

February 22, 2000

1

 of

25

RapidIOª: An Embedded System

Component Network Architecture

Architecture and Systems Platforms
Motorola Semiconductor Product Sector

7700 West Parmer Lane, MS: PL30
Austin, TX 78729

Abstract

This paper describes RapidIO, a high performance low pin count packet switched sys-
tem level interconnect architecture. The interconnect architecture is intended to be an
open standard which addresses the needs of a variety of applications from embedded
infrastructure to desktop computing. Applications include interconnecting microproces-
sors, memory, and memory mapped I/O devices in networking equipment, storage sub-
systems, and general purpose computing platforms. This interconnect is intended
primarily as an intra-system interface, allowing chip to chip and board to board com-
munications at giga-byte per second performance levels. Supported programming mod-
els include globally shared distributed memory and message-passing. In its simplest
form, the interface can be implemented in an FPGA end point. The interconnect archi-
tecture deÞnes a protocol independent of a physical implementation. The physical fea-
tures of an implementation utilizing the interconnect are deÞned by the requirements of
the implementation, such as I/O signalling levels, interconnect topology, physical layer
protocol, error detection, etc. The interconnect is deÞned as a layered architecture
which allows scalability and future enhancements while maintaining compatibility.

Introduction

2

 of

 25

RapidIOª: An Embedded System Component Network Architecture

1 Introduction

Computer and embedded system development continues to be burdened by divergent
requirements. On one hand the performance must increase at a nearly logarithmic rate,
while on the other hand system cost must stay the same or decrease. Several applica-
tions, such as those found in telecommunications infrastructure equipment, are also bur-
dened with increasing capabilities while decreasing the board size and ultimately the
ßoor space which equipment occupies.

The connection fabric between microprocessors and peripherals has traditionally been
comprised of a hierarchy of shared buses (Figure 1). Devices are placed at the appropri-
ate level in the hierarchy according to the performance level they require. Low perfor-
mance devices are placed on lower performance buses which are bridged to the higher
performance buses so as to not burden higher performance devices. Bridging is also
done to address legacy interfaces.

The need for higher levels of bus performance are driven by two key factors. First, the
need for raw data bandwidth to support higher peripheral device performance demands.
Second, the need for more system concurrency. Overall system performance has
increased due to the application of distributed DMA and processing.

FIGURE 1

System topology trends

Over the past several years the shared multi-drop bus has been exploited to its full
potential. Many techniques have been applied, such as increasing frequency, widening
the interface, pipelining transactions, splitting transactions, and allowing out of order
completion. Continuing to work with a bus in this manner creates several design issues.
Increasing bus width, for example, reduces the maximum achievable frequency due to
skew between signals. More signals will also result in more pins on a device, resulting
in a higher product cost and a reduction in the number of interfaces the device can pro-
vide.

Another issue is the desire to increase the number of devices that can communicate
directly with each other. As frequency and width increase, the ability to have more than

Device Device Device Device Device

Device Device Device Device Device

Device

Bridge

Device

Device

Device

Switch
Fabric

Single Segment
Broadcast

Bridged Hierarchy
Broadcast

Switch based
Source addressed
Point to Point

A
gg

re
ga

te
 S

ys
te

m
 P

er
fo

rm
an

ce

Device Device

Device

DeviceDevice

Introduction

RapidIOª: An Embedded System Component Network Architecture

3

 of

25

a few devices attached to a shared bus becomes a difÞcult design challenge. In many
cases, system designers have inserted a hierarchy of bridges to reduce the number of
loads on a single bus.

To address the needs of present and future systems, an embedded system component
network architecture is proposed. The architecture is for a point-to-point, moderately
parallel, packet-based interconnect. The inteconnect is focused as a processor, memory,
and memory mapped I/O interface optimized for use inside a chassis. In embedded sys-
tem applications it must have limited to no impact on the software infrastructure that
operates over it. It can be implemented in few gates, offers low transaction latency and
high bandwidths. The

RapidIO

interconnect architecture is intended to be an open stan-
dard architecture.

There are similar movements in the industry away from shared buses, towards fabrics.
Proposed fabrics optimized for I/O include InÞniBand [5] .

InÞniBand is targeted as a System Area Network (SAN) interconnect. A SAN is used to
cluster systems together to form larger highly available systems. SANs usually connect
whole computers together within distances of up to 30 meters. Transactions through a
SAN are typically handled through software drivers using message channels or remote
direct memory access (RDMA).

RapidIO

 differs from InÞniBand in that it is targeted toward embedded, in the box com-
munications.

RapidIO

 can be thought of as the mechanism to connect devices together
to form the computer system. InÞniBand connects these computer systems together to
form the SAN.

