented as
a modulo k counter.

The virtual clock speed-up rate, , has been chosen to be a constant whenever the vir-
tual clock is running behind real time. We have shown in Section 6.5, above. that this strategy
minimizes the mean delay for unblocked messages in a loss system subject to a constraint on
the maximum blocking probability in any slot. It is conceivable that the performance of the
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system under light traffic could be improved by gradually reducing v to unity as the virtual
clock *‘catches up™ to real time. Such a strategy could reduce the insiantaneous blocking pro-
bability significantly during that transient period — an important consideration when blocked
messages must be retransmitted after a random delay. However. we found in our analysis that
systems operating below capacity already spent most of their time without a backlog (where the
value of 7 is ignored). Consequently, we conjecture that such an extension would offer little
real improvement.

Below. we investigate a further property of practical significance. With some loss of
fairness. virtual time CSMA protocols can operate with variable rate, imprecise clocks. In fact,
there is but one strong requirement for accurate time keeping in virtual time CSMA. and this
requirement occurs only in minislotted virtual time CSMA. In every synchronous protocol, all
stations must be able to determine the time at which each (mini)slot begins with considerable
accuracy. Thus, in minislotted virtual time CSMA, synchronism of the times at which the vir-
tual clocks “‘tick™ is critical, but the amount by which the clocks advance at each *‘tick™" is far
less important. Since the sum of Poisson streams is always Poisson, the major effect of using
imprecise clocks would be to introduce some variability in the apparent offered load. A secon-
dary effect will be to permute the order in which messages were transmitted on the channel.
Thus a priority mechanism could be provided by varying the virtual clock speed-up functions at
each station according to load or to priority class.

Individual. load-dependent speed-up functions, n,(Q;), could be used to provide a
priority mechanism that adjusts the relarive priority of stations as a function of the current back-
log. These ‘‘load sensitive”” priorities would behave like the time-dependent priorities
described by Kleinrock (see § 3.7 in [Klei76al).

Alternately, one may wish to give absolure priority to one class of messages so that. say.
class & messages can only be transmitted when there is no backlog of higher priority messages
(of class j, j < k). As a special case, stations can be separated into different priority classes by
assuming that all messages generated at a particular station belong to the same priority class.
This type of priority mechanism is an example of head-of-the-line priorities [Cobh54a, Klei76a).

Tobagi [Toba80b] has extended the p-persistent CSMA protocol to provide this type of
absolute priority mechanism. In p-persistent P-CSMA. a prioriy assessment period begins when-
ever end of carrier’ (signifying the completion of a message transmission) is detected on the
channel. If no higher priority classes respond, members of the i priority class are given the
opportunity to reserve the channel by transmitting a short burst of energy in the i reservation
slor following end of carrier. If no class responds, the system reverts to normal p-persistent
CSMA until the next transmission occurs. The length of a reservation slot is assumed to
exceed 2a, so that every reservation burst will be received within the reservation slot in which
it was transmitted. Once the active priority class has been determined, there is a channel access
period in which active members of that class apply the p-persistent algorithm to determine the
start of the rransmission period. The end of the transmission period provides the end of carrier
signal for repeating the algorithm.
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In addition to the basic non-preemptive algorithm described above, various forms of
preemption were also considered in [Toba80bl. In the semi-preemptive case. members of higher
priority classes can join a channel access period. Both the parrial preemptive and fully preemptive
cases include semi-preemptive and also permit members of higher priority classes to interfere
with ongoing transmissions of lower priority. In the partial preemptive case, it is assumed that
unsuccessful transmissions will be aborted through collision detection. In the fully preemptive
case, there is no coilision detection, so that unsuccessful transmission will always run to com-
pletion.

Tobagi's priority mechanism adds considerable complexity to the p-persistent CSMA
protocol. The priority assessment periods also add channel overhead that reduces the capacity
of the protocol. especially when there are many priority classes. As Tobagi has already sug-
gested [Toba80b], a hierarchical search for the highest active priority class can reduce the prior-
ity assessment overhead. Below, however, we show that the HOL priorities can be incorporated
into virtual time CSMA by using multiple virtual time clocks. The resulting priority mechan-
ism is similar to Tobagi's semi-preemptive discipline. The fairness property can be preserved
within each priority class. Little complexity is added to the basic virtual time CSMA algorithm,
and no additional channel overhead is required for priority assessment. In fact. with careful
tuning of system parameters, there need not be any increase in the overall mean message delay
— only the variance of delay must increase.

We extend the virtual time CSMA protocol to provide an absolute priority mechanism
between classes as follows. Let the actual traffic intensity generated by class i be G;. As we
have shown in Section 6.5 above, there exists an optimum traffic intensity G*(B) that provides
both maximum capacity and minimum mean delay for unblocked messages given any constraint
on the maximum blocking probability per slot, B. (It follows that G éz,G, must be strictly
less than G* for stability.)

In this prioritized case. we now let each station be equipped with a separate virtual time
clock for each priority class. We again assume that the real time clock runs continuously and
that the virtual time clock(s) are enabled to run only when the channel is sensed idle. Recall
that in the basic virtual time CSMA protocol. the virtual clock speed-up rate. n. may be
thought of as a function of the instantaneous backlog Q &7 — 7' such that 5(Q)=G*/G when
Q>0 and unity otherwise. To implement the priority mechanism, we now let 7,, the virtual
clock speed-up rate for class /. be a function of both Q,_; and Q;, and independent of all lower
priority classes. More precisely. we let

0 0, >0
i—=1
1 0, -
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The behaviour of the set of virtual time clocks can be visualized as a **staggered start™".
When end of carrier occurs, the virtual clock for the highest priority class starts running at a
rate. G*/G, and all other virtual clocks remain stopped. This grants permission to transmit
exclusively to the highest priority class, in FCFS order, at the maximum rate that can be
achieved without violating the maximum blocking constraint. If there are no messages from
this class in the system, this first virtual clock will catch up to real time and be forced to slow
down. As the virtual clock for the i priority class catches up to real time, the virtual clock for
the i+1% priority class is started at a rate just high enough to bring the traffic intensity back up
10 G*. Messages from the higher classes continue to have immediate access to the channel as
additional classes gain access to the channel (hence its similarity to Tobagi's semi-preemptive
discipline [Toba80b]). The process continues until either some station begins transmitting a
message (and the algorithm must be repeated from the beginning when this transmission is
over) or else all virtual clocks have caught up to real time. It is clear from the above descrip-
tion that this prioritized virtual time CSMA protocol still generates arrivals at a rate G* when
there is a backlog and G when there is no backlog. so that the addition of priorities has only
permuted the order in which messages are transmitted. From Kingman [King62a]. we know
that this permutation has no effect on the mean delay but that the variance of delay must
increase.

