
Computation of the Packet Delay in Massey’s Standard and Modified
Tree Conflict Resolution Algorithms with Gated Access

Mart L. Molle and Alvin C. Shih

Technical Report CSRI-264
February 1992

Computer Systems Research Institute
University of Toronto

Toronto, Canada
M5S 1A1

The Computer Systems Research Institute (CSRI) is an interdisciplinary group formed to conduct research
and development relevant to computer systems and their application. It is an Institute within the Faculty of
Applied Science and Engineering, and the Faculty of Arts and Science, at the University of Toronto, and is
supported in part by the Natural Sciences and Engineering Research Council of Canada.

- 2 -

Computation of the Packet Delay in Massey’s Standard and Modified
Tree Conflict Resolution Algorithms with Gated Access

Mart L. Molle and Alvin C. Shih

Computer Systems Research Institute
University of Toronto

Toronto, Ontario M5S 1A1
Recently, Polyzos derived methods for calculating conflict resolution

interval lengths when the number of contenders in the initial set is
Poisson distributed with a given mean. From these formulae, Polyzos
computed the mean and standard deviation of the packet delay under
window access. In this report, we show how to extend his methods to

handle gated access.

1. Overview

The goal in this study is to find the mean and standard deviation of the packet delay in Massey’s
Standard and Modified Tree Algorithms [2], which we denote by the STA and the MTA respectively.
These algorithms use gated access to select packets for transmission in a given conflict resolution interval
(CRI), and thereafter use a recursive binary preorder tree traversal algorithm (optionally including the
level-skipping modification) to resolve the resulting conflicts, if any.

The approach is to examine the delay from the point of view of a randomly chosen "tagged" packet.
Under gated access, the delay for the "tagged" packet can be partitioned into the following two com-
ponents:

t 0 the residual
� �����������

life
�����

of the CRI that is ongoing at the moment of arrival. This covers the time until the
"gate" opens, admitting the "tagged" packet (and possibly some others) into the conflict resolution
process.

t 2 the age
�����

of the next CRI at the moment where the tagged packet leaves the system at the end of its
successful transmission. This covers the rest of the time from the first transmission of the "tagged"
packet until it is successful.

The notation t 0 and t 2 to describe these two delay components is chosen for compatibility with
Polyzos[1]. However, our work differs substantially from that of Polyzos, because t 0 and t 2 depend on the
solution to an embedded Markov chain, describing the sequence of CRI lengths in the execution of the pro-
tocol. This is quite different from Polyzos’ study, where t 0 and t 2 are i.i.d. and the most important part of
the delay is the lag of the window, t 1, which does not appear in gated access.

Our approach is as follows: first, we solve the Markov chain to obtain the distribution of CRI lengths
in steady state, represented by:

π
→

= (π1, π2, π3,
. . .)

where πn is the probability that a randomly chosen CRI will be n slots long. Next, we use the fact that we
have Poisson packet arrivals to apply standard renewal-theoretic results to obtain π̃n, the probability that
our "tagged" arrival joins the system during a CRI of length n:

π̃n =
Σk

kπk

nπn
������������� =

N
� �

nπn
������� (1)

Intuitively, we must weight CRI’s of length n in proportion to the product of their relative length and rela-
tive frequency of occurrence, since Poisson arrivals take a random look at the time axis. So, π̃n is the pro-
bability that a random packet arrives during a CRI of length n.

If we condition on the event that our "tagged" packet arrives during a CRI of length n, then t 0 has a
uniform distribution over the interval [0,n), and the distribution of t 2 should be conditioned on the fact that
the "tagged" packet will be competing with a group of other packets having a Poisson distribution with
mean λ . n. Thus, assuming we use random addressing (i.e., splitting via random "coin tosses" rather than

- 3 -

arrival times or station addresses), these two conditional distributions are independent of one another and
the distribution of their sum factors into the product of their marginal distributions. Therefore, the Laplace
transform for the packet delay can be written immediately in the form:

D *(s) =
n =0
Σ
∞

π̃n
. U *(n,s) . G(λ n,e −s) (2)

where

U *(n,s) =
ns

1 − e −sn
�������������

is the Laplace transform of the uniform distribution over [0,n], with mean u
�

n = n /2, and variance
σu | n = n 2/12. Also, G (x,z) is Polyzos’ expression for the z-transform of the conditional distribution of t 2,
given that the "tagged" packet is competing with Poisson traffic with mean x, as described below. In par-
ticular, the distribution of t 2 has mean:

T 2 | n = T 2(λ n) =
i =0
Σ
∞

θi
. (λ n)i

and variance:

σT 2 | n

2 =
i =0
Σ
∞

φi
. (λ n)i

Using standard techniques, we can obtain all the moments of the packet delay from Eq. (2). In par-
ticular, the mean packet delay is:

T
�

=
n =0
Σ
∞

π̃n
. [u

�

n + T 2 | n] (3)

and the variance is:

σT
2 =

n =0
Σ
∞

π̃n

��
σu | n

2 +σT 2 | n

2 �� +
n =1
Σ
∞

π̃n
m =0
Σ
n −1 ��

u
�

n+T 2 | n−u
�

m−T 2 | m
�� 2

π̃m (4)

It remains to find expressions for the distribution π
→

and the delay components listed above.

2. Steady-State Distribution of CRI Lengths

Let

π
→

= (π1, π2, π3,
. . .)

be the steady state distribution of CRI lengths. The vector, π
→

, has, properly speaking, infinitely many com-
ponents. Each component represents the probability of finding the system in a state where a CRI of some
particular length is ongoing. However, for the sake of computability, we truncate π

→
at the mth component.

This will turn out to be reasonable for stable systems.

Given this approximation, to find π
→

, we must solve the following matrix equation:

π
→

= π
→

P
� �

where
i =1
Σ
m

πi = 1 and P
� �

=

����
� pm, 1

...
p 2,1

p 1,1

pm, 2

...
p 2,2

p 1,2

. . .

. . .

. . .

pm,m

...
p 2,m

p 1,m� ���
�

To populate the matrix, pick any feasible throughput, λ. This value should be between 0 and about
0.34 for STA, and between 0 and about 0.37 for the MTA. (The curves start "flat" and then rise rapidly as
they hit poles at 0.347 and 0.375, respectively, so a smooth curve requires more points at large λ than small
λ.)

The entries pi, j(λ) correspond to the probability mass values in the distribution of CRI lengths.
Using Polyzos’ notation, we have pi, j(λ) = qj(i . λ), where qj(x) is the probability that a CRI initiated by a

- 4 -

Poisson set of contenders with mean x lasts for exactly j slots. Expressions for qj(x) for the STA and MTA
have been found by Polyzos. In particular, for the STA we have [1, p.85]:

q 2n(x) = 0, n = 0, 1, ,... , q 1(x) = (1+x) e −x , q 3(x) =
4
x 2
� ��� e −x ,

q 2n +1(x) =
m =1
Σ

2n −1

qm(x /2) q 2n −m(x /2), n = 2, 3,... (5)

The corresponding results for the MTA are1 [1, p.88]:

q 0(x) = 0, q 1(x) = (1+x)e −x , q 2(x) = 0, q 3(x) = π π
�

x 2 e −x , q 4(x) = π π
� 3

x 2 e −x ,

qn +1(x) =
m =1
Σ
n −1

qn −m(π x) qm(π
�

x) +
�� qn(π

�

x)−qn −1(π
�

x)�� e −πx , n = 4, 5, . . . (6)

In both cases, qj (x) can be solved recursively, since the recurrence requires only lower order terms. (See
section 4.1 for a computational method with running time of O (m 3 . log m).)