Introduction

4

 of

 25

RapidIOª: An Embedded System Component Network Architecture

System Applications

The

RapidIO

 interconnect is targeted as a device level interface for use in environments
where multiple devices must work in a tightly coupled load/store environment. Figure 2
illustrates a generic system containing memory controllers, processors, and I/O bridges
connected using

RapidIO

 switches.

FIGURE 2

RapidIO

 allows a variety of devices to be interconnected

Applying this generic system block diagram to real applications the following examples
are presented. In the Þrst example (Figure 3), communications engines are connected
with control processors to deliver a high performance network protocol subsystem. This
system enables direct memory access between communication and control processors.

RapidIO
Switch

Integrated

Processor RapidIO
Switch

I/O
Bridge

I/O
Bridge

I/O
Bridge

I/O
Bridge

Processor

Memory

Memory
Controller

Memory

Integrated
Processor

Memory

Memory
Controller

Memory

RapidIO RapidIORapidIO

RapidIO

RapidIORapidIO

RapidIO

Introduction

RapidIOª: An Embedded System Component Network Architecture

5

 of

25

FIGURE 3

RapidIO

 furnishes a fabric to attach a distributed network protocol management
subsystem

In computing, the PCI bus [6] is ubiquitous. Enterprise storage applications, for exam-
ple, use PCI to bridge multiple disk channels to a system. As disk throughput has
increased so has the need for higher system throughput (a la PCI-X). To meet the electri-
cal requirements of higher bus frequencies the number of devices per bus segment has
decreased. Therefore to connect the same number of devices, more bus segments are
required. These applications require higher bus performance, more device fan-out, and
greater device separation. PCI-to-PCI bridge devices could be used to solve this prob-
lem but this would come at the cost of many pins and a limit in the total transmission
distance between devices.

RapidIO

 can be used for transparent PCI-to-PCI bridging allowing for a ßattened archi-
tecture utilizing fewer pins with greater transmission distances. Figure 4 shows one such
bridged system. In this example, several PCI-X bridges are connected together using

RapidIO

 switches. An InÞniBand Host Channel Adapter can be provided if the system is
to become part of a wider System Area Network.

Integrated
Control
Processor

RapidIO
Switch

RapidIO to PCI
Bridge

Memory

PCI

Communication
Processor

SUBSYSTEM

Communication
Processor

TDMs
GMIIs
Utopia

TDMs
GMIIs
Utopia

Integrated
Control

Processor

Memory

Memory Memory

RapidIO

RapidIO

RapidIO RapidIO

RapidIO

RapidIO

Introduction

6

 of

 25

RapidIOª: An Embedded System Component Network Architecture

FIGURE 4

RapidIO

 as a PCI bridging fabric reduces device pin count

Many systems require the partitioning of functions into Þeld replaceable units. These
printed circuit boards have traditionally been interconnected using multi-drop interfaces
like VME or Compact PCI. Higher system level performance can be achieved by using

RapidIO

 as shown in Figure 5. For hot swap applications, the removal of a device has no
electrical impact on other devices as it would in a shared bus environment.

FIGURE 5

RapidIO

 spans boards in a a passive backplane application

RapidIO to
InfiniBand

(HCA)

Integrated
IO Processor

RapidIO
Switch

RapidIO to PCI-X
Bridge

RapidIO
Switch

RapidIO to PCI-X
Bridge

RapidIO to PCI-X
Bridge

RapidIO to PCI-X
Bridge

Memory
HOST

BRIDGE

RapidIO

PCI-X PCI-X PCI-X PCI-X

InfiniBand

TO SAN

RapidIO

RapidIO

RapidIO

RapidIO

RapidIO

RapidIO

Subsystem

RapidIO
Switch

RapidIO

RapidIO

RapidIO

RapidIO

Subsystem

RapidIO
Switch

RapidIO

RapidIO

RapidIO

RapidIO

Subsystem

RapidIO
Switch

RapidIO

RapidIO

RapidIO

RapidIO

Subsystem

RapidIO
Switch

RapidIO

RapidIO

RapidIO

RapidIO

Subsystem

Fabric Card

Backplane

RapidIO
Switch

RapidIO
Switch

RapidIO

RapidIO

RapidIO

RapidIO

RapidIO RapidIO RapidIO RapidIO RapidIO

Introduction

RapidIOª: An Embedded System Component Network Architecture

7

 of

25

Philosophy

The architecture of

RapidIO

 was driven with certain principal objectives:

¥

Focus on applications that connect devices which are within the box or chassis: As
an example, since devices are not intended to be connected with several meters of
cable the interface can use a simple signalling and ßow control scheme.