It is worth noting that this method of using multiple virtual clocks to provide HOL
priorities extends to more general classes of infinite population protocols. As is the case with
prioritized virtual time CSMA, the introduction of priority classes need not introduce any addi-
tional channel overhead. In particular, we may extend to the prioritized case any infinite popu-
lation tree algorithm that uses intervals of the arrival time axis as their enabled sets, such as the
Gallager-Tsybakov algorithm.

As a practical consideration in the implementation of virtual time CSMA protocols with
HOL priorities, we note that only one virtual clock per station is required. even with many
priority classes. It is clear from Eq. (6.6) that at any time. the virtual clock for at most one
priority class is in active use. We say that a virtual clock is in active use when it is running fas-
ter than real time to provide some flow control for that class. The virtual clocks for every other
class merely act as a “"gate’” which is either completely open (for higher priority classes) or
completely closed (for lower priority classes). It is thus sufficient to provide each station with a
single virtual clock plus both a gate and a register (to store the current virtual clock reading) for
each priority class.

A station in such a network operates as follows. Initially, all gales are open and the vir-
tual clock is assigned to the lowest priority class and running at real time. Whenever the chan-
nel changes state from idle to busy, the current virtual time reading is stored in the register for
the active class, the registers for all higher priority classes are set to real time. and all gates are
closed. Whenever the channel changes state from busy to idle. the virtual clock is loaded from
the register from highest priority class and allowed to run. If it catches up to real time before
the channel becomes busy, the gate for the active priority class is opened and the virtual clock
is reloaded from the register from the next highest priority class and allowed to run, and so on.
The above algorithm seems simple enough to be considered for incorporation in a large-scale
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integrated circuit.

Another property of practical importance is that stations generating only high priority
messages can ignore the lower priority classes entirely — even the number of priority classes is
unimportant. This is very fortunate for networks that support heterogeneous user classes. One
case of particular interest is the mix of many small high priority stations (e.g., interactive termi-
nals or real time instrumentation) with a few large stations (engaged, say. in file transfers,
video. or faximile). Because of the transparency of lower priority classes, we can provide each
small station with an inexpensive “*dumb’’ network interface, reserving the sophisticated priori-
tized interfaces for the large stations, without degrading the performance of the network.
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CHAPTER 7
Hybrid Carrier Sense — Binary Search Protocols

7.1: Introduction

When we interpret the “initial propagation time’’ at the start of each transmission as a
binary reservation request, we see that CSMA protocols are a special case of loss protocols with
binary reservations. This observation led to the discovery and analysis of the virtual time
CSMA protocol. which we examined in considerable detail in Chapter 6. Having shown that no
protocol can operate entirely on the binary reservarion channel, proven that loss protocols are
about as efficient (in terms of capacity) as is theoretically possible for any protocol that operates
on the message channel, and found an optimal synchronous loss protocol (virtual time CSMA).
it is tempting to believe that virtual time CSMA is an (almost) optimal protocol for local net-
works with many stations in which stations can sense carrier but not detect collisions (i.e.,
packet radio systems). Both the extension of our genie-aided upper bound argument to the
case of non-constant slot lengths in § 4.2.3 and Humblet's similar extension of his information
theoretic approach [Humb80a] seem to support this claim. However, both of these results are
valid onfy when stations are required to transmit only complere messages.

When the idie detect time is significantly less than the collision detect time. it is no
longer obvious that we suffer no penality in capacity by considering only protocols that transmit
only complete messages. When we view sensing carrier as a binary reservation process, it is
perhaps easier to see that Aybrid protocols that use borh the message channel and the reservation
channel must also be considered. Thus. in the context of local (a<<1) networks. we must
also consider protocols in which stations are allowed to transmit either complete messages or
short, carefully timed bursts of energy on the channel merely to announce that they have
become ready to send a message.

The idea of separating the problem of locating a message from its successful transmis-
sion dates back to polling algorithms. Scholl [Scho76a] was one of the first to present a distri-
buted version of polling without central control in his MSAP protocol. The BRAM protocol,
independently proposed by Chlamtac [Chla79a], is very similar in concept. Both MSAP and
BRAM operate by performing a linear search through a finite number of stations to locate the
next message to be transmitted. Transmissions are synchronized to begin at the start of 2 min-
islot. This provides binary feedback to all stations within a propagation time showing whether
that station was idle or busy. With these protocols, the overhead in finding messages grows
linearly with the number of stations in the network, so that they are unsuitable for networks
with a large number of stations.
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Another related protocol was devised by Hayes [Haye78al. In this protocol, ready sta-
tions are found by conducting a binary search procedure called probing. During the search,
ready stations respond to a probe by transmitting a short burst (rather than a complete mes-
sage). A ready station is not permitted to transmit a complete message until it has been
uniquely identified by a sequence of probes. In [Haye78al, it was assumed that the algorithm
was centrally controlled. Mark [Mark80a] later proposed a distributed version of this same pro-
tocol. It is assumed that the number of stations, M, is finite so that the protocols require
log,(M) probes to find the next ready station. Thus the performance of these protocols
degrades as the logarithm of the number of stations as the population increases so that they,
too, are infeasible with an infinite number of stations. Furthermore, even in the finite popula-
tion case each station is required to know both the exact number of stations and the address of
every station in the network. Efficient performance depends on careful assignment of station
addresses.