Since π
→

= π
→

P
� �

, it should be clear that π
→

is a left eigenvector for P
� �

with eigenvalue 1. Thus, to solve
for π

→
, we can solve the following equivalent system in standard form:

[P
� �

−I
�

]T π
→T

=

��
�
0

...
0 � �

�
where I

�

is the m×m identity matrix. Since the solution, π
→

, is still subject to the boundary condition

i
Σπi = 1, we replace the bottom rows of [P

� �

−I
�

]T
and [0 . . . 0]T with 1’s, which yields:�����

� 1
p 1,m −1

...
p 1,2

p 1,1−1

1
p 2,m −1

...
p 2,2−1

p 2,1

. . .

. . .

. . .

. . .

1
pm,m −1

...
pm, 2

pm, 1 � ����
�

�����
� πm

πm −1

...
π2

π1 � ����
�

=

�����
� 1
0

...
0
0 � ����

�
(7)

Some care must be exercised in the interpretation of the solution to Eq. (7) because this problem for-
mulation causes the weight of the truncated components of π

→
to accumulate in the last component. As a

result, the computation of the mean tends toward the "conservative" side. To avoid this, when the compu-
tation of an m-dimensional π

→
is desired, a (m +1)-dimensional π

→
is computed and the last component is dis-

carded, and the remaining terms are rescaled. (See sections 4.2 and 4.3 for procedures for estimating the
truncation delay in the calculation of the mean and standard deviation of the system time.)

Equation (7) can be solved using any one of a variety of techniques for solving systems of linear
equations. In our case, we found π

→
by performing LU factorization of the [P

� �

−I
�

]T
matrix through Gaussian

elimination with row pivoting. The program solves for π
→

and then tries some iterative refinement, using a
published algorithm by Forsythe and Moler [3], which was translated into C by the authors. Empirically, it
can be seen from Figure 1 that, for large n, π̃n is a geometrically decreasing function of n in both the STA
and MTA.

�����������������������������������

1 The expression for qn +1(x) corrects a typographical error in [1], where the last factor was incorrectly written as e−x in-
stead of e−πx .

- 5 -

CRI Length at Arrival (n)

0 50 100 150 200 250 300 350 400

10−2

10−4

10−6

10−8

10−10

10−12

10−14 λ=0.1 λ=0.2

λ=0.3

λ=0.34

π̃n

STA

CRI Length at Arrival (n)

0 50 100 150 200 250 300 350 400

10−2

10−4

10−6

10−8

10−10

10−12

10−14λ=0.1 λ=0.2 λ=0.3

λ=0.34

λ=0.37

π̃n

MTA

Figure 1: Geometric Progression for π̃(n) when n>>1.

3. Expressions for the Delay Components

Once the steady-state solution π
→

is found, it is clear from Eqs. (3-4) that the remaining step is to compute
the conditional

�����������������

mean and variance of the distribution of t 2 for each state n, namely T 2 | n and σT 2 | n

2 respec-
tively.

3.1. Mean CRI Age at the Departure of the "Tagged" packet

Recall that t 2 is the age of the ongoing CRI at the point where the "tagged" packet departs (following
its successful transmission). Its conditional mean, given a throughput of λ and the event that the "tagged"
packet arrived during a CRI of length n, is given by:

T 2 | n = T 2(λ.n)

where T 2(x) was found by Polyzos [1].

For the STA, Polyzos showed that T 2(x) satisfies the following functional equation [1, p.99]:

T 2(x) = 1 + T 2(x /2) +
2
1
� � L(x /2) −

2
3
� � e −x

Polyzos also showed how to solve this functional equation as a power series as:

T 2(x) =
n =0
Σ
∞

θn x n

where [1, p.85]:

θ0 = 1 and θn =
2(1−2−n)

2−n
��������������� αn −

2(1−2−n)

3
���������������

n !
(−1)n
� � � � � , n =1, 2, . . .

and [1, p.88]:

α0 = 1, α1 = 0, and αn = (−1)n

n !(1−21−n)

2(n −1)
� ����������������� , n =2, 3, . . .

For the MTA, Polyzos found the following functional equation for T 2(x) [1, p.101]:

T 2(x) = 1 + π T 2(π x) + π
�

T 2(π
�

x) + π
�

�� L(π
�

x)−e −π x�� − e −x

- 6 -

and in power series form as:

T 2(x) =
n =0
Σ
∞

θnx n

where

θ0 = 1 and θn =
1 − πn +1 − π

� n +1

π
�

πn αn − (−1)n (1+π
�

πn) /n !
� ��� , n =1, 2, . . .

Expressions for αn and βn are not included in [1], so for completeness we rederive them below:

L (x) = 1 + 2L (x /2) − 2(1+x)e −x + (1+x /2)e −x − e −x /2

So,
i =0
Σ
∞

αix
i = 1 + 2

i =0
Σ
∞

αi(x /2)i − (1+2x −x /2)
i =0
Σ
∞

i !
(−x)i
� ������� −

i =0
Σ
∞

i !
(−x /2)i
� �����������

Giving: αn = 2αn(1/2)n −
n !

(−1)n
� � � � �

��
1+(1/2)n�� − (2−1/2)

(n −1)!
(−1)n −1
� �����������

=
1−(1/2)n −1

−1
� �����������������

��
� n !

(−1)n
� � � � �

��
1 − 3/2 n + (1/2)n�� � �

�

H (x) = 1 + 2H (x /2) + 4L(x /2) + 2[L(x /2)]2 − (3+11/2 x)e −x − (3+2L (x /2))e −x /2

...
i =0
Σ
∞

βix
i = 1+2

i =0
Σ
∞

βi(x /2)i + 4
i =0
Σ
∞

αi(x /2)i +

���
i =0
Σ
∞

αi(x /2)i
� �
�

���
j =0
Σ
∞

αi(x /2)i
� �
�

− (3 + 11/2 x)
i =0
Σ
∞

i !
(−x)i
� ������� −

���
3 + 2

i =0
Σ
∞

αi(x /2)i
� �
�

j =0
Σ
∞

j !
(−x /2)j
� �����������

βn = 2βn(1/2)n + 4αn(1/2)n + 2
i =0
Σ
n

αiαn −i(1/2)n − (3 − 11/2 n)
n !

(−1)n
� � � � � − 3

n !
(−1/2)n
� ����������� − 2

i =0
Σ
n

2i

αi
� ���

(n −i)!
(−1/2)i
� �����������

=
1−(1/2)n −1

(1/2)n
� �����������������

��
� 4αn + 2

i =0
Σ
n

αiαn −i − 2
i =0
Σ
n

αi (n −i)!
(−1)n −i
� ����������� −

n !
3(−1)n
� � � � � � − 2n(3−11/2 n)

n !
(−1)n
� � � � �

� �
�

=
2n − 2

1
� ���������

��
� 4αn + 4αn + 2

i =i
Σ
n −2

αiαn −i − 2αn − 2
n !