¥

Limit the impact on software: Many applications are built on a huge legacy of mem-
ory mapped I/O. In such applications the interconnect must not be visible to soft-
ware. Offering more abstracted interfaces requires a large software re-engineering
effort.

¥

ConÞne protocol overhead: Because of the dependency on latency and bandwidth it
is important that the protocol use no more transaction overhead than is absolutely
necessary.

¥

Partition the speciÞcations to limit the necessary function set to only those needed
for the application: This limits design complexity and enables future enhancements
without impacting the top to bottom speciÞcation.

¥

Manage errors in hardware: In meeting the high standards of availability, yet limiting
the impact to performance and software infrastructure, it is important that the inter-
connect be able to detect errors. The transmission media should have the capability
of detecting multiple bit errors. Going a step further the interconnect must utilize
hardware mechanisms to survive single bit errors and most multiple bit errors.

¥

Limit silicon footprint: Many applications require the use of a high performance
interconnect but have a limited transistor budget. It is important that the interface be
able to Þt within a small transistor count. As an example, it is important that it Þt
within a commonly available FPGA technology.

¥

Build from common process technology I/O: Since this interface is targeted for
intra-system communications, it should not require separate discrete physical layer
hardware. This means that the I/O technology should be power efÞcient and limit the
use of exotic process technology.

¥

Choose a memory coherency scheme optimized for small (16 or fewer memory con-
trollers) distributed memory systems: Most applications of shared memory usually
involve few processing elements.

RapidIO

is speciÞed in a 3-layer architectural hierarchy (Figure 6). A Logical speciÞca-
tion deÞnes the overall protocol and packet formats. This is the information necessary
for end points to process a transaction. A Transport speciÞcation provides the necessary
route information for a packet to move from end point to end point. A Physical speciÞ-
cation contains the device level interface such as packet transport mechanisms, ßow
control, electrical characteristics, and low level error management.

Introduction

8

 of

 25

RapidIOª: An Embedded System Component Network Architecture

FIGURE 6

RapidIO

 is architected in a partitioned hierarchy of Logical, Transport, and Physical
speciÞcations

This partitioning provides the ßexibility to add new transaction types to a logical speci-
Þcation without requiring modiÞcation to the transport or physical layer speciÞcations.

The

RapidIO

feature set and protocols are based upon a number of considerations for
both general computing and embedded applications. These considerations are broken
down into three categories; functional, physical, and performance.

Functional Considerations

The

RapidIO

architecture is targeted toward memory mapped distributed memory sys-
tems and subsystems. A message passing programming model is supported as well as an
optional globally shared distributed memory programming model. This enables both
general purpose multiprocessing and distributed I/O processing to co-exist under the
same protocol.

Message passing and DMA devices can improve the interconnect efÞciency if larger
non-coherent data quantities are encapsulated within a single packet, so

RapidIO

sup-
ports a variety of data sizes within the packet formats. Since the message passing pro-
gramming model is fundamentally a non-coherent non-shared memory model,

RapidIO

can assume that portions of the memory space are only directly accessible by a proces-
sor or device local to that memory space. A device attempting to access memory space
which is not locally owned must do so using software maintained coherency methods or
through a local device controlled message passing interface.

Transport Spec

Physical Spec
8/16LP-EP

Physical Spec Physical Spec

Implementation
Spec

Implementation
Spec

Logical Spec
GSM ext.

Logical Spec
Msg. Pass ext.

Logical Spec
I/O System

Logical Specification
- Information necessary for the end
point to process the transaction.
(i.e. Transaction type, size,
physical address)

Transport Specification
- Information to transport packet from
end to end in the system.
(i.e. Routing Address)

Physical Specification
- Information necessary to move
packet between two physical devices.
(i.e. Electrical interface, flow cntl)

Introduction

RapidIOª: An Embedded System Component Network Architecture

9

 of

25

For the globally shared memory programming model, a directory based coherency
mechanism is chosen.

RapidIO

furnishes a variety of ISA speciÞc cache control opera-
tions such as multiple cache line size support, block ßushes, data cache block zeroing,
and TLB synchronization mechanisms.

Physical Considerations

The protocol and packet format are independent of the topology of the physical inter-
connect. The protocol works whether the physical interconnect is a point-to-point, ring,
bus, switched multidimensional network, duplex serial connection, etc. There is no
dependency on the bandwidth or latency of the physical fabric. The protocol handles out
of order packet transmission and reception. There is no requirement for geographical
addressing; a deviceÕs identiÞer does not depend on its location in the address map, but
can be assigned by other means. The physical interface contains the signal deÞnitions,
ßow control and error management.

