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Abstract— We consider the path-determination problem in
Internet core routers that distribute flows across alternate paths
leading to the same destination. We assume that the remainder
of the network transit delay beyond this router are different
for the two paths, so a good routing policy can reduce the
end-to-end delay by favoring the faster path. Thus, we propose
and solve the optimal path-determination problem for a router,
which minimizes the average network transit delay for a flow by
dynamically assigning each packet to one of the available output
ports based on their respective instantaneous queue lengths and
on the average network transit delay for the associated path. We
assume that all outgoing link speeds at the router are equal, but
we generalize the model to allow each output port to serve a
link group (such as an optical fiber using WDM) that consists of
multiple physical channels running in parallel.

By formulating path-selection as a Markov Decision Problem,
we show that the optimal algorithm is a threshold-type policy
that we call

���������
.
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I. INTRODUCTION

Consider an Internet core router, 	 , with two available paths
to the same destination, 
 . Although some routing protocols
(e.g., distance-vector, or RIP) restrict 	 to sending traffic over
one of those paths at a time, others (e.g., link-state, or OSPF)
support dynamic load-balancing over multiple paths. In that
case, we call 	 a forking node with respect to destination 

and, naturally, are interested in finding ways by which 	 can
reduce the end-to-end delay for traffic going to 
 through its
local path-selection policy.

This path-selection problem is fundamental to a variety of
interesting applications. For example, suppose node 	 is the
boundary router for a “stub” Autonomous System with uplinks
to two different Internet Service Providers. Typically, 	 will
route all traffic through one ISP uplink, leaving the second ISP
uplink as a backup route to improve reliability. If the traffic
bottleneck is far away from 	 , then single-path routing will
have little effect on end-to-end delay as long as 	 routes all
traffic through the faster path. However, since the two uplinks
from 	 are dedicated to a single customer network, they are
likely to have very limited bandwidth. Thus, dynamic load-
balancing by 	 across both of its available uplinks may have
a significant impact on the end-to-end performance for its
network.

Routing in optical networks with WDM links [8], [6] is
another application domain where dynamic load balancing
may provide a significant performance improvement. In this
case, each physical cable attached to a router’s output port
can carry many independent data streams simultaneously over
different wavelengths. More importantly, the physical layer
may support optical cross-connection of specific wavelengths
between adjacent cables, to create a direct, all-optical, multi-
hop Virtual Link between two physically non-adjacent routers.
For example, consider the routing of traffic from node 	 to
node 
 in the optical network given in Fig. 1(a). Suppose all
	�
 traffic follows the 3-hop physical path ( ��
������������ ) through
intermediate nodes � and � . Nevertheless, we might have the
choice between two alternative paths at the logical level, as
shown in Fig. 1(c). Path 1 uses Virtual Link ��
 to reach 

in a single “router-hop”, after we have configured the optical
interconnects appropriately at intermediate nodes � and �
(Fig. 1(b)). Path 2 requires three “router-hops” to reach 

through the logical path ( �������������� ). Since path 1 avoids
the store-and-forward delay at intermediate routers � and � ,
the remainder of network transit delay — between a packet’s
departure from 	 and its arrival at 
 — will be much shorter
if we route the packet along path 1 than path 2.

In [5], we introduced the forking node scheduling problem
with path-dependent network transit delays. We also compared
the performance of a variety of random, deterministic and
state-dependent routing algorithms in this application, using
simulations. From all the algorithms we tested, a simple gen-
eralization of the well-known Join-the-Shortest-Queue (JSQ)
consistently gave us the best performance according to a
variety of metrics. The generalization was simply to add a bias!

to favor the queue leading to the faster path. We now provide
a further generalization of the "$#&%(' ! policy to handle multi-
server link groups (such as WDM optical fibers). In this case,
if an arriving packet has a choice between output port 1, which
has ) waiting packets and is served by a group of * 
 parallel
servers, or output port 2, which has + waiting packets and
is served by a group of * � parallel servers, then the routing
policy assigns the arrival to port 1 unless the difference in the
normalized queue length per channel, ,-/.1032-5476 ! .