(−1)n
� � � � � − 2

i =0
Σ
n −1

αi (n −i)!
(−1)n −i
� ����������� − 3

n !
(−1)n
� � � � � − 2n(3 − 11/2 n)

n !
(−1)n
� � � � �

� �
�

=
2n − 2

1
� ���������

��
� 6αn + 2

i =2
Σ
n −2

αi

���
αn −i −

(n −i)!
(−1)n −i
� �����������

� �
� + 2αn −1 −

n !
(−1)n
� � � � �

��
5 + (3 − 11/2 n).2n�� � �

�
3.2. Conditional Variance of t 2 for the MTA.

The last component we need in order to compute the variance of the packet delay is the conditional
variance of t 2. Starting from G (x,z), Polyzos’ expression for the z-transform of t 2 given Poisson traffic
with mean x, an expression for Var(t 2 | x) can be obtained from its second derivative. We begin by finding
Var (t 2 | x) for MTA:

G (x,z) = πzG (πx,z) + π
�

zG (π
�

x,z)
�� Q (πx,z) + (1−z) e −πx�� + (z −z 2) e −x

- 7 -

... G ′(x,z) = π G (πx,z) + πz G ′(πx,z)

+ π
�

G(π
�

x,z)
�� Q (πx,z) + (1−z) e −πx�� + π

�

z G ′(π
�

x,z)
�� Q (πx,z) + (1−z) e −πx��

+ π
�

z G(π
�

x,z)
�� Q ′(πx,z) − e −πx��

+ (1−2z) e −x

... G ′′(x,z) = π G ′(πx,z) + π G ′(πx,z) + πz G ′′(πx,z)

+ π
�

G ′(π
�

x,z)
�� Q (πx,z) + (1−z) e −πx�� + π

�

G(π
�

x,z)
�� Q ′(πx,z) − e −πx��

+ π
�

G ′(π
�

x,z)
�� Q(πx,z) + (1−z) e −πx�� + π

�

zG ′′(π
�

x,z)
�� Q(πx,z) + (1−z) e −πx�� + π

�

zG ′(π
�

x,z)
�� Q ′(πx,z) − e −πx��

+ π
�

G(π
�

x,z)
�� Q ′(πx,z) − e −πx�� + π

�

zG ′(π
�

x,z)
�� Q ′(πx,z) − e −πx�� + π

�

zG(π
�

x,z)
�� Q ′′(πx,z)��

− 2 e −x

Let: G ′′(x,z) | z =1 ≡ t2
2
� �

− t 2

� �

= V (x) − T 2(x)

G ′(x,z) | z =1 = T 2(x)

Q ′(x,z) | z =1 = L (x)

Q ′′(x,z) | z =1 = H (x) − L (x)

... V (x)−T 2(x) = π T 2(πx) + π T 2(πx) + π
�� V(πx) − T 2(πx)��

+ π
�

T 2(π
�

x) + π
�

�� L(πx) − e −πx��
+ π

�

T 2(π
�

x) + π
�

�� V(π
�

x) − T 2(π
�

x)�� + π
�

T 2(π
�

x)
�� L(πx) − e −πx��

+ π
�

�� L(πx) − e −πx�� + π
�

T 2(π
�

x)
�� L(πx) − e −πx�� + π

�

�� H(π
�

x) − L(πx)��
− 2 e −x

= T 2(πx)[π + π − π] + L(πx)[π
�

+ π
�

− π
�

] + T 2(π
�

x)[π
�

+ π
�

− π
�

]

+ V(πx)[π] + V(π
�

x)[π
�

] + H(πx)[π
�

] + L(πx) T 2(π
�

x) [π
�

+ π
�

]

− e −πx
�� π� + π

�

T 2(π
�

x) + π
�

T 2(π
�

x) + π
� �� − 2e −x

... V (x) = T 2(x) + π
�

L(πx) + πT 2(πx) + π
�

T 2(π
�

x)
�� 1−2e −πx�� + π

�

H(πx)

+ 2π
�

L(πx) T 2(π
�

x) − 2e −x − 2π
�

e −πx + π V(πx) + π
�

V(π
�

x)

- 8 -

But: T 2(x) = 1−e −x + πT 2(πx) + π
�

�� T 2(π
�

x) + L(πx) − e −πx��
... V(x) = 1 − 3e −x − 3π

�

e −πx + 2π T 2(πx) + 2π
�

T 2(π
�

x)
�� 1−e −πx��

+ 2π
�

L(πx) + π
�

H(πx) + 2π
�

L(πx) T 2(π
�

x) + π V(πx)+π
�

V(π
�

x)

Now, we assume that π = π
�

≡ 1⁄2 (symmetric case):

V(x) = 1 − 3e −x −
2
3
� � e −x /2 + T 2(x /2)

�� 2−e −x /2�� + L (x /2) +
2
1
� � H(x /2) + L(x /2).T 2(x /2) + V (x /2)

But: Var(t 2 | x) ≡ V (x) − [T 2(x)]2. Therefore, we have:

Var(t 2 | x) = V (x) −

��
� 1 − e −x + T 2(x /2) +

2
1
� � L(x /2) −

2
1
� � e −x /2� �

� 2

= V (x)−

��
�

���
1−e −x −

2
1
� � e −x /2

� �
� 2

+ 2

���
1 − e −x −

2
1
� � e −x /2

� �
�

��
� T 2(x /2) +

2
1
� � L(x /2)

� �
� +

��
� T 2(x /2) +

2
1
� � L(x /2)

� �
� 2� �

�
= V (x) −

��
� 1 − e −x +

2
1
� � e −x /2 − e −x + e −2x +

2
1
� � e −3x /2 −

2
1
� � e −x /2 +

2
1
� � e −3x /2 +

4
1
� � e −x

+ 2 T 2(x /2)

��
� 1−e −x−

2
1
� � e −x /2� �

� + L(x /2)

��
� 1 − e −x −

2
1
� � e −x /2� �

�
+ [T 2(x /2)]2 + T 2(x /2) L(x /2) +

4
1
� � [L(x /2)]2� �

�

Since:

V(x) = 1−3e −x −
2
3
� � e −x /2 + T 2(x /2)

�� 2−e −x /2�� + L(x /2) +
2
1
� � H(x /2) + L(x /2) . T 2(x /2) + V(x /2)

We get:

Var(t 2 | x) = −e −x

��
� 3 − 2 +

4
1
� �

� �
� − e −x /2

��
� 2

3
� � − 1

� �
� − e −2x − e −3x /2 + T 2(x /2)

�� 2 − 2 − e −x /2+2 e −x + e −x /2��
+ L(x /2)

��
� e −x +

2
1
� � e −x /2� �

� + Var(t 2 | x /2) +
2
1
� � H(x /2) −

4
1
� � [L(x /2)]2

Therefore:

Var(t 2 | x) = T 2(x /2).2e −x + L(x /2)

��
� e −x +

2
1
� � e −x /2� �

� +
2
1
� � H(x /2) −

4
1
� � [L(x /2)]2−

4
5
� � e −x −

2
1
� � e −x /2

− e −2x − e −3x /2 + Var(t 2 | x /2)