Initially an 8-bit and 16-bit parallel (8/16 LP-EP), point-to-point interface is deployed.
An 8/16 LP-EP device interface contains a dedicated 8- or 16-bit input port with clock
and frame signals, and a 8- or 16-bit output port with clock and frame signals. A source
synchronous clock signal clocks packet data on rising and falling edge. The frame signal
provides a control reference. Differential signalling is used to reduce interface complex-
ity, provide robust signal quality, and promote good frequency scalability across printed
circuit boards and connectors.

Performance Considerations

Packet headers are as small as possible to minimize the control overhead and are orga-
nized for fast, efÞcient assembly and disassembly. As the amount of data included in a
packet increases, packet efÞciency increases.

RapidIO

 supports data payloads up to 256
bytes. Messages are very important for embedded control applications, so a variety of
large and small data Þelds and multiple packet messages are supported.

Packet-based cache coherence requires a large amount of control overhead, so an inter-
ventionist (cache to cache) protocol saves a large amount of latency for memory
accesses that cause another cache to provide the requested data.

Multiple transactions are allowed concurrently in the system, not only through the abil-
ity to pipeline transactions from a single device, but also through spatial reuse of inter-
faces between different devices in the system. Without this, a majority of the potential
system throughput is wasted. The sustainable bandwidth target for the initial deploy-
ment is 1 gigabyte per second per device pair with headroom for future growth toward
multiple gigabytes per second.

Protocol Overview

10

 of

 25

RapidIOª: An Embedded System Component Network Architecture

2 Protocol Overview

Packets and Control Symbols

RapidIO

 transactions are based on request and response packets. Packets are the com-
munication element between end point devices in the system. A master or initiator gen-
erates a request packet which is transmitted to a target. The target then generates a
response packet back to the initiator to complete the transaction.

RapidIO

 end points are
typically not connected directly to each other but instead have intervening connection
fabric devices. Control symbols are used to manage the ßow of transactions in the

RapidIO

 physical interconnect. Control symbols are used for packet acknowledgement,
ßow control information, and maintenance functions. Figure 7 shows how a packet
progresses through the system.

FIGURE 7

Transactions are constructed with request and response packet pairs

In this example, the initiator begins a transaction in the system by generating a request
packet. The request is sent to a fabric device which in turn replies with an acknowledge
control symbol. The packet is forwarded to the target through the fabric device. This
completes the request phase of the transaction. The target completes the transaction and
generates a response packet. The response packet returns through the fabric device using
control symbols to acknowledge each hop. Once the packet reaches the initiator and is
acknowledged, the transaction is considered complete.

Target
Completes
Operation

Operation
Issued By

Master

Operation
Completed for

Master

Initiator

Fabric

Target

Acknowledge
Symbol

Acknowledge
Symbol

Request
Packet Forwarded

Request
Packet Forwarded

Acknowledge
Symbol

Acknowledge
Symbol

Response
Packet Issued

Request
Packet Issued

Protocol Overview

RapidIOª: An Embedded System Component Network Architecture

11

 of

25

Packet Format

The

RapidIO

 packet is comprised of Þelds from the three-level speciÞcation hierarchy
as shown in Figure 8.

FIGURE 8

The

RapidIO

 packet contains Þelds from the speciÞcation hierarchy.

The request packet begins with physical layer Þelds. The ÒSÓ bit indicates whether this
is a packet or control symbol. The ÒAckIDÓ indicates which packet the fabric device
should acknowledge with a control symbol.

RapidIO

 supports up to 8 unacknowledged
packets between two adjacent devices. The ÒPRIOÓ Þeld indicate the packet priority
used for ßow control. The ÒTTÓ, ÒTarget AddressÓ, and ÒSource AddressÓ Þelds indicate
the type of transport address mechanism used, the device address where the packet
should be delivered, and where the packet originated. The ÒFtypeÓ and ÒtransactionÓ
indicate the transaction that is being requested. The ÒsizeÓ is an encoded transaction
size.

RapidIO

 transaction data payloads range from 1-byte to 256 bytes in size. The
ÒsrcTIDÓ indicates the transaction ID.

RapidIO

 devices may have up to 256 outstanding
transactions between two end points. For memory mapped transactions the ÒDevice Off-
set AddressÓ follows. For write transactions a ÒData PayloadÓ completes the transaction
followed by a 16-bit CRC.

Response packets are very similar to request packets. The ÒSizeÓ Þeld is replaced by the
ÒstatusÓ Þeld which indicates whether the transaction was successfully completed. The
ÒTargetTIDÓ is the corresponding request packet transaction ID.