Below, we present new hybrid infinite population multiple access protocols in which sta-
tions transmit both binary reservation requests (i.e., energy bursts) and messages to gain access
to the channel. This hybrid approach can be applied to CSMA protocols without collision
detection to simultaneously reduce the idle time between transmissions and the blocking proba-
bility. [t can also be used to extend the class of infinite population tree algorithms discussed in
Chapter 3. We show that these hybrid tree algorithms can achieve a higher capacity than the
hybrid CSMA protocols. Moreover, we show that hybrid tree algorithms can achieve channel
utilizations far in excess of any “'naive’" extensions of the work on upper bounds on capacity to
the carrier sense environment, such as the results described in § 4.2.3. Thus these hybrid pro-
tocols represent a fundamentally new class of protocols, specifically designed to take advantage
of a binary feedback channel.

7.2: Efficient Use of Binary Feedback to Reduce Message Location Overhead

It is common in multiple access protocols to scan linearly through some candidate set in
search of messages. While this-is clearly true of such simple protocois as TDMA and ALOHA,
it also occurs in tree algorithms. In the Gallager-Tsybakov algorithm, for example, each service
epoch begins by selecting an enabled set having the same expected number of messages.

When the ratio of idle-detect to collision-detect times is close to unity, using a linear
search to locate messages is an entirely reasonable strategy. When this ratio strays very far
from unity, however. the optimal linear search is expected to use long sequences of (short) idle
slots or collisions (depending on whether the idle- or collision-detect time is smaller) at the
start of each service epoch.

While the idle-detect time is usually assumed to be less than the collision-detect time,
one can imagine systems in which the reverse is true. For example, consider a ‘‘central sta-
tion'" model with many terminals in line of sight of the station but hidden from each other. In
[Toba75a] Tobagi and Kleinrock introduce a **busy tone'’ channel to allow CSMA protocols to
be used. If, instead. the station were to broadcast a continuous binary signal on the ack-
nowledgement channel of ‘‘collision’ or ‘*no collision’, then collisions would be detected at



the terminals within a round-trip propagation time, but an idle slot could not be distinguished
from a success.

When the idle-detect time is much less than the collision-detect time, we propose the
following. super-linear scanning algorithm. (A similar algorithm could be devised for the oppo-
site case.) Let each service epoch begin with a two-level scan for new messages during which
only short reservation requests may be transmitted. In the first phase, the algorithm uses a
coarse linear search to advance to the neighbourhood of the next message(s). At the start of
each minislot, the protocol enables a (large) set. Eg. of stations to transmit reservation requests
if they have a message to send. If any of the enabled stations respond. the protocol enters the
second phase. If no stations respond. that enabied set requires no further service so a new set
is enabled in the next minislot. Since each empty minislot provides no new information about
the unexamined arrivals, all enabled sets during this first phase should be of constant measure.
Thus, we may assume without loss of generality that the distribution of messages in £ at the
end of phase one is Poisson with parameter Ay, conditioned on being non-empty. ie..

A -
—' e

PrlEy contains k messages] = 1
—e

0

_AO ‘

In the second phase, the algorithm uses a binary search to try to locate the first message
from E, more precisely. Since the channel provides only binary feedback. the protocol cannot
distinguish between a response from one station and a response from more than one station.
Thus. there is no reason for the protocol not to use a constant number of binary search steps in
this second phase.

At the start of the /" minislot in phase two, the protocol enables £';_;, which consists
of the first half of E;_y. If any stations respond, E; = E’,_;. Using Bayes™ theorem. it is easy to
see that the a posteriori probability density for messages in E,_|—£’;_ is again (unconditional)
Poisson at the original intensity. Thus E;_—E',_; is now effectively unexamined. and can be
ignored for the duration of the epoch. If no stations respond. E’;_; requires no further service,
and we let £,=E,_|—E';_,.
tion of messages in £; given that the a priori distribution of messages in £;_) was Poisson with

In either case, we may apply Bayes' theorem to find the distribu-

parameter \;_, (conditioned on containing at least one message) and that through enabling
E',_,. E; is known to contain at least one message. Let 4 be the event that £;_; contains K
messages. kK > 0. Let B be the event that both E; and E,_; each are known to contain at least
one message. Using Bayes' theorem. we have

Pr(B1A]-PrlA)
Pr(B]

Prl41B] =

Since 4 implies B. Pr([B1Al=1. Thus
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and we see that after / binary search steps, the distribution of messages in £, is Poisson with
parameter A;, conditioned on having at least one message.

In Figure 7.1, we show the operation of a hybrid CSMA protocol in which access to the
channel is based on the message arrival times (i.e., each enabled set is an interval on the real
time line). For simplicity, we assume that the protocol simply enables each of the intervals
found by the scan procedure as they are found. and that any colliding messages lost. Messages
arrive to the system from a Poisson source and thereafter "age’ at a rate of one second per
second until they leave the system at the end of their (possibly unsuccessful) transmission on
the channel. Following Figure 3.2, messages are shown as lines of unit slope and enabled sets
are parallelograms ‘sweeping out’ a range of ages for enabling messages. Each service epoch
begins with the first phase of the scan procedure (labelled S| in the Figure) enabling a
sequence of zero or more /dle intervals followed by one busy interval, which terminates this first
phase. The second phase (labelled S, in the Figure) refines this busy interval to 1/8" of its
original length using three additional minislots, after which the message(s) in this refined inter-
val are transmitted (during the transmission period, labelled TP in the Figure). This Figure
also illustrates the optimization described below in §7.3. Since our protocol immediately
enables the enrire busy interval found by the scan procedure, one minislot would be saved in
some service epochs if our protocol permitted stations to transmit complete messages rather
than short reservation bursts during the last minisiot of phase two. Comparing the first two
service epochs in the Figure. we see one fewer steps is required in the second phase when the
last step enabled a busy interval than when it enabled an idle interval.