We formulate path-determination as a Markov Decision
Problem [1], [7], and derive the optimal solution under the
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Fig. 1. The physical, design and virtual topologies. Virtual channel ��� uses
optical links

� ��� ��� and
�	�

. There is a single hop path 
��
��������� between �
and � , as well as a multihop path 
 � ���������������������
Poisson traffic model. In particular, we show that the stationary
routing policy at a forking node that minimizes the average
end-to-end delay experienced by a packet, is of threshold-type
(also known as switch-type), and is in fact "$#&% ' ! .

The rest of this paper is organized as follows. In Sec-
tion II we develop a dynamic programming formulation of
the optimal path-selection problem, and present an interative
algorithm for finding the optimal solution using Markov deci-
sion processes. In Section III, we present some fundamental
properties about the optimal policy, from which we show
analytically that it is representable as a switch curve. In
Section IV, we characterize the shape of the switch curve and
show that it is identical to our "$#&% ' !

policy. We present
numerical results in Section V and conclude in Section VI.

II. MODEL DESCRIPTION AND FORMULATION

1. Model Description

Node 	 can be modeled as a queueing system with one
input feeding two parallel queues, each connected to its own
multi-server output. We assume that the routing decision
maker at node 	 has complete information, i.e., it knows the
instantaneous number of packets at each queue, the routing
bias

!
and the mean difference in downstream path delays�

. Thus, the structure of the system is that of a Markovian
decision process which can be described as follows.

States: The state of the system is described by the tuple ) ��+"! , where ) and + are the number of packets in queue 1 and
queue 2 respectively.

Events: When an event # occurs, we distinguish three
possibilities: #%$'& when a packet arrives on the common
input; #($*) when a packet departs from queue 1; and #($,+
when a packet departs from queue 2.

Decision: Following each event, the decision maker must
choose one of the following actions: -.$/& means do nothing;

-.$0) means route a packet to queue 1; or -1$/+ means route
a packet to queue 2. Since every incoming packet must be
assigned to one output queue, but we do not allow jockeying
between the two queues, the set 2 of valid state transitions2.354 67$  98 ) � 8 +"! is limited to the following elements: 2:3�; 
 67< '=)���&>! , where #?$@& , -A$B) and the arrival joins queue 1;2.3�; � 6(<  & � '=)�! , where #?$C& , -D$@+ and the arrival joins
queue 2; 2135E 
 6F<  0 )��G&H! , where #I$J) , -K$L& and the
departure leaves queue 1; and 213ME � 67<  & � 0 )�! , where #N$,+ ,-.$O& and the departure leaves queue 2.

Criterion: The objective is to minimize P(Q , the expected
end-to-end packet delay in steady-state.

Costs and rewards: Without loss of generality, we consider
only the difference in the mean downstream path delays,

�
,

rather than their actual values,
� 
 and

� � . At all times, the
decision maker keeps a running total of all costs incurred and
rewards received for all packets it has handled so far. For
each arriving packet, the decision maker incurs a cost equal
to its expected end-to-end delay, conditioned on the state of the
system at its arrival. For each departing packet, the decision
maker receives a reward equal to the minimum overall average
cost, PRQ . Therefore, if the decision maker follows the optimal
policy, then the cumulative expected cost/reward will be zero
at the end of each regenerative cycle.

2. Dynamic Programming Formulation

In the following analysis, we complete the model in terms
of a mathematical formulation. We use the following notation:SUT�V  ) ��+"! denotes the cumulative expected cost/reward,

given the system has reached state
 ) � +"! following W state

changes starting from a randomly-chosen initial state (i.e.,TYX  ) � +>!Z<O& for all ) � + ). Although these initial conditions
are highly atypical, their effect is not significant whenWF[\) .S^]  ) � +`_"2 354 6 ! is the incremental cost/reward for respond-
ing to event # with action - in state

 ) � +>! , leading to state
change 2.3M4 67$  a8 ) � 8 +"! . The incremental cost/reward is:

]  ) � +1_b2.3�c�6d!e$
fggh ggi
� ' *?->j?k�& � 2 ; 
- 4 0 )�l ) TDm $*)
*n-Hjnko& � , ; 
-/. 0 )�l ) TDm $,+
0 P Q ) TDm $ 0 )�� 0 +S%p  ) � +1_b2.354 6d! is the departure rate from state

 ) ��+"! through
state change 21354 6U$  # �G-"! . Since all interarrival and
service times are exponential, we see that:p  ) ��+1_>2 3 
 6 ! $ q if -1$0) , or 0 otherwisep  ) ��+1_>2 3 � 6 ! $ q if -1$/+ , or 0 otherwisep  ) ��+`_b2 35E 
 6 !r$ s.tvu  ) ��* 
 !p  ) ��+`_b2 35E � 6 !r$ s.tvu  +���* � !