Transaction Formats and Types

One of the attributes of a software transparent interconnect is the requirement for a rich
set of transaction functions. The

RapidIO

 transaction is described through two Þelds;

RsrvS AckID PRIO

Request Packets

Response Packets

TT Ftype Target Address Source Address

Device Offset Address

41 3 2 2 4 8 or 16 8 or 16

32

CRC

16

Previous Packet

Next Packet

Target Address Source Address Transaction

8 or 16 8 or 16 4

Optional Data Payload CRC

16

Previous Packet

Next Packet

status

4

Target TID

8

Physical Layer

Transport Layer

Logical Layer

size

4

Optional Data Payload

srcTID

8

transaction

4

RsrvS AckID PRIO TT Ftype

41 3 2 2 4

Protocol Overview

12

 of

 25

RapidIOª: An Embedded System Component Network Architecture

the format type ÒFtypeÓ, and the ÒTransactionÓ. To ease the burden of transaction deci-
phering, transactions are grouped by format as shown in Table 1.

Flow Control

Flow control is an important aspect of any interconnect. The goal is for devices to be
able to complete transactions in the system without being blocked by other transactions.
Bus based interconnects use arbitration algorithms to be sure that devices make forward
progress and that urgent transactions take precedence over less urgent ones. With switch
based interconnects, transactions enter the interconnect at different points in the system
and there is no centralized arbitration mechanism. This creates the need for more com-
plex methods to manage transaction ßow.

One of the objectives of

RapidIO

 is to limit overhead and complexity as much as possi-
ble especially in the area of ßow control. For

RapidIO

, ßow control is speciÞed as part
of the physical speciÞcation. This is because transaction ßow is largely dependent on the
physical interconnect and system partitioning. The

RapidIO

 8/16 LP-EP physical layer
speciÞcation deÞnes each packet as having a transaction priority. Each transaction prior-
ity is associated with a transaction ßow. There are three transaction ßows deÞned.
Transaction ßows allow higher priority transactions to go ahead of lower priority trans-
actions. All transactions are ordered within a transaction ßow and complete in a Þrst
come Þrst serve basis.

RapidIO

 also describes three types of ßow control mechanisms;
retry, throttle, and credit based.

TABLE 1.

RapidIO

 Transactions are grouped in format groups

Ftype Class Transaction Examples
Logical

SpeciÞcation

a

a. Logical SpeciÞcations:, IOS - basic input/output system, GSM - globally shared memory
extensions, MSG - message passing extensions

0, 15 User User DeÞned All

1 Intervention
Request

Read from current owner GSM

2 Non-Intervention
Request

Read from home, Non-coherent read, IO
read, TLB sync, Atomic

GSM, IOS

5 Write Request Cast-out, Flush, Non-coherent write,
Atomic swap

GSM, IOS

6 Streaming Write Steam write IOS

8 Maintenance ConÞguration, control, and status register
read and write

All

10 Doorbell In-band Interrupt MSG

11 Message Mailbox MSG

13 Response Read and write responses All

3,4,7,9,
12,14

Reserved

Physical Interface

RapidIOª: An Embedded System Component Network Architecture

13

 of

25

The retry mechanism is the most simple mechanism and is required not only for ßow
control but also a component of hardware error recovery. A receiver which is unable to
accept a packet because of a lack of resources or because the packet was corrupt, may
respond with a retry control symbol. The sender will retransmit the packet.

The throttle mechanism makes use of

RapidIO

Õs idle control symbol. Idle symbols may
be inserted during packet transmission. This allows a device to insert wait-states in the
middle of packets. A receiving device can also send a throttle control symbol to the
sender requesting that it slow down by inserting idle control symbols.

The credit based mechanism is useful for devices that implement transaction buffer
pools, especially fabric devices. In this scheme certain control symbols contain a buffer
status Þeld which represents the current status of the receiverÕs buffer pool for each
transaction ßow. A sender only sends packets when it knows the receiver has a buffer
available to store it to.

3 Physical Interface

The

RapidIO

 logical speciÞcation is deÞned to be physical layer independent. This
means that the

RapidIO protocol could be transmitted over anything from serial to paral-
lel interfaces, from copper to Þber media. That said, the protocol is optimized to operate
through byte wide granularity parallel point-to-point interfaces. The Þrst physical inter-
face considered and deÞned is known as the 8- or 16-bit link protocol end point speciÞ-
cation (8/16 LP-EP). This speciÞcation is deÞned as having 8 or 16 data bits in each
direction along with clock and frame signals in each direction (Figure 9.)

FIGURE 9 The RapidIO 8/16 LP-EP physical layer provides for full duplex communications
between devices.