This recursive form is not terribly conducive to computation. Rather, we would prefer it in power series
form. So, let

Var(t 2 | x) =
i =0
Σ
∞

φix
i

- 9 -

Also let:

L (x) =
i =0
Σ
∞

αix
i

T 2(x) =
i =0
Σ
∞

θix
i

H (x) =
i =0
Σ
∞

βix
i

...
i =0
Σ
∞

φix
i = 2

���
i =0
Σ
∞

θi(x /2)i
� �
�

���
j =0
Σ
∞

j !
(−x)i
� �������

� �
� +

���
i =0
Σ
∞

αi(x /2)i
� �
�

��� ���
j =0
Σ
∞

j !
(−x)j
� �������

� �
� +

2
1
� �

���
j =0
Σ
∞

j !
(−x /2)j
� �����������

� �
� −

4
1
� �

���
j =0
Σ
∞

αj(x /2)j
� �
� � �

�
+

2
1
� �

i =0
Σ
∞

βi(x /2)i −
4
5
� �

���
i =0
Σ
∞

i !
(−x)i
� �������

� �
� −

2
1
� �

���
i =0
Σ
∞

i !
(−x /2)i
� �����������

� �
� −

���
i =0
Σ
∞

i !
(−2x)i
� ���������

� �
� −

���
i =0
Σ
∞

i !
(−3x /2)i
� �������������

� �
�

+
i =0
Σ
∞

φi(x /2)i

Equating coefficients of x i on both sides of this equation, we obtain, after some manipulation:

φ0 = 0

and

φn =
1−2−(n +1)

1
���������������

��
� n !

(−1)n
� � � � �

���
3−

4
9
� � n

� �
� +

2n −1−1

3 − 2−(n −1)
����������������� αn − (1/2)n +1θn −

2n

3
� ���

��
αn −1 + 2θn −1

��
+

i =2
Σ
n −2 ��

αi + θi
�� (1/2)i

���
2
3
� �

� �
�

(n −i)!
(−1)n −i
� ����������� +

i =2
Σ
n −2

���
αiαn −i

��
�

2n−2

3(1/2)n +1−1
� �������������������

� �
� − θiθn −i(1/2)n

� �
� � �

�
3.3. Conditional Variance of t 2 for the STA.

Through a similar derivation, we find that, for the STA:

Var(t 2 | x) = L(x /2)

���
2
3
� � e −x −

4
1
� � L (x /2)

� �
� − T 2(x /2)

���
1 −

2
3
� � e −x +

2
1
� � T 2(x /2)

� �
� +

2
1
� � H(x /2) +

2
1
� � Var(t 2 | x /2)

Again, we want something in power-series form:

Var(t 2 | x) =
i =0
Σ
∞

φix
i

We have the following power series expansions for L (x) and T 2(x) [1, p.85] and H (x) [1, p.99]:

L (x) =
i =0
Σ
∞

αix
i , where: α0 = 1, α1 = 0, αn =

n ! (1−21−n)

(−1)n 2 (n −1)
� ���������������������

H (x) =
i =0
Σ
∞

βix
i , where: β0 = 1, β1 = 0, βn = 4 αn +

2n −1−1

2 αn +
m =0
Σ
n

αmαn −m

� �����������������������������

T 2(x) =
i =0
Σ
∞

θix
i , where: θ0 = 1, θ1 = 3, θn =

2(1−2−n)

2−n
��������������� αn −

2(1−2−n)

3
���������������

n !
(−1)n
� � � � �

- 10 -

By substituting, we get:

i =0
Σ
∞

φix
i =

i =0
Σ
∞

αi(x /2)i

���
2
3
� �

j =0
Σ
∞

j !
(−x)j
� ������� −

4
1
� �

j =0
Σ
∞

αj(x /2)j
� �
� +

i =0
Σ
∞

θi(x /2)i

���
3

j =0
Σ
∞

j !
(−x)j
� �������

� �
� +

2
1
� �

i =0
Σ
∞

βi(x /2)i +
i =0
Σ
∞

φi(x /2)i

Which can be simplified to obtain:

φ0 = 0

φ1 = 14

φn =
1−2−n

1
� ���������

��
� − n !

(−1)n
� � � � �

���
2
5
� � + 9.2n −2

� �
� +

2n +1

βn
� ������� +

i =0
Σ
n

��� ��
αi + 2θi

�� . 2−i .
2
3
� � .

(n −i)!
(−1)n −i
� ����������� −

2n +2

αi αn −i
� �����������

� �
� � �

�

3.4. Second Moment of t 2.

Let V (x) = E [t2
2 | x] be the second moment of t 2. Since Var(t 2 | x) ≡ V (x) − [T 2(x)]2, we could have

solved for the power series representation of V (x), instead of Var(t 2 | x), as a computational method for
finding Var(t 2 | x). For example, to get V (x) in the case of the STA, we have to go back to the MGF:

G (x,z) =
2
z
� �

�� Q (x /2,z)+1�� G (x /2,z) + e −x

��
� z−

2
z 2+z 3
� ���������

� �
�

Let

T 2(x) = G ′(x,z) | z =1

L (x) = Q ′(x,z) | z =1

Therefore:

G ′(x,z) =lineup
2
1
� �

�� Q (x /2,z)+1�� G (x /2,z) +
2
z
� �

�� Q ′(x /2,z)�� G(x /2,z) +
2
z
� �

�� Q (x /2,z)+1�� G ′(x /2,z) + e −x

��
� 1−

2
2z+3z 2
� �����������

� �
�

G ′′(x,z) | z =1 ≡ E[t 2(t 2−1)]

=
2
1
� �

�� Q ′(x /2,z)�� G(x /2,z) +
2
1
� �

�� Q (x /2,z)+1�� G ′(x /2,z)

+
2
1
� �

�� Q ′(x /2,z)�� G(x /2,z) +
2
z
� �

�� Q ′′(x /2,z)�� G(x /2,z) +
2
z
� �

�� Q ′(x /2,z)�� G ′(x /2,z)

+
2
1
� �

�� Q (x /2,z)+1�� G ′(x /2,z) +
2
z
� �

�� Q ′(x /2,z)�� G ′(x /2,z) +
2
z
� �

�� Q ′(x /2,z)+1�� G ′′(x /2,z)

− e −x

��
� 2

2+6z
� �������

� �
�

- 11 -

= [Q ′(x /2,z)]G(x /2,z) + [Q (x /2,z)+1]G ′(x /2,z)

+
2
z
� � [Q ′′(x /2,z)]G(x /2,z) + z[Q ′(x /2,z)]G ′(x /2,z) +

2
z
� � [Q ′(x /2,z)+1]G ′′(x /2,z)

− e −x

��
� 2

2+6z
� �������

� �
�

Now since Q ′′(x,z) | z =1 = H (x) − L (x), we get:

G ′′(x,z) | z =1 = V (x) − T 2(x)

= L (x /2) + 2 T 2(x /2) +
2
1
� �

�� H (x /2)−L (x /2)�� + L(x /2) T 2(x /2) +
�� V(x /2)−T 2(x /2)�� − 4 e −x

=
2
1
� �

�� 2 V(x /2) + H (x /2) + L (x /2) + 2 T 2(x /2) + 2 L(x /2) T 2(x /2) − 8 e −x��
Therefore:

V(x) = T 2(x) +
2
1
� �

�� 2 V(x /2) + H (x /2) + L (x /2) + 2 T 2(x /2) + 2 L(x /2) T 2(x /2) − 8 e −x��

= 1 + L(x /2) + 2 T 2(x /2) + L(x /2) T 2(x /2) −
2
11
� ��� e −x + V(x /2) +

2
1
� � H(x /2)

From here, one could proceed, using similar methods as have already been demonstrated, to unwind the
recursion for V (x), giving V (x) in terms of:

V (x) =
i =0
Σ
∞

γix
i

Where, in the case of the STA, we get:

γ0 = 1

γ1 = 20

γ0 =
1 − (1/2)i

1
� ���������������

��
� (1/2)i

���
αi + 2 θi + βi/2 +

j =0
Σ
i

αjθi −j

� �
� −

2
11
� ���

i !
(−1)i
� �������

� �
�

and in the case of the MTA, we get:

γ0 = 1

γ1 = 131⁄2

γn =
1 − (1/2)n

(1/2)n
� ���������������

��
� 2 αn + βn/2 + 2 θn −

n !
(−1)n
� � � � �

�� 3.2n + 5/2�� +
i =1
Σ
n −1

��
� αi −

i !
(−1)i
� �������

� �
� θn −i

� �
�

- 12 -

4. Computation Issues

4.1. Initialization of the P
� �

Matrix

Recall that the definitions of qn +1(x) for both the STA and MTA are expressed in terms of summa-
tions involving q 1(x /2), . . . , qn(x /2). Thus, a naive implementation of this expression for qn +1(x) would
lead to a doubly recursive function, and hence, running times exponential in the matrix size, m. For-
tunately, a number of optimisations are available to speed up the calculations significantly.

First, we recognize that since e −πx . e −π
�

x ≡ e −x for all π, π
�

≡1−π, we can avoid repeated evaluation of
the exponential factors by solving for q̂n(x) ≡ qn(x) . e x , from which we get pi, j(λ) = q̂m(i . λ) . e −i .λ . In this
case, Eq. (5) for the STA reduces to:

q̂ 2n(x) = 0, n = 0, 1, . . . , q̂ 1(x) = (1+x), q̂ 3(x) =
4
x 2
� ��� ,

q̂ 2n +1(x) =
m =1
Σ

2n −1

q̂m(x /2) q̂ 2n −m(x /2), n = 2, 3,...

Similarly, Eq. (6) for the symmetric MTA becomes:

q̂ 0(x) = 0, q̂ 1(x) = (1+x), q̂ 2(x) = 0, q̂ 3(x) = 1/4 x 2 , q̂ 4(x) = 1/16 x 2 ,

q̂n +1(x)

= q̂n(x /2) + (1 + x)q̂n −1(x /2) +
m =3
Σ
n −3

q̂n −m(x /2) q̂m(x /2) , n = 4, 5, . . .

=
m =1
Σ
n −1

q̂n −m(x /2) q̂m(x /2) +
�� q̂n(x /2)−q̂n −1(x /2)��

(8)

Next, we recognize that in the case of the STA, the dimensionality of the problem can be reduced by
a factor of two since q̂ 2n(x) ≡ 0 for all n∈N. By performing a change of variable, we can store only the
components corresponding to recurrent states.

And finally, some additional savings can be gleaned by noticing the symmetry in the convolution,
which allows us to write:

q̂ 2n +1(x) =
k =0
Σ
2n

q̂k(x /2) q̂ 2n −k(x /2) = 2 .
k =0
Σ
n

q̂k(x /2) q̂ 2n −k(x /2), n = 2, 3, . . .

Unfortunately, none of the above changes is enough to affect the exponential complexity of the
matrix initialization step. Fortunately, however, we can make use of a dynamic programming strategy to
obtain a polynomial time algorithm for matrix initialization. Since the expression for each

�������

q̂j(x),
1 ≤j ≤ 2n +1 uses all

���

the values of q̂ 1(x /2), . . . , q̂j −1(x /2), we can avoid repeated evaluations of the same
terms by organizing the calculations to work row-by-row instead of element-by-element.2 Thus, to find one
row q̂ 1(x), . . . , q̂m(x) of the matrix, we first make one recursive call to find the row
q̂ 1(x /2), . . . , q̂m −1(x /2) and then apply the summation in the definition m times to find the elements of the
original row using O (m 2) arithmetic operations. The row q̂ 1(x /2), . . . , q̂m −1(x /2), in turn, requires another
recursive call to find the row q̂ 1(x /4), . . . , q̂m −2(x /4) and so on until we reach the base case after m levels
of recursion. This dynamic programming approach reduces the time to initialize the matrix to a more
manageable O(m 4).

For m>>1, it is possible to limit the depth of the recursion to O(log m) based on the power series
expansion of q̂n(x). In particular, consider the case where x≈eps mach . Notice that q̂ 1(x) = O(1), but
q̂n(x)=O(x 2) for all n>1. (This result is easy to establish by induction, since it is obviously true for the first
few terms, and it must also hold for the general case because each term in the summation contains at least
�����������������������������������

2 In the case of the MTA, the procedure is not useful if biased splitting (i.e., π ≠ π
�

≠ 1⁄2) is allowed. This is because
each recursive call would require both q̂1(πx), . . . , q̂m −1(πx) and q̂1(π

�

x), . . . , q̂m −1(π
�

x) to be evaluated, leading, once more,
to a combinatorial explosion. Thus, our computations for the MTA are only for unbiased splitting, allowing the use of the
dynamic programming approach above.

- 13 -

one factor of the type q̂n(x /2), for some n>1.)

In the case of the STA, it is clear that the coefficients of x 2 and x 3 in q̂ 2n +1(x) are determined
entirely by the term q̂ 1(x /2) . q̂ 2n −1(x /2) in Eq. (5). Thus, it is easy to establish that:

q̂ 2n +1(x) =
2n +1

x 2
� �������

��
1 + (1 − 1/2n −1) . x�� + O(x 4) n =2, 3, . . .

In the case of the MTA, we can use Eq. (8) to show that

q̂n +1(x) = ζn +1
. x 2 + O(x 3)

where

ζ3 = 1/4 , ζ4 = 1/16 , ζn +1 = [ζn + ζn −1] / 4 , n =4, 5, . . .

This change reduces the running time for the matrix initialization algorithm to O (m 3 . log m). For large m,
the difference between O (m 4) and O (m 3 . log m) can have a significant effect on execution times. For
example, in the case of the MTA with m =600, this change reduced the execution time of the program from
more than 1 million CPU seconds (approximately 2 weeks) to less than 12 thousand CPU seconds (approx-
imately 3 hours) on a Sun SPARCstation IPC workstation.