The decision maker now has to make a choice between action-w$ ) leading to state change 213 
 6 and action -'$x+
leading to a state change 213 � 6 such that the incremental cost
is minimized, i. e., *�)yW  TbV  )�'^)�� +"! ' ]  ) ��+._H2 3 
 6 ! � TYV  ) ��+ ')�!/' ]  ) ��+z_{2.3 � 6d! . The model can now be defined for all



)�� & and all +�� & through the following dynamic pro-
gramming equation (DPE). For simplicity, we define p  ) ��+"!Z$�����	� 
��
� p  ) ��+ _72.3M4 6y! as the combined departure rate from
state

 ) ��+"! .T X  ) ��+"! $r&T V ; 
  ) ��+"!r$ ������ 
��
� p  ) � +:_b2.3M4 6y!p  ) � +"! �� T�V  ) ' 8 ) ��+ ' 8 +"!$' ]  ) � +:_b2.354 6 !��
if W 6 & , which can be solved iteratively to obtain the optimal
policy. Algorithm 1 illustrates the solution procedure where
we assume that the cardinality of the state space is j 
�� j � .
Algorithm 1 Computing the optimal policy

1: W�� &
2: for ) $K)��wj 
 do
3: for +=$*)��wj�� do
4: T V  ) � +"!��'&
5: end for
6: end for
7: repeat
8: for )7$0)��wj 
 do
9: for +.$0)��wj � do

10: � 
 � T V  )�' )���+"!�' ]  ) � +1_b2.3 
 6d!
11: � � � T V  ) ��+ ' )�!$' ]  ) � +1_b2.3 � 6d!
12: p � q7'^s1t�u  ) � *�
�!$'^s1t�u  +�� *(��!
13: if � 
���� � then
14: TYV ; 
  ) � +"!�� q � � 

15: �  ) ��+"! �\)
16: else
17: TYV ; 
  ) � +"!�� q � � �
18: �  ) ��+"! � +
19: end if
20: T V ; 
  ) ��+"!!�  T V ; 
  ) ��+"! '/s1tvu  ) ��* 
 ! �  T V  ) 0)���+"! 0 PNQo! 'Ds1t�u  +�� * � ! �  T V  ) ��+ 0 )�! 0 PNQ�!�!�" p
21: end for
22: end for
23: W#�wW ' )
24: until $ T V 0 T V E 
 $%�'&

III. CHARACTERIZATION OF THE OPTIMAL POLICY

Theorem 1: If it is optimal to route an arriving packet to
queue 1 in state

 ) ��+"! , then it is optimal to route an arriving
packet to queue 1 in all states

 ) ��+ ')( ! and in all states ) 0 ( � +>! for (*�I& .
Alternatively, Theorem 1 can be stated as:
Remark 1: if it is optimal to route an arriving packet to

queue 2 in state
 ) ��+"! , then it is optimal to route an arriving

packet to queue 2 in all states
 ) '+( � +>! and in all states ) ��+ 0 ( ! for (*�I& .