When this two-level scan procedure is applied to infinite population protocols with Pois-
son arrivals. the first phase of the scan procedure obeys a remarkable conservation law at
optimality:

Theorem 7.1

Let Q) be the expected channel overhead per successful message transmission. Then, ignoring
the fact that a non-negative integral number of binary search steps must be performed in phase
two. () is minimized by enabling a Poisson sample with parameter Ay = .66794 in each minislot
during phase one independent of both the cost of binary reservations. idle slots, and collisions,
and of the particular multiple access protocol that is employed.

Proof:

Each of the times at which the protocol begins the first phase of the scan procedure is a regen-
eration point for the protocol. Thus each service epoch consists of an initial scan followed by a
busy period that lasts until the next regeneration point. We assume that a particular protocol,
say A, is employed, such that 4 transmits successfully & messages during a service epoch with
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Figure 7.1: The Operation of a Hybrid CSMA Protocol
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probability n,. Let w, be the expected channel overhead (not including the cost of the initial
scan procedure) during a busy period during which A transmits successfully & messages.

During the initial scan procedure, we assume that Poisson samples with parameter Aq
are enabled during phase one. which are refined to be conditional (ie.. non-empty) Poisson
samples with parameter A *. a constant, during phase two. To complete the proof, we must
show that for every choice of A *. and every protocol A4, the same value of A is optimal, namely
Ag = .66794.

For any given choices of Ay and A*, the expected cost per service epoch of the scan
procedure may be calculated as follows. The expected number of binary reservations per ser-
vice epoch in phase one is

1

] —e M

Ignoring the requirement that the number of binary search steps must be a non-negative
integer, phase two utilizes a constant number,

o8 3%
g3 1+

of binary reservations.

The activity on the channel may be viewed as sequences of zero or more wnsuccessfil
service epochs (during which no messages are transmitted successfully) alternating with success-

Jul service epochs (during which one or more messages are transmitted successfully). On the
n

average, there will be unsuccessful service epochs between each successful service

1 - I'IO
epoch. Since the probability that the successful transmission of a randomly chosen message
occurred in a service epoch during which & messages were transmitted successfully is given by

k'nk
2 Jn;
j=l
we see that

llowo
1= ng

+ + w (7.1)

A
1 Iy +10g2l_(1] i
l—e ™ A

21| im 1
&= Z_I = [l—fz
ey . 0
ZJ'"j
i=l

For any fixed value of A*. the minimum value of Q must occur when Ay=0, Ag= oo,
or at some point where the partial derivative with respect to Ay vanishes. Since the expected
number of steps in phase one grows to infinity when Ay —0. and the number of steps in phase
two grows to infinity when Ag— oo, only points where Q2/8Aq=0 need be examined. Since A *
is assumed to be constant, the set {»;} are independent of Ay. Furthermore, being probabilities.

109



any non-negative linear combination of {n,} must also be non-negative so that derivative can be
zero only when

=0. (7.2)

A
ai)\o 1——15_5 + logzl)\—o,,]
Taking the derivative, this condition becomes
e N __ 1
(1—e M2 Agln(2)
or
In(2)Age ™ = (1—e 792, (1.3)

We note the surprising result that Eq. (7.3) depends only on the fact that an even binary search
(of unknown depth) will be performed in phase two, and is compietely independent of A °, {n;],

{w;], and thus 4.

To complete the proof, we now show that there is a unique value of Aj in the range

0 < Ag < oo that solves Eq. (7.3). Let a(rg) 21In(2)Age ™ and B(rg) (1 — e "2 be the left
and right hand sides. respectively, of Eq. (7.3). Thus

o' (Ag) = In(2) e (1 — 1), (7.4)
a’(Ag) = In(2) e [ng— 21, (1.5)
By =2e M1-¢7, (7.6)
and
B"(Ag) =2e 27 M—1]. (1.7
Since

a(0) =B(0) =0,
a'(0) =1n(2) > 0.
B(0) =0.

and both a and B are continuous and differentiable, there must be some neighbourhood of 0 in
which a()g) > B(rg). However,

lim a(rg) =0 < 1 = lim B(Ag).
Ag—e Ag—=

so that at least one solution to Eq. (7.3) must exist. Numerical computation reveals that
Ag = .66794 is one such solution.
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To show uniqueness. we consider two regions bounded by Aj=1In(2) = .693. We see
from Eq. (7.7) that 8(ry) is convex for Ay < In(2) and concave for Ay = In(2), and from Eq.
(7.5) that a(Ag) is concave for Ag < 2 and convex for Ay = 2. A concave function can intersect
a convex function at most twice. (See Theorem 4.2. in Chapter 4.) Thus the two intersections
at Ap=0 and Ay=.66794, respectively, must be the only intersections in the region
0 < A9 <In(2). By continuity. it follows that a(Ag) < B(\g) must hold for .66794 < Ay < In(2).
Comparing Egs. (7.4) and (7.6), we see that for all Ag 2> In(2). a'(Ag) 2| while B'(Ag) < 1.
Since alrg) <B(Ag) for Ag=In(2), it must also be the case that a(A) <B(\) for all
A >1In(2). Thus Ay=.66794 must be the unique solution to Eq. (7.3) in the region
0<ag< oo,

n

We have thus shown that the optimum value of Ay for the two-level scan procedure
defined above is a constant. Thus. whenever it makes sense to consider binary reservation-
aided infinite population protocols (e.g.. in local packet radio networks where the ratio of idle-
1o collision-detect times is small). the parameters in the scan procedure can be optimized by
solving a one dimensional optimization.

7.3: Improved Performance with Hybrid CSMA and Tree Algorithms

Using Eq. (7.1), we may calculate the capacity of some representative hybrid protocols
1o determine their sensitivity to the propagation time, a, and to compare their performance to
similar ‘‘non-reservation’” protocols. We will examine both a hybrid CSMA loss protocol and a
hybrid tree algorithm.

Let us define the following hybrid CSMA protocol, which is an extension of minislotted
virtual time CSMA. For simplicity, let us assume that it is a loss protocol, ie., messages are
discarded after one unsuccessful attempt is made to transmit the enrire message, so that the
arrival process will be a stationary Poisson process. We shall again assume that permission to
transmit either a reservation burst or a complete message is controlled by a set of synchronous
virtual clocks. However, the behaviour of the virtual clock must be slightly more complex in
order to implement the two level scan procedure described above.