4.2. Tail Estimation for the Mean

Recall that the formula for computing the mean system time for a packet involves the following
infinite summation:

T
�

=
n =1
Σ
∞

π̃n
. T
�

n

where T
�

n ≡ [u
�

n + T 2 | n] is the conditional mean system time, given that the "tagged" packet arrived during a
CRI of length n. Obviously, in our numerical calculations, we must truncate the infinite state space at the
mth term. Fortunately, the asymptotic behaviour of π̃n and of T

�

n are very easy to deal with. In particular,
we have already demonstrated in Figure 1 that, for large n, π̃n is a geometrically decreasing function of n
for both the STA and the MTA. Furthermore, it can be seen from Figure 2 that, for large n, T

�

n is a linearly
increasing function of n. This combination of a geometric weighting of a linear sequence makes it possible
to estimate the loss from truncating the series after the mth term in closed form.

CRI Length at Arrival (n)

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

λ=0.1

λ=0.2

λ=0.3

λ=0.34

T
�

n

STA

CRI Length at Arrival (n)

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

λ=0.1

λ=0.2

λ=0.3

λ=0.34

λ=0.37

T
�

n

MTA

Figure 2: Linear Progression for T
�

n ≡ u
�

n + T 2 | n when n>>1.

- 14 -

The truncation error in this case is equal to the sum of the infinite tail of the series, starting from the
m +1st term, namely:

R 1(m) =
i =m +1
Σ
∞

π̃i T
�

i (9)

where we know that π̃i is decreasing
� ���������������

geometrically and T
�

i is increasing
� ���������������

linearly. That is, π̃i +1 ≈ α π̃i and
T
�

i +1 ≈ T
�

i + β.

Therefore, Eq. (9) is equivalent to:

R 1(m) ≈ π̃m
i =m +1
Σ
∞

αi −mT
�

i ≈ π̃m

��
�
i =m +1
Σ
∞

αi −m
�� T� m + (i −m)β �� � �

� = α π̃m

���
� 1 − α

T
�

m
��������� + β

j =1
Σ
∞

j αj
� ��
� (10)

But
j =1
Σ
∞

j αj ≡
(1 − α)2

α
� ������������� , so Eq. (10) reduces to:

R 1(m) ≈
1 − α
α π̃k

���������

��
� T� m +

1 − α
α β

���������

� �
� (11)

where π̃k is the last weight
� ���������

before truncation, Tm is the last item
�������

before truncation, α is the ratio
�������

between
successive weights, and β is the difference

� ���������������

between successive items. At present, these parameters are
estimated by:

α =

���
π̃m −10

π̃m
� ���������

� �
� 1/10

and

β =
10
1

� ���

��
T
�

m − T
�

m −10
��

to smooth out any minor perturbations in the functions. This is rather inflexible, and should probably be a
user-modifiable parameter.

Table 1 shows some sample data illustrating the use of the first order tail estimation procedure with
the STA. For each truncation point, m, we show the first order tail estimate, R 1(m), and the final value for
the mean system time, T

�

, including the tail estimate. After numerous trial runs, the tail estimator seems
reasonable. However, it is wise to take some runs with larger dimensionality to compare against runs
which use tail estimation.

� ���

λ = .25 λ = .3
���m

R 1(m) T
�

R 1(m) T
�

� ���

25 0.010841377 4.18212806 0.475691006 8.08852482
50 1.9223036e-05 4.18393434 0.026033635 8.23949245
75 2.8690251e-08 4.18393648 0.001218090 8.24584290
100 3.9893906e-11 4.18393648 5.345015e-05 8.24610187
200 1.523971e-10 8.24611247
300 1.228907e-13 8.24611247

� ���

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

Table 1: Use of the First Order Tail Estimator for the Mean System Time in the STA

- 15 -

4.3. Tail Estimation for the Variance

The variance calculation is another where a significant amount of truncation error can occur. Recall
that by definition, the variance of the system time is given by:

σT
2 =

n =1
Σ
∞

π̃n
. σT | n

2

where

σT | n
2 ≡ σu | n

2 + σT 2 | n
2 +

k =1
Σ
n −1

(T
�

n − T
�

k)
2 . π̃k

is the sum of the conditional variance, given that the "tagged" packet arrived during a CRI of length n, and
the covariance between CRIs of length n and k, for all k < n.

As with the mean system time, we need a formula for estimating:

R 2(m) =
i =m +1
Σ
∞

π̃i
. σT | i

2 (12)

which is the truncation error in the variance calculation that results from stopping the summation at the mth
term. Unfortunately, the tail estimation procedure for the mean, derived in the previous section, cannot be
applied to the variance calculation, because σT | n is not a linear function of n when n>>1. However, as
shown in Figure 3, its square root, σT | n, is a linearly increasing function of n, and thus σT | n

2 is a quadratic
� �������������

function of n when n>>1.

CRI Length at Arrival (n)

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

λ=0.1

λ=0.2

λ=0.3

λ=0.34

σT | n

STA

CRI Length at Arrival (n)

0 50 100 150 200 250 300 350 400

0

50

100

150

200

250

300

350

400

λ=0.1

λ=0.2

λ=0.3

λ=0.34

λ=0.37

σT | n

MTA

Figure 3: Linear Progression for σT | n when n>>1.

In general, Figure 3 shows that for large n, σT | n is a linear function of n, and its slope is an increas-
ing function of λ. (The fact that the truncation error depends on σT | n

2 , and σT | n is already as large as T
�

n,
indicates that a proper tail estimation procedure is even more important in the variance calculation than it
was for the mean.) For small λ, the function is remarkably close to a straight line passing through the ori-
gin. However, for large λ, the first part of the curve is a convex ∪ function and the tangent to the tail of the
curve does not pass through the origin. Thus, we will use the approximation:

σT | n
2 ≈ β . (n −δ)2 n>>1

in the tail estimate. Its two parameters can be estimated from a pair of actual values, say σT | i and σT | j ,
taken near the truncation point. We obtain:

- 16 -

√� �β =
i − j

σT | i − σT | j
� �����������������

δ =
2
1
� �

���
i + j −

√� �β
σT | i + σT | j
� �����������������

� �
�

As before, the program uses i = m and j = m −10, but this should probably be a user-modifiable parameter.

Using this approximation in Eq. (12), we obtain the following second order tail estimate:

R 2(m) ≈ π̃m
i =m +1
Σ
∞

αi −m . σT | i
2 ≈ β . π̃m

i =m +1
Σ
∞

αi −m(i − δ)2 = αδ−m . β . π̃m
j =m +1−δ

Σ j 2 . αj (13)

But

j =k
Σ
∞

j 2 . αj =
1 − α
αk

� �������

���
k 2 +

(1 − α)2

α
�������������

���
2 k + 1 +

1 − α
2α

� �������

� �
� � �

� ,

so Eq. (13) reduces to:

R 2(m) ≈
1 − α

α β π̃m
� ���������

���
(m + 1 − δ)2 +

(1 − α)2

α
�������������

���
2 (m − δ) + 3 +

1 − α
2α

� �������

� �
� � �

� . (14)

Table 2 shows some sample data illustrating the use of the second order tail estimation procedure with the
STA. For each truncation point, m, we show the second order tail estimate, R 2(m), and the final value for
the system time variance, σT

2 , including the tail estimate. Again, it is clear that the tail estimation pro-
cedure increases the speed of convergence significantly.