8/16 LP-EP is a source synchronous interface which means that a clock is transmitted
with the associated data. Source synchronous clocking allows longer transmission dis-
tances at higher frequencies. Two clock pairs are provided for the 16-bit interface to

D[15,7:0], D[15, 7:0]

FRAME,

CLK, CLKÕ, CLK, CLKÕ

FRAME

CLK, CLKÕ

D[15,7:0]

FRAME

Packet Symbol PacketCRC

D[15,7:0], D[15, 7:0]

FRAME,

CLK, CLKÕ, CLK, CLKÕ

FRAME

Protocol Extensions

14 of 25 RapidIOª: An Embedded System Component Network Architecture

help control skew. The receiving logic is able to use the receive clock for re-synchroni-
zation of the data to its local clock domain.

The FRAME signal is used to delineate the start of a packet or control symbol. It oper-
ates as a no return to zero (NRZ) signal where any transition marks an event.

Electrical Interface

RapidIO adopts the IEEE 1596.3 Low Voltage Differential Signals (LVDS)[4] standard
as basis for the electrical interface. LVDS is a low swing (250 to 400 mV) constant cur-
rent differential signalling technology which is targeted toward short distance board
level applications. LVDS is technology independent and can be implemented in CMOS.
Differential signals provide improved noise margin, immunity to externally generated
noise, lower EMI, and reduced numbers of power and ground signal pins. LVDS has a
simple receiver based termination of 100 ohms.

The target frequencies of operation are from 250MHz to more than 1GHz. Data is sam-
pled on both edges of the clock. The resulting data rates in each direction scale to 2
Gbyte/sec for the 8-bit and 4 Gbytes/sec for the 16-bit interfaces. The targeted transmis-
sion distance is 30 inches of trace over standard printed circuit board technology. The
transmission environment is intended for use in backplane applications traversing con-
nector pairs.

Power Considerations

A concern in any system is power consumption. This is especially true of high compo-
nent density chassis applications. This has been a problematic issue with typical single-
ended interfaces. Frequencies are rising faster than voltages are lowering resulting in
increased power dissipation. Because LVDS is low swing and because it uses a constant
current source, the power consumption remains relatively constant over a wide operat-
ing frequency range.

4 Protocol Extensions

Message Passing

When data must be shared amongst multiple processing elements in a system, a protocol
must be put in place to maintain ownership. In many systems, especially embedded, this
protocol is often managed through software mechanisms. If the memory space is acces-
sible to multiple parties, then locks or semaphores are used to grant access to one party.
In other cases, processing elements may only have access to locally owned memory
space. In these Òshared nothingÓ machines, a mechanism is required to pass data from
the memory of one processing element to another. This can be done using software visi-
ble mailbox hardware.

RapidIO provides a message passing extension which is useful in shared nothing
machines. The RapidIO message passing logical extension protocol describes transac-
tions to enable mailbox and doorbell communications. A RapidIO mailbox is a port

Protocol Extensions

RapidIOª: An Embedded System Component Network Architecture 15 of 25

through which one device may send a message to another device. The receiving device
controls where the message is placed when it arrives. A RapidIO message can consist of
up to 16 packets of up to 256 bytes each for a total 4 kbytes. A receiver can have 1 to 4
addressable message queues to capture inbound messages.

The RapidIO doorbell is a light weight port based transaction which can be used for in-
band interrupts. A doorbell message has a 16-bit software deÞnable Þeld which can be
used for a variety of messaging purposes between two devices.

Globally Shared Memory

One of the optional protocol extensions offered in RapidIO is support for a globally
shared distributed memory system. This means that memory may be physically located
in different places in the machine yet may be shared amongst different processing ele-
ments. Typically mainstream microprocessor architectures have addressed shared
memory using transaction broadcasting sometimes known as bus based snoopy proto-
cols. These are typically implemented through a centralized memory controller for
which all devices have equal or uniform access.

Massively parallel, super computers, and cluster machines which have distributed mem-
ory systems must use a different technique for maintaining memory coherency. A broad-
cast snoopy protocol in these machines is not efÞcient given the number of devices that
must participate and the latency and transaction overhead involved. Therefore a differ-
ent mechanism is required to keep track of where the most current copy of data resides.
Such machines use more complex coherency mechanisms such as coherence directories
or distributed link lists. These schemes are often referred to as cache coherent non-
uniform memory access (CC-NUMA) protocols. Examples include the Stanford DASH
machine[2] , the MIT Alewife Machine [1] and Scalable Coherent Interface (SCI)[3] .