This hybrid CSMA protocol differs from virtual time CSMA during the scan procedure
that begins each service epoch. During this scan procedure, each station transmits a reservation
burst whenever a “‘tick’’ of the virtual clock passes the arrival time of one of its messages.
During the first phase, the size of the ticks is chosen to enable a Poisson set with parameter
Ap=.66794. As soon as one or more stations respond with a reservation burst, the second
phase of the scan procedure is begun. The binary search in phase two is performed according
to the following pair of rules. First, the virtual clock must “‘*back up™ one ‘‘tick’” after each
minislot in which one or more stations responded with a reservation burst. Second, the amount
by which the virtual clock advances at each tick is halved before each minislot.

111



For this hybrid CSMA loss protocol, it is easy to calculate the system parameters for
Eq. (7.1). At most one message is transmitted successfully in any service epoch. so that

_AreT
= -AT A°
l—e et —1

and

”0 = 1 - ﬂl.
To allow for the propagation time, each message transmission slot is assumed to be of duration
1+a. Thus

(JJO= l;+1

and
w) =a.
Substituting these values into Eq. (7.1) gives
1 Ao "o

L+ —— +1 Z'—]+—
1_8_7\0 08 A" a

. (7.8)

This hybrid CSMA protocol immediately enabies the entire set of stations found by the
scan procedure to transmit their complete messages. Thus. it is easy to see that the overhead
could be reduced by allowing the stations to transmit complete messages rather than reservation
bursts in the last (n"") step of the binary search procedure, when the first half of £,_; is exam-
ined. If any stations respond with a message transmission. we will have saved one reservation
request time. If no stations respond. it becomes known that the second half of £,_, must con-
tain one or more messages. In that case, all stations in that set are enabled to transmit their
complete messages in the next slot. Since the times for all stations to become aware that no
stations began transmitting a message and that no stations transmitted a reservation request are
equal, this improvement will reduce the overhead by one end-to-end propagation time. a, with
probability
“AT_ ot

- [ —e A7

Thus, the average overhead per successful transmission will be reduced to

A o DY) n
0= i+ — oY 1+ e 0 (7.9)
lll 1 — e_)‘O A 1 - e_2>‘ a

Figure 7.2 shows the capacity of the improved hybrid CSMA protocol described above
as a function of the propagation time, a. when there is no collision detection (i.e., b=1). The
capacity curve for minislotted virtual time CSMA from Figure 6.5 has been included for com-
parison. It is clear from the figure that the hybrid CSMA protocol performs significantly better
for small values of a (e.g., a < .1), but the added overhead of the reservation bursts makes the
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Figure 7.2: Sensitivity of Hybrid Protocols to Propagation Time
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protocol significantly less efficient than minislotied virtual time CSMA as the propagation time
grows closer 1o the message transmission time.

We have already seen in Chapter 5 that CSMA loss protocols are about as efficient as
the best collision resolution algorithms that operate primarily on the message channel when the
ratio of idle- to collision-detect times is small. Because of the high cost of message collisions. it
does not seem worthwhile to try to resolve collisions on the message channel. We thus propose
the following hybrid tree algorithm that requires only binary feedback during much of the colli-
sion resolution procedure. We note that this new hybrid tree algorithm is related to a
*‘breadth-first”" traversal of the same collision resolution tree that is employed by the original
Capetanakis algorithm.

This hybrid tree algorithm may be described as follows. We shall again assume that at
the end of the two-level scan procedure. the algorithm is supplied with a set, £,, known to
contain one or more messages according to a conditional Poisson distribution with parameter
A*. Whenever the scan procedure produces such a set, the algorithm immediately grants per-
mission to all stations included in £, to transmit their entire message in the next slot. (Since
the entire set £, is enabled. we can immediately incorporate the same improvement described
above to (possibly) save one reservation request per service epoch.) If enabling E, yields a suc-
cessful transmission. the service epoch is ended and the next scan procedure begins. However.
in this hybrid tree algorithm we shall resolve all collisions rather than discard any colliding mes-
sages, thereby transmitting all messages in £, before ending the service epoch.

Suppose a collision occurs when all stations in some set £ are enabled to transmit mes-
sages. This situation is illustrated in Figure 7.3. A collision resolution period (labelled CR in
the Figure) follows the first transmission period on the Figure. During the first minislot, all
stations in £, the first half of E are enabled to transmit reservation requests. If no station
responds (as is the case in the Figure), it becomes known (at the cost of one binary reservation
request) that £” 2 £— £’ contains two or more messages, and the collision resolution algo-
rithm is repeated starting with E£”. If at least one station responds (which occurs after one
more step of the algorithm in the Figure). all stations in £” are enabled to transmit complete
messages. We consider two cases. First. if there are no stations in this second enabled set, it
becomes known (at the cost of rwo binary reservation requests) that £’ contains two or more
messages. and the algorithm is repeated starting with £'. Second. if at least one station in £”
responds (as is the case in the Figure), we must consider two further cases. First. if enabling
E” yields a successful transmission. that set requires no further processing and the algorithm
continues by processing £'. (In this manner. the service epoch in the Figure ends after two
successful message transmission.) Second, if enabling £ yields a collision. the collision resolu-
tion procedure is applied recursively to that set. after which it continues by processing E£'.
Using Bayes’ rule, it is not difficult to show that in either case the distribution of messages in
£’ is Poisson with haif the parameter of £, conditioned on there being one or more messages.
Thus £’ is even more likely to contain exactly one message than are the sets with parameter A *
produced by the two-level scan procedure that initiates each service epoch. The algorithm
proceeds by granting all stations in £’ permission to transmit their entire message(s), possibly
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Figure 7.3: The Operation of a Hybrid Tree Algorithm
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causing a further collision to be resolved by the above algorithm.