� ���

λ = .25 λ = .3
���m

R 2(m) σT
2 R 2(m) σT

2
� ���

25 0.991020898 32.3210385 90.29885423 196.862538
50 0.002802641 32.0281122 7.267351932 150.750397
75 5.6690777e-06 32.0275502 0.424622369 147.465194
100 9.9224455e-10 32.0275493 0.022029354 147.301395
200 9.8609963e-08 147.293710
300 2.1090759e-10 147.293710

� ���

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

Table 2: Use of the Second Order Tail Estimator for the System Time Variance in the STA

4.4. Underflow vs. Overflow

In many cases, there are terms in many of the expressions of the form: 1/2n or k n/n !. For not unrea-
sonable n, it is possible to overflow the precision available under the IEEE-754 format supported by most
workstations, if "brute force" computation of the numerators and denominators is used. This results in pro-
pagation of the meaningless quantity, "inf".

Rather, it is preferable to tend towards underflow. Zero is a meaningful approximation to small
quantities. Infinity is not a meaningful approximation to large quantities.

So, 1/2n is computed as (1/2)n, and k n/n ! is computed by:
i =0
Π
n

(k /i). Eventually, i will exceed k and

cause the product to decrease.

Various comparisons against algebraic evaluation on Maple have shown this to cause no anomalous
results.

- 17 -

4.5. Precomputation of alpha, beta, etc.

Due to the heavy use of αi , βi , θi , and φi , it is obviously worthwhile to precompute these and put
them away in a table. These tables tend to store values up to i = 20 since the truncation error in this case,
namely:

i =0
Σ
∞

αix
i −

j =0
Σ
20

αix
i =

i =21
Σ
∞

αix
i

is bounded above by εmach for all | x | ≤1.

4.6. Use of Recursion Down to Base Case of Power Series

Many of the series have terms of the form: kn n !
(−x)n
��������� . For large x and small n, these terms can get

very large. Later terms of the series get smaller, but the nature of floating point arithmetic will cause sub-
stantial loss of precision when trying to add these terms. In addition, these terms alternate, introducing
"catastrophic cancellation".

Fortunately, the recursive forms of the various formulae cause a reduction in the size of x. To be
precise, each recursive call results in x being divided by 2. Thus, enough recursive calls will result in an x
that is of manageable size. In particular, | x | ≤1 is quite comfortable.

So, computation of badly-behaved power series was performed by recursive calls to bring down the
magnitude of x, and then using power series evaluation for the "base case".

4.7. Minor Tweaks

The basic rule of thumb for accumulating sums on a machine is, "add the smallest terms first". In a
few cases, it was found that rearranging the way terms of certain formulae were summed did improve accu-
racy. Indeed, in an attempt to extract the most precision possible, quicksorting terms was tried. This
turned out to be too time-consuming and did not yield significant gains in precision. In most cases,
sufficient accuracy was preserved by the machine to obviate the need for such tweaking.

4.8. Development

Maple was an invaluable tool for prototyping. Although too slow for the purposes of final computa-
tion, it allowed the verification of the various required derivations. Its interpreted nature allowed us to
make quick changes as well as allowing us to ignore the problems of machine precision and compilation.
In addition, Maple’s ability to evaluate to arbitrary precision allowed the incremental verification of the
precision of the C code.

4.9. Evaluation of other possibilities

We were rather fortunate that utilizing the recursion to bring terms down to reasonable size managed
to be quite numerically stable. However, the benefits of Maple being seen early on did make me investi-
gate options that would deliver the arbitrary precision of Maple while being substantially faster.

With this in mind, I posted to sci.math.symbolic and was referred to the following:
�

bc

It never hurts to look at what’s available free on the system. It supports fixed-point precision to 100
decimal places. Alas, it does not include matrix support.

�
Form

This package is heavily oriented towards mathematics through "symbol shuffling". Its programming
language, somewhat reminiscent of assembly language crossed with Prolog (if you can believe that),
allows the user to define operations on formulae. Indeed, differentiation is provided in this way. The

- 18 -

feature in which I was interested is its arbitrary precision floating point capability.

The syntax was rather cryptic, and we never did discover how to create a matrix (though we’re sure
it’s possible). This tool is probably quite powerful in the hands of an expert, but the only experts that
seemed to be available were all from the university at which this package originates (Nikhef?) in the
Netherlands.

For problems involving serious computation, this package may be worth learning. It attempts to
make the best use of the available computing resources.

It is available via anonymous-ftp from nikhefh.nikhef.nl in the "form" directory. Since the develop-
ers intend to develop it for commercial use, it is only available in binary form.

�
Jacal

This package is Scheme-based and thus, is slow in that it runs on top of an general-purpose language
interpreter. It also lacked proper support for rational numbers. Numerators and denominators were
represented by long ints, and thus were not capable of representing quantities to the desired preci-
sion.

�
Pari

This package would have probably been my eventual choice, had the system not been sufficiently
stable for the floating point arithmetic supported by C.

It originally began life as a math library for C that allowed manipulation of abstract entities, like for-
mulae and matrices, in addition to providing arbitrary-precision fixed-point arithmetic. More modern
releases of Pari include a front-end to allow one to use it as a calculator. Some simple scripts would
probably have sufficed to generate all the necessary quantities.

Given that it is a general-purpose tool, Pari was still orders of magnitude slower than the C imple-
mentation. However, it is not as general a tool as Maple, and thus is probably two to 5 times faster
for simple numeric tasks.

This package is available in source code format from math.ucla.edu.
�

APML (Arbitrary Precision Math Library)

This C library, and others like it, were considered, but there never came a time where any code was
implemented that utilized this. Given the current availability of matrix and floating-point libraries
for C++, and the ability of C++ to "transparently" "overload" operators, I would think that C++
would be a better choice than C for any numeric applications that may require the underlying number
representation to suddenly change.

This library is available from any comp.sources.misc archive, but the GNU Multi-Precision (GMP)
library is newer and looks quite a bit better. GMP should be available on prep.ai.mit.edu.

5. Numerical Results and Discussion

Figure 4 shows the mean and standard deviation of the packet delay in the STA and MTA under
gated access. Our calculated data is also shown in Table 3.

- 19 -

THROUGHPUT

0 0.1 0.2 0.3 0.4

1

2

5

10

20

50

100

.
.
.
..
.
.
..
.
.
.
..
.
.
.
..
.
.
.
.
.
..
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

D
E
L
A
Y

STA: Mean System Time

STA: Std. Deviation

MTA: Mean System Time

. MTA: Std. Deviation

Figure 4: Packet Delay in the STA and MTA with Gated Access
� ���

Standard Tree Algorithm Modified Tree Algorithm
� ���λ

T
�

σT T
�

σT
� ���

� ���

0.0 1.5 0.08333 1.5 0.08333
0.05 1.671 0.9659 1.640 0.7682
0.10 1.909 1.549 1.825 1.190
0.15 2.273 2.306 2.089 1.716
0.20 2.896 3.467 2.502 2.470
0.22 3.288 4.153 2.740 2.886
0.25 4.184 5.659 3.238 3.727
0.28 5.892 8.419 4.038 5.042
0.30 8.246 12.14 4.912 6.454
0.31 10.38 15.48 5.543 7.466
0.32 14.11 21.29 6.392 8.827
0.33 22.28 34.04 7.603 10.76
0.34 55.11 85.44 9.471 13.77
0.35 − − 12.76 19.07
0.36 − − 20.17 31.24
0.37 − − 54.13 88.46

� ���

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 3: Calculated Delay Statistics for Tree Algorithms with Gated Access

- 20 -

In Figure 5 we compare our results for the mean packet delay in the STA with Massey’s bounds,
after correcting a minor error in his analysis (which is described in the Appendix). It is interesting to note
that, although Massey thought the upper bound was much tighter than the lower bound, the mean packet
delay is actually closer to his lower bound. Massey also gave an approximate lower bound, in which he
replaced a (loose) lower bound on t 0 by a (tight) upper bound in his lower bounding argument. As we can
see, the resulting expression is only a lower bound when λ ≤ 0.22. Nevertheless, it is a remarkably good
approximation to T

�

for all λ.