For RapidIO, a more simple directory based coherency scheme is chosen. For this
method each memory controller is responsible for tracking where the most current copy
of each data element resides in the system. A directory entry is maintained for each
device in the system which is participating in the coherency domain. A simple coher-
ency state tracking of ModiÞed, Shared, or Local (MSL) is tracked for each element.
Figure 10 shows an example of a Òread with intent of modiÞcationÓ request to a memory
controller. For this example other devices in the system have shared copies of the data.
The memory controller indexes the requested data in its directory and subsequently
issues appropriate invalidation transactions to the sharers. At the completion of this set
of operations the memory controller forwards the latest copy of the data to the requestor
to complete the transaction.

Maintenance and Error Management

16 of 25 RapidIOª: An Embedded System Component Network Architecture

FIGURE 10 The memory controller is responsible for managing coherency in the directory based
scheme.

To reduce the directory overhead required, the architecture is optimized around small
clusters of 16 processors known as coherency domains. With the concept of domains, it
is possible for multiple coherence groupings to coexist in the interconnect as tightly
coupled processing clusters.

Future Extensions

RapidIO is partitioned to support future protocol extensions. This can be done at the
user level through the application of user deÞnable transaction format types, or through
future encoding in reserved Þelds. RapidIO is architected so that switch fabric devices
do not need to interpret packets as they ßow through, lending itself toward forward com-
patibility.

5 Maintenance and Error Management

RapidIO steps beyond traditional bus based interfaces by providing a rich set of mainte-
nance and error management functions. These enable the initial system discovery, con-
Þguration, error detection and recovery methods.

Maintenance

A maintenance transaction common to all logical speciÞcations is used to access a pre-
deÞned maintenance port in each device. This port is outside of the system physical
address map. The registers contain information about the device, including its capabili-
ties and memory mapped requirements. Also included are error detection and status reg-
isters such as watchdog timer settings and pointer status. For more complex multi-bit
errors, software may make use of these registers to recover or quiesce a RapidIO device.

Error coverage

The mean time between failure (MTBF) and mean time to repair (MTTR) of a system
are often critical considerations in embedded infrastructure applications. It is intolerable
for an error to go undetected. It is also desirable to recover from these errors with mini-

Requester

Home
Memory

1. READ_TO_OWN request

5. DONE response

Participants

2. DKILL requests to sharers

3. collect all DONE responses

4. Home Memory
 marks requester
 as owner

Performance

RapidIOª: An Embedded System Component Network Architecture 17 of 25

mal system interruption. Because of these factors and since RapidIO operates at very
high frequencies, it is necessary to provide strong error coverage in the protocol. Much
of the RapidIO error coverage is handled through the physical layer speciÞcation. This
allows different coverage strategies depending on the physical environment without
affecting the transport and logical speciÞcations.

For the 8/16 LP-EP physical layer the objective is to detect and recover from moderate
burst errors. Because this physical layer is intended as a board level interconnect, it is
assumed that the interface will not suffer from a high bit error rate as it might if it were
traversing a cable. Several error detection schemes are deployed to provide coverage for
8/16 LP-EP. Packets are covered using a CCITT16 cyclic redundancy check (CRC), and
control symbols are covered using a single error correct, double error detect (SECDED)
code along with redundant inverted transmission as shown in Figure 11.

FIGURE 11 Error detection is accomplished through a variety of schemes.

The FRAME signal is covered against inadvertent transitions by treating it as a no-
return-to-zero NRZ signal. It must stay in the new state for more than 1 clock to be con-
sidered valid.

Error Recovery

The control symbol is at the heart of the hardware error recovery mechanism. Should a
packet be detected with a bad checksum, control symbols are sent to verify that both
sender and receiver are still synchronized and a packet retry is issued. Should a transac-
tion be lost, a watchdog time-out would occur and the auto recovery state machines
would attempt to re-synchronize and retransmit.

If an interface fails severely, it may not be able to recover gracefully in hardware. For
these extreme case, RapidIO hardware can generate a software trap and a higher level
error recovery protocol can be run. Software may query the maintenance registers to
reconstruct the current status of the interface and potentially restart it. An in-band device
reset command is provided for even more extreme conditions.

6 Performance

RapidIO is intended as a processor and memory interface where both latency and band-
width must be considered. Separate clock and frame signals are provided to eliminate

Header

Long Packets Covered by
intermediate CCITT 16

All Packets end with
CCITT 16 Covering

Data and Header

Data DataPacket

Symbol

Symbol Contains
SECDED code

Symbol
Symbol

Redundant inverted
symbol transmitted

Performance

18 of 25 RapidIOª: An Embedded System Component Network Architecture

encoding and decoding latency. Source routing and a transaction priority mechanism
limits blocking of packets, especially those of a critical nature. Large packets of up to
256 bytes and response-less stream write transactions move larger volumes of data with
less transaction overhead.