Since many of the algorithmic steps are performed by transmitting (short) binary reser-
vation bursts rather than complete messages. we expect this algorithm to be more efficient
than, say, the Gallager-Tsybakov algorithm when a is small. Furthermore, since an average of
about four binary reservations used to find rwo busy sets, this procedure is also more efficient
than the hybrid CSMA protocol in which colliding messages are discarded immediately.

To calculate the capacity of this protocol numerically. it remains to establish a set of
recursive equations to define the sets {nk} and {wkl. We note that like Capetanakis' original
algorithm and unlike the Gallager-Tsybakov algorithm. all messages that are contained in an
enabled set are transmitted during the same service epoch. Thus, {nk} is given by the condi-
tional Poisson distribution with parameter A *, i.e..

)\tk R

e

”k = k!

To calculate the set {w,}. we observe that the collision resolution algorithm aiternates between
two sets of states, depending upon whether the current set £ is known to contain one or more,
or two or more messages, respectively. Thus {w k] can be caiculated by simultaneously calculai-
ing the set {;uk}. the average overhead to service a set of & messages given that it is known to
contain rwo or more messages. Following the notation of Chapter 3, let p; j be the probability
that exactly j messages are found in the first half of a set that contains exactly / messages.
Hence

A\
~

with initial conditions wg=w; =1, and

k-1
K = pk‘o(l +/"k) +pk,k(1 +[.Lk) + zpl\‘.l(l +(ui +“’k—i)
i=]
k—1
1+ Zpk_,(w,+wk_i)

_ = E>2.
1= pro—Pr i

with initial conditions ug=u;=0. Since we have incorporated the improvement described
above to (possibly) save the last binary search step, we must rewrite Eq. (7.1) as

o i'n A i D) now
n=yi|= 1 L +log2{—(il—l+ ¢ ¢ |+22 40 (710
i . l=ng|1=p A | —e 22 1—ng
J
=1

e

J

For comparison, the performance of the Gallager-Tsybakov algorithm with idle-
detection is also shown in Figure 7.1. Unfortunately, with this algorithm the number of mes-
sages actually transmitted out of an original set of & messages is a random number, so it is
difficult to calculate the parameters for Eq. (7.1). However. Eq. (3.1), giving the recursion for
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the expected length of a busy period that started with A messages, can readily be extended to
this local network environment. In this case, we find

k=1
wp = prolatwy) +pp ((L+a+wy) +p Q0 +a)+w, ) + thpk‘i(l+a+w,)
-

k—1
l+a-— pk'0+pk'l(l+a+wk_1) + Zpk’i w;
2

= = . 7.11)
1= Dy 0= Pr

with boundary conditions wg=a, w;=1+a, {nk} are given be Eq. (3.2), and the throughput is
given by Eq. (3.3).

As was the case with the hybrid CSMA protocol, we again observe from Figure 7.1 that
this new hybrid tree algorithm is inferior to the Gallager-Tsybakov aigorithm for large values of
the idle-detect time. and more efficient when the idle detect time grows smailer. In particular,
we see from the Figure that when a =.01, this hybrid tree algorithm can achieve a stable
throughput of = .92. In § 4.2.3, we defined a “‘naive’" upper bound on the performance of pro-
tocols in the carrier sense environment, in which we assumed that all exchange of information
over the channel was accomplished by transmitting only complete messages. Under this
assumption, we showed that no protocol can attain a higher throughput than = .88 with these
system parameters (ie.. a=.01 and b=1). Since the hybrid tree algorithm defined above can
achieve a significantly higher stable throughput, it is clear that the class of hybrid protocols
offers fundamental performance advantages over the ““standard’ infinite population tree algo-
rithms when the length of an idle slot is much less than the length of a collision.
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CHAPTER 8
Conclusions and Suggestions for Future Work

8.1: Protocol Recommendations for Local Networks

Several factors need to be considered in the selection of a multiple access protocol for
local networks. While at first it might seem that networks should be built using the most
efficient multiple access protocol that has yet been devised, one must keep in mind that optim-
ized protocols are inherently less robust and possibly more complex, and thus more sensitive to
errors.

In local networks, it is commonly assumed that the duration of idle slots (and possibly
of collisions) is shorter than the duration of successful transmissions. Having variable slot sizes
makes it possible even for crude protocols to achieve high maximum channel utilizations in
local network applications. (For example, see how efficient virtual time CSMA is, even though
it is no more than a variation of ALOHA with variable length slots.) Thus. the difference in the
capacity of a local network using, say, the Capetanakis protocol instead of the Gallager-
Tsybakov algorithm would be small.

However, achieving maximum capacity is by no means the only goal in choosing a pro-
tocol for a local network. Long-term stability and good delay characteristics are certainly just as
important. Thus, since provably stabie tree algorithms that guarantee first-come first-served
delivery of messages exist, it seems difficult to justify using CSMA protocols with their inherent
stability problems, random delivery of messages. and poor delay characteristics. At the very
least, when CSMA protocols are used, we feel that virtual time CSMA should be strongly con-
sidered. We also note that since tree algorithms are inherently stable and CSMA protocols are
inherently unstabie and thus cannot operate without some additional control procedures, it is
doubtful that CSMA protocols are any less complex to implement.

When choosing a tree algorithm, one must take care to study the robustness of the
algorithm with respect to errors in the feedback information. Massey [Mass80a] has done a
careful study of several variations of the original Capetanakis algorithm. He showed that many
of the more clever algorithms can deadlock when an idle slot is mistakenly interpreted as a col-
lision, but that some simple versions of the protocol are immune from this problem. Similar
problems can also occur when the characteristics of the traffic change. For example, trying to
support packetized speech traffic will be difficult for the more clever tree algorithms. [t is an
implicit assumption in such protocols that information about the set of waiting messages can be
gathered from the history of past activity on the channel. Thus, any message that has been
involved in a collision is expected to remain in the system until it is granted permission to
transmit. However, speech is an example of real-time traffic. Furthermore, speech traffic

118



usually contains redundant information. If a particular message gets delayed too long, the
receiver will attempt to reconstruct the speech without it. Thus, late messages are of no use to
the communicating speech processes, and are likely to be dropped. Paradoxically, the very
issue that Massey has shown to be a potential deadlock hazard is an inherent feature of one
important class of traffic!