In order to prove Theorem 1, we will prove the monotonicity
results given by Proposition 1 where we define8

2
TYV  ) ��+"!e$ TYV  ) ' )���+"! 0 T�V  ) ��+"!8
,
T V  ) ��+"!Z$ T V  ) ��+ ' )�! 0 T V  ) ��+"!
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Fig. 2. CTMC with �-, � �., � � ����/���/�� . The attractor line is for 0��1/ .
Proposition 1: 2 W3�I& ,8

,
T V  ) � + 'O)�!4� 8 , T V  ) 'O)�� +"! (1)8
2
T V  ) � + 'O)�!65 8 2 T V  )�'O)���+"! (2)8
,
T V  ) ' )���+"!4� 8 , T V  ) ��+"! (3)

Remark 2: T V is component-wise convex in ) and in + if the
following hold:8

2
T V  ) ' )���+"!7� 8 2 T V  ) ��+"!8
,
T V  ) ��+ 'O)�!4� 8 , T V  ) � +>!

Properties (1) and (2) reflect the fact that the difference in
delay between having one more packet at queue 1 and having
one more packet at queue 2 is non-increasing (nondecreasing)
function of the number already in queue 1 (queue 2). Hence we
switch from preferring to have an additional packet at queue
1 to having one packet at queue 2 as either the number at
queue 1 increases or as the number at queue 2 decreases.
Therefore, a switch curve exists. Property (3) is known as the
super-modularity property of T V in

 ) ��+"! . With some algebraic
manipulations, it can be shown that properties (1), (2) and (3)
together imply component-wise convexity of T V in ) and in + .
We prove the proposition by induction on W and we refer the
reader to [3] for a complete proof.

IV. CHARACTERIZATION OF THE SWITCH CURVE

1. What is an Attractor Line?

Node 	 can be modeled as a two-dimensional Markov chain
whose state space may be represented by the tuple

 ) ��+"! . The
state transition diagram of the system is shown in Fig. 2 where
"$#&% ' ! routing policy dictates the transition behavior between
the states. The line ,- . 0 2- 4 $ ! in the system state space is
called the attractor line for the following reasons. Notice that
for all states that are not on the attractor line, an arrival (i.e.,
an outgoing transition with label q ) always points towards
the attractor line. Thus, for all states below (to the left of)
the attractor line, an arrival moves the current state towards
the right. Conversely, for all states above (to the right of) the
attractor line, an arrival moves the current state downwards.
The attractor line is shown in Fig. 2.
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2. Attractor Line and Switch Curve

Our objective here is to prove that the switch curve, # ,
which is defined, with respect to + , by Eq. (4) has the same
shape as the attractor line, namely a straight line (and more
precisely a staircase shape).

#  )d!Z$ * )yW  + �I&1_ T V  ) � +1_b2.3 
 6d!$' ]  ) � +:_b2.3 
 6d!
0 T V  ) � +:_b2.3 � 6d! 0 ]  ) ��+1_H2.3 � 6d! �%&H! (4)

We divide the state space in two regions, a boundary region� X $��  ) � +"!._�) � * 
 � + � &�� and a homogeneous region� 
 $	�  ) � +"! _�)�� * 
 ��+ �I&�� , to show that in region
� X , the

switch curve will be a vertical line and in region
� 
 it will

be a straight line with a nonzero slope as shown in Fig. 3.

3. Shape of the Switch Curve at the Boundary Region

Theorem 2: If the difference in cost between having one
more packet in queue 2 and having one more packet in queue
1 at state

 ) ��* � ' ! 0 )�! is the same as the difference in
cost between having one more packet in queue 2 and having
one more packet in queue 1 at state

 )�''( � *�� ' ! 0 )�! , for( �O& �5)�' (�� *�
��/+ 6 & , then the switch curve at
� X is a

vertical line. +.$ *(� ' ! 0 )
Theorem 2 can be also stated as:

Remark 3: if it is optimal to route an arriving packet to
queue 2 in state

 ) ��+"!e$  ) � * � ' ! 0 )�! , then it is optimal to
route an arriving packet to queue 2 in all states & 5 ) � * 

and & 5 + 5 * � ' ! 0 ) . Conversely, if it is optimal to route
a new packet to queue 1 at state

 ) � * � ' ! ! then it is optimal
to route a new packet to queue 1 at all states

 ) ' ( ��* � ' ! !
(and in general in all states

 ) ' ( � * � ' ! ' ( X ! ��( X �U& ) for
all ( �U& when & � ) � *�
 .
To prove Theorem 2, we prove the following Proposition by
induction on W . For the proof we refer the reader to [3].