THROUGHPUT

0 0.1 0.2 0.3 0.4

1

2

5

10

20

50

100

.
.

. . .
. ..

.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.

D
E
L
A
Y

Exact Analysis

Massey’s Upper/Lower Bounds

. Massey’s Approx. Lower Bound

Figure 5: Comparison of STA Results to Massey’s Bounds

And finally, in Figures 6−7, we compare our results for the STA using gated access with the
corresponding results for window access and constant-sized window access, obtained by Polyzos [1]. In
Figure 6, we compare the mean system times, where we see that gated access is comparable to window
access when λ<0.2, and much worse than even constant-sized window access when λ>0.3. Figure 7
shows the corresponding results for the standard deviation. As expected, gated access looks much worse
under this metric: it is comparable to window access only when λ<0.1, and becomes much worse than even
constant-sized window access when λ>0.2.

- 21 -

THROUGHPUT

0 0.1 0.2 0.3 0.4 0.5

1

2

5

10

20

50

100

D
E
L
A
Y

Gated Access

Window Access

Simplified Window Access

Figure 6: Comparison of Mean Delay in STA with Gated and Window Access

6. Appendix: Correction to Massey’s Bounds on T
�

for the STA

In this section, we correct a minor error in Massey’s derivation of upper and lower bounds on the
mean delay in the STA, as shown in [2]. Massey’s approach begins by recognizing that the delay for a ran-
domly chosen "tagged" packet depends on both the length, Ya, of the ongoing CRI when the "tagged"
packet arrives, and the length, Yd, of the next CRI during which the "tagged" packet departs. In particular,
its system time is the sum of the residual life of first and the age of the second, which we denote by t 0 and
t 2, respectively. The difference in Massey’s approach is that, instead of solving a Markov chain to find the
distribution of Ya and Yd, he merely finds upper and lower bounds on E [Ya], and on E [Yd | Ya], and uses
these to estimate E [t 0], and E [t 2].

The error in Massey’s analysis crept in at Eq. (4.29), where he used the Poisson arrival property to
deduce that, Xd, the mean number of packets served in the CRI where the "tagged" packet departs, is sim-
ply λ.Ya. However, since we are conditioning on the fact that the "tagged" packet happened to arrive in
this CRI, the "tagged packet" is not accounted for in the Poisson term. Thus, we have:

E [Xd | Ya = L, tagged departure] = λ.E [Ya] + 1 , (4.29)

and

E [Xd | tagged departure] = λ.E [Ya] + 1 . (4.30)

In other words, the probability that Xd=N is given by the Poisson density evaluated at N −1. Carrying this
change through Massey’s derivation yields:

E [Yd | tagged departure] ≤ 2.8867.E [Xd | tagged departure] − 1.8867.P [Xd = 1 | tagged departure] (4.32)

- 22 -

THROUGHPUT

0 0.1 0.2 0.3 0.4 0.5

1

2

5

10

20

50

100

D
E
L
A
Y

Gated Access

Window Access

Simplified Window Access

Figure 7: Standard Deviations of Delay in STA with Gated and Window Access

Since Jensen’s inequality can be used to show that

P [Xd = 1 | tagged departure] ≥ e −λ.E [Ya] ,

we can substitute Eq. (4.30) into Eq. (4.32) to obtain the following upper bound:

E [Yd | tagged departure] ≤ 2.8867.(1 + λ.E [Ya | tagged arrival]) − 1.8867.e −λ.E [Ya] . (4.36)

The lower bounds begins from Eq. (4.37), which reduces to:

E [Yd | tagged departure] ≥ 2.8810.E [Xd | tagged departure] − 1.0 − 0.8810.P [Xd = 1 | tagged departure] ,

since we know that Xd > 0 because of the "tagged" arrival. But since

P [Xd = 1 | Ya = L, tagged departure] = e −λ.L ≤ e −λ ,

we arrive at the following lower bound:

E [Yd | tagged departure] ≥ 2.8810.(1 + λ.E [Ya | tagged arrival]) − 1.0 − 0.8810.e −λ . (4.40)

These bounds on E[Ya] and E[Yd] are translated into upper and lower bounds on the packet waiting
time by Eq. (4.41), which is equivalent saying that

E [t 0] = E[Ya | tagged arrival]]/2 ,

and that

2
1
� � E[Yd − 1 | tagged departure] ≤ E [t 2] − 1 ≤ E[Yd − 1 | tagged departure]

- 23 -

Below, in Table 3, we have recalculated Massey’s bounds for the mean time in system for a packet,
T
�

. These data differ from Massey’s results (Table 4.1 in [2]) because we add one more slot to account for
the transmission time for each packet (where Massey showed only the waiting time), and because we have
used the corrected versions of Eqs. (4.36) and (4.40). (We have also used Eq. (4.81), instead of λ(1 − λ), to
represent π1 in Eq. (4.60) in the range 0.22 < λ < 0.3, to avoid an anomaly in the bound in this range.)
Table 3 also includes Massey’s strict lower bound on the waiting time, which was not shown in [2]. This is
because our results show his approximate lower bound is actually an upper bound when λ > 0.22.

� ���

T
�

upper T
�

approx. T
�

lowerλ
bound lower bound bound

� ���

� ���

0.0 1.5 1.5 1.5
.05 1.764976 1.6158 1.602
.1 2.13967 1.801 1.733
.15 2.77037 2.1297 1.932

.1696 3.0768 2.331 2.047
.2 3.9955 2.786 2.26
.22 4.82 3.239
.25 6.864 4.4405 2.885
.28 11.008 6.93 3.694
.3 18.065 11.517 4.798

.315 26.306 16.975 6.525

.324 24.863
.33333333 61.84 40.645 13.73

.34 125.09 82.773 25.554
.347 565.3 374.5 83.578

� ���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 3: Massey’s Bounds on the Mean System Time (corrected)

7. References

[1] George C. Polyzos, A Queueing Theoretic Approach to the Delay Analysis for a Class of Conflict
Resolution Algorithms, Technical Report CSRI-224, Computer Systems Research Institute, Univer-
sity of Toronto, Toronto (January 1989).

[2] James L. Massey, "Collision-Resolution Algorithms and Random-Access Communications", in
Multi-User Communications, G. Longo (ed)., Springer-Verlag, New York (1981).

[3] George E. Forsythe and Cleve B. Moler, Computer Solution of Linear Algebraic Systems, Prentice-
Hall, Englewood Cliffs (1967).