In summary, the most reasonable protocol choice for a local coaxial cable networks at
this time seems to be a slight modification of the Capetanakis tree algorithm. This modification
is to control access to the channel at the start of each service epoch explicitly using a fixed size
window, (or the virtual clock mechanism from virtual time CSMA). We note that this
modified protocol avoids a nasty correlation between neighbouring service epochs. [t is also
possible to support priority classes in a very neat manner based on our results in section 6.6.

For local packet radio networks, we have seen that CSMA protocols can have a higher
capacity than even the Gallager-Tsybakov algorithm. Radio networks also have much noisier
channels, making it more difficult to ensure that all stations receive accurate feedback informa-
tion. Furthermore, because of the possibility of mobile stations, it is more difficult to gather
information about messages. [ndeed. since mobile stations may periodically lose contact with
the network (when passing though a tunnel, say), it may be unreasonable to assume that the
stations can follow any synchronous tree algorithm. Thus, the virtual time CSMA protocol may
be best suited for such networks. In addition, it can operate asynchronously — impossible with
every known tree algorithm. We note, however, that the hybrid protocols discussed in Chapter
7 offer higher capacity in the packet radio environment and should also be considered.

8.2: Extensions

8.2.1: General Open Problems

Synchronous tree collision resolution algorithms are now becoming well understood in
the *’standard™ case in which all slots are of constant length. However, much work remains to
be done in extending these types of protocois to other operating environments. In particular,
we see the following general open problems.

To date, all of the tree algorithms have relied on the fact that the channel is slotted. A
synchronous channel facilitates gathering information about the distribution of messages in
enabled sets. All stations know precisely which enabled set corresponds to a specific (ternary)
“bit” of feedback information. Unfortunately. it is difficult to maintain global time synchroni-
zation in a network. Thus, for practical reasons. it is desirable to use asynchronous '‘unslot-
ted'” protocols. At the present time, only variations of the ALOHA-based protocols (such as
the CSMA protocols) have been proposed as unslotted infinite population protocols. An impor-
tant area of further research would be to determine whether any form of ““tree algorithm® can
operate on an unslotted channel, and to define such a protocol.
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Another problem of considerable practical interest in packet radio networks is the
extension of tree algorithms to the hidden station environment. To be practical, several limita-
tions need to be overcome. First. the information gathering process is more difficult because
the sending and receiving stations no longer share the same environment. Thus, some outside
agent must supply the sender with the feedback information. Second. given the correct feed-
back information from the receiver's environment, making reasonable decisions about which
stations to enable is more difficult. For example, what should be the decision if it is known
that a particular message could be transmitted successfully to its intended destination. but its
transmission would destroy some other successful transmissions [Yemi79a).

8.2.2: Specific Extensions of this Work

In Chapter 6, we proposed a method for incorporating head-of-line priorities into the
virtual time CSMA protocol. We showed that such an extension will not affect the capacity of
the protocol or the overall mean message delay. However, we did not show how priorities affect
the mean delays for different classes of stations. We conjecture that a close approximation to
the delay performance could be obtained by extending the discrete time M/D/1 model for min-
islotted virtual time CSMA in a similar manner to the way in which the delay expressions for
HOL priority queues are obtained from the corresponding M/G/1 queueing results [Klei76a].

In Chapter 7, we introduced hybrid carrier sense — binary search protocols for systems
in which binary (but not ternary) feedback is available at low cost. Such is the case.in local
radio networks, where rapid idle detection is possible but there is no collision detection. We
calculated the capacity of a hybrid CSMA and a hybrid tree protocol. However, we again did
not present any results for their delay performance. We believe that a similar, albeit more tedi-
ous, numerical approach to the second delay model for minislotted virtual time CSMA is solv-
able. and should be investigated.

In addition, we have shown that the maximum throughput for the hybrid protocols that
we described in Chapter 7 can exceed a ‘“‘naive’’ upper bound on capacity obtained by a
straightforward extension of work described in Chapter 4. When the ratio of idle-detect to
collision-detect times is unity, these bounds are correct. However, when this ratio is far from
unity (as we have assumed in Chapter 7). further work is required to properly bound the capa-
city. Trivially, a weak upper bound can be obtained by assuming that both idle-detection and
collision-detection can be accomplished in a time equal to the minimum of the two, but its
results can be too weak to be of any value. A more promising approach would be to extend the
work of Tsybakov and Mikhailov (§ 4.3) to account for the fact that the protocol could choose
to send short binary messages that could increase the size of the accepted set but not the
number of successful transmissions.
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APPENDIX A
The Discrete Time M/G/1 Queue

A.1: The Behaviour of the Discrete Time M/G/1 Queue

The M/G/1 queue in continuous time has been studied extensively in the queueing
theoretic literature (Klei75al. This queueing system has a memoryless Poisson interarrival dis-
tribution with parameter A. and a general, independent service time distribution B(x) with
mean X and Laplace transform B*(s). It is well known that the Pollaczek-Khinchin mean
value formula gives the average time in system and that the Pollaczek-Khinchin transform
equation gives the transform of the distribution of the number of customers in the system for
the continuous time M/G/1 queueing system.

In the study of synchronous protocols, we will have need of the analogous results for
discrete time queueing systems, which for completeness we present below. In particular, we
shall assume that time advances in discrete steps such that events may occur onfy at some time
k-, k=0,1, ---. Each such event time will be called an arrival point. Clearly the interarrival
distribution will exhibit the memoryless property if each arrival point is independently busy with
probability p and idle with probability | —p. This corresponds to a geomerric interarrival distri-
bution with parameter p. We shall permit a general, independent discrere service time distribu-
tion, requiring only that each service time be an integer multiple of . We thus define b, with
c-transform B(:z), to be the probability that the service time of the next customer is k-7,
k=1,2, ---. and B, =Y X b; 10 be the service time distribution function. Since {6} is a
discrete probability density. Y 72,6, =1. As with the continuous time case, our analysis
requires that the service time for each customer be independent of the service times of all pre-
vious customers. ’

We proceed using the method of imbedded Markov chains ([Klei75a], pp. 174ff.). Let
gy with c-transform Q(z), be the equilibrium probability of & customers left behind by a

departure from service. Since the number of customers in the system changes in unit steps,!
{qk] must also describe the number in system as seen by a new arrival to the system (see
[Klei75a], problem 5.6). Furthermore, since the arrival process is memoryless, q; must also be
the equilibrium probability of & customers in the system over all time.