Proposition 2: 2�W �U& �{& 5 ) � * 
 � + �I& ,8
2
T V  ) ��+ 'O)�!Z$ 8 2 T V  ) 'O)�� +>!T V ; 
  ) ��+"! 0 + T V ; 
  ) 'O)�� +>!�' T V ; 
  ) ' + ��+"!Z$ &

4. Shape of the Switch Curve at the Homogeneous Region

Theorem 3: If the difference in cost between having one
more packet in queue 1 and having one more packet in queue
2 is the same as the difference in cost between having * 
 ' )
more packet in queue 1 and having * ��'0) more packet in

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Switch curve for (m1,m2)=(1,1)

queue 2 length

qu
eu

e 
1 

le
ng

th

(a) 
���
����

0 20 40 60 80 100

0

10

20

30

40

50

60

70

80

90

100

Switch curve for (m1,m2)=(1,1)

queue 2 length

qu
eu

e 
1 

le
ng

th

(b) 
��������
Fig. 4. Switch curve when ��, ��� , � � ����������� ���e�1/������
queue 2, then the switch curve can be characterized by its
slope which is equal to

-/.- 4 .
Remark 4: Alternatively, Theorem 3 can be stated as: if it

is optimal to route an arriving packet to queue 1 in state
 ) ��+"! ,

then it is optimal as well to route it to queue 1 in all states ) ' *�
�� + ' *(��! .
To prove Theorem 3, we prove the following Proposition

by induction. We refer the reader to [3] for a complete proof.
Proposition 3: 2�W��I& ,TYV  ) 'O)���+"! 0 TYV  ) � + 'O)�!r$ TYV  ) ' *�
 '/)���+ ' *(��!

0 T�V  ) ' * 
���+ ' *(� 'O)�!
V. NUMERICAL RESULTS

Fig. 4 and Fig. 5 show the switch curves for several link
group sizes for a network load of  %$"!b&$# and %'&(# . The
switch curves are straight lines that correspond to the models
respective attractor lines. However, as we move away from the
origin especially in the case of * 
 $ * � $ ) , the behavior
of the switch curves become ambiguous. When * 
 $0)�& and
* � $)! , the boundary effect is less pronounced. We believe
that this is due to the boundary effect and the truncation of
the state space. Moreover, we notice that this behavior persists
for high loads (see Fig. 4(a) and Fig. 5(a)). For low loads, we
observe that the switch curves behave better and they continue
to be straight lines throughout the state space (see Fig. 4(b)
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and Fig. 5(b)). To avoid this problem, a larger state space
should be considered, keeping in mind that the computation
effort increases exponentially as the state space increases.

The switch curves can be used to determine the optimal
!

for a given arrival rate q and a downstream delay difference�
. We argue that the switch curve intercept (

�
) is a function

of the routing bias i. e.,
� $ ! ' * � . Moreover, the figures

show that
� �I+b& 5 � ( �n$*) ) thus,

! � � .
Fig. 6 shows that the relative delay difference between

having one more packet at queue 1 and having one more
packet at queue 2 is a non-increasing function in the number
in queue 1. The set of points, � 2 , in the curves that cross thej -axis constitute the set of points on the switch curve ( � 2 is
called the switch-over point that is, the routing policy keeps
sending packets to queue 2 until its length reaches � 2 , at this
point it switches and sends packets to queue 1).

VI. CONCLUSION

We solve the path-selection problem for an Internet core
router that chooses from alternate routes leading to the same
destination. We prove that the optimal solution is a threshold-
type routing policy called "�# % ' ! , in which packets are only
routed to the output port leading to the higher-delay path if the
difference in output-queue lengths is greater than some thresh-
old

!
. Moreover, our optimality result for "$#&% ' ! is general

enough to handle multiserver link groups for each output port,
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in which case each queue length is normalized by the number
of available servers before the threshold comparison.
"�# % ' !

includes the “greedy” policy as a special case,
where packets always choose the faster path unless the ex-
tra queueing delay incurred at its output port exceeds the
savings in network transit delay from taking the faster path.
Surprisingly, our work shows that the “greedy” policy is not
optimal for this problem, which contradicts previous results
on this subject [2]. In general, we found that the optimal bias
is significantly less than the “greedy” value. In the case of the
single server link groups we showed that

!
is �  
��� ]  � ! ! [4].
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