! This property holds only if we assume that bg=0, ie.. every customer requires a non-zero
time in service.
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Let v,. with z-transform V(z), be the equilibrium probability of k arrivals during a ser-
vice time. Thus

V() AT vz
1=0

= ii[{]p’(l —p)j_’bj:’

i) j=y

= 3,3 (1= ppi-
Jj=0

1m0

=Y b(1—p+pz)/

j=0

2 B(l—p+p2). (A.1)

It is a property of z-transforms of discrete probability density functions [Klei75a] that the aver-
age number of arrivals per service time. v, can be found as

= 2 Lyo),
dz -
Applying Eq. (A.1). we obtain
7= B'(1)~—d—(1—“—d”~—+—’iz—)— = p%. (A.2)

If we define the discrete convolution f®g of two non-negative discrete density func-
tions to be the sequence whose n™ term is

n
(f®g)n é zfjgll—j’
j=0
then the balance equations for lqk] at the imbedded points are simply

9 = (q®V)k+1 — qoVe+] +quk' (A3)

Applying the convolutional property of :-transforms (Klei75al to this set of equations, we
obtain

0) 2 Y quzfk=3% [(q@v)k_,_l:k—qovkﬂzk+q0vk:k
k=0 k=0
() V() - —qo(V(2)—vp)
_ oL Ll L 0 4 V()
gV -2)
7% S (A.4)

Since Q(1) 21, one application of I'Hépital’s rule gives gq=1—V. and hence that p=V. Thus.
Eq. (A.4) becomes
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V() (1-v)(1-=z)

) = (A.3)

Q(z) =

We note that Eq. (A.5) is identical to the Pollaczek-Khinchin transform equation for M/G/1
queues in continuous time (e.g., Eq. (5.85) in [Klei75al), except that V(z) =B*(A—A\z) in
continuous time, rather than obeying Eq. (A.1).

We continue the analysis by finding the average queue size at customer departure
instants from the relation g=Q'(1). Since Q'(1) has an indeterminate form, we define

alz) 3Bz —p+pz)(1-V)(1—:) and B(z) 2B(z—p+pz) — = so that Q(z) = Z:'Z; . and
. (2)8(2) — al2)B'(2)
(z) = & . (A.6)
0 B2(2)
Since a(1) =g(1) =0, applying I'Hopital's rule to Eq. (A.6) we obtain
G = a"(z)B'(z) — a'B"
2p2 =1
— (=) nelnE — 2 2_ <
_ -9 2px(px_ 1) + p*(x*—X)) . (A7)
2(px —1)?
But since p =V =px, Eq. (A.7) may be rewritten as
2(2_ <
- pe(xt—Xx)

Define the coefficient of variation of a random variable X with mean X. second central moment
X2, and standard deviation o y 10 be

A Ty _ VXZ:(X;)z

X X

AR
Il

I

[

Then Eq. (A.8) may be rewritten as

,(1+CE—1/%)

-4 .
A A To RS (a.9)
or, applying Little's result [Litt61a],
T p(1+CH —»p
L1+ A,
2 1 20 = ) (A.10)

The Poisson limit is obtained by simultaneously letting p —0 and r —0 while preserving the
ratio p/r 2A. Since X is measured units of =, X must diverge to +o0 in the Poisson limit if we
are to have a non-zero service time. Thus, Egs. (A.9) and (A.10) are consistent with the
analogous forms of the Pollaczek-Khinchin mean value formula in continuous time (e.g.. Egs.
(5.63) and (5.71), respectively, in [Klei75a]).
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A.2: Residual Life of the Customer in Service

In the previous section. we have shown that Pollaczek-Khinchin equations for the
M/G/1 queueing system in discrete time differ only slightly from the corresponding equations
in continuous time. Below, we show from the residual life calculation why this discrepancy
occurs.

In the set of balance equations defined by Eq. (A.3), it was assumed that arrivals occur
just before a (possible) service completion. A new arrival may enter service immediately if no
other customers are waiting. Consequently. a customer arriving during a service time of total
length k-7 can wait ar most (k—1)-r before the service ends. Since we have memoryless
arrivals, it follows that

Prlresidual life = i|service time = j] = % (A.11)
and
. . . o . i+1
Priresidual life < i|service time = j] = —j— (A.12)
forall i=0.1,...,j—1. The probability that a randomly chosen customer arrives during a ser-
vice time of length k-7 is proportional to its length and relative frequency of occurrence, i.e.,
Jjb; Jjb;
Prllifetime = jl = —+— = —~. (A.13)
2imiitb; X
Combining Egs. (A.11) — (A.13) we obtain
. | j’b
fl = Z e —J
j=iv1J X
j=1+1 E
= (A.14)
X

the densi'ty of the residual life of the customer in service. It follows that the transform of the
residual life density must be

~.,-i

!

F(z) 2

LM

(1 —B"):I

[
=
LM

1—-B8(z2) .
_1-80G) 1
(-2 (A-13)

Thgs the mean residual life of the customer in service will be y AF(D). Substituting the value
of F(z) from Eq. (A.15) and applying I'Hopitai's rule, we obtain
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2
=~
X

- 1
y = 3 ('\16)
Comparing Eg. (A.16) with the corresponding equation in continuous time (e.g., Eq. 5.15 in
[Klei75a]). we find that the mean residual life is shorter by exactly 7/2 in discrete lime than in
continuous time. This is to be expected because we assumed that arrivals occur as a service
time is ending (rather than just beginning). This result also confirms the observation from Eq.
(A.10): the average time in system must be shorter in discrete time than in continuous time.
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