Packet Structures

The RapidIO packet is structured to promote simpliÞed construction and parsing of
packets in a wider on-chip parallel interface, limiting the amount of logic operating on
the narrower high frequency interface. Packets are organized in byte granularities and
further in 32-bit word alignments. In this way Þelds land consistently in speciÞc byte
lanes on the receiving device, limiting the need for complex parsing logic.

Source Routing and Concurrency

Traditional bus-based systems, such as those using PCI, have relied on address broad-
casting to alert targets of a transaction. This is effective since all devices monitor a com-
mon address bus and respond when they recognize a transaction to their address
domain. Unfortunately, only one master can be broadcasting an address at a time.

Switch-based systems can employ two methods to route transactions, broadcast or
source routing. For the broadcast scheme a packet is sent to all connected devices. It is
expected that one and only one device actually responds to the packet. The advantage
of the broadcast scheme is that the master does not need to know where the receiver
resides. The disadvantage is that there is a large amount of system bandwidth wasted on
the paths for which the transaction was not targeted.

To take full advantage of available system bandwidth, RapidIO employs source routing.
This means that each packet has a source speciÞed destination address which instructs
the fabric speciÞcally where the transaction is to be routed. With this technique only the
path between the sender and receiver is burdened with the transaction. This method
leaves open bandwidth on other paths for other devices in the system to communicate
with each other concurrently. This scheme does not preclude the use of broadcast or
multicast routing.

Packet Overhead

A performance concern in any tightly coupled intra-system interconnect is the transac-
tion overhead required for the interface. Such overhead includes all bytes sent to com-
plete a transaction such as arbitration, addresses, acknowledgements, error coverage,
etc. Figure 12 shows some typical transactions and the number of bytes required to
complete the transaction. It is important to remember that RapidIO is a full duplex inter-
face and therefore the interface can be fully pipelined with several outstanding transac-
tions at various stages of completion. Reply overhead does not contend with sending
overhead. This is different from traditional buses which require turnaround cycles and
arbitration phases that add to the overhead.

Performance

RapidIOª: An Embedded System Component Network Architecture 19 of 25

FIGURE 12 Transaction overhead includes the total bytes sent in each direction to complete a
transaction.

Table 2 compares the efÞciencies of typical multidrop buses to RapidIO. For this case, a
64-bit PCI bus and a 64-bit PowerPC 60x processor bus[7] are used as examples of par-
allel buses. The efÞciency here is deÞned as the total transaction overhead divided by
the data payload delivered. It includes all of the bits of information that were necessary
to complete the transaction such as arbitration, address, and ßow control bits. In this
example, RapidIO, PCI, and 60x are found to have very similar efÞciencies for small
transactions. Further, both RapidIO and PCI are found to have increasing efÞciencies as
the transaction size is increased. This is because the larger transactions require the same
transaction information as the small transaction. In both cases the signal pins used to
deliver control information are used to deliver data. The PowerPC bus does not multi-
plex control and data, but instead is highly pipelined. It allows concurrent address and
data tenures thereby reducing the arbitration overhead and serialization that may occur
on a multiplexed interface; of course this comes at the price of many additional signal
pins.

Req Header CRC

Ack Resp Header CRCData Payload10 2

4 6 2

16

12

Ack

4

28

Req Header CRC

Ack Resp Header CRC

Data Payload

10 2

4 6 2

16

12

Ack

4

28

Req Header CRC

Ack

Data Payload

8 2

4

10

4

14

NREAD

NWRITER

SWRITE

Transaction
Example

Overhead
Bytes

Req Header CRC

Ack

Data Payload

6 2

4

12

12

24

MESSAGE Resp Header CRC

6 2

Ack

4

Notes: Assumes 8-bit Route and 32-bit physical offset address

Performance

20 of 25 RapidIOª: An Embedded System Component Network Architecture

TABLE 2. The RapidIO bus efÞciency improves as the transaction payload size is increased.

Transaction Latency

In load/store environments, where processors or other devices are dependent on the
results of a transaction before proceeding, latency becomes a key factor to system per-
formance. It is assumed that the transactions of interest here are small byte or cache-line
oriented transactions. Since RapidIO is narrower than traditional parallel buses, a trans-
action requires more clock cycles for data transmission; also RapidIO has extra over-
head associated with routing and error management. However, RapidIO has limited to
no contention or arbitration, higher operating frequency, and a concurrent reply path.

Two simple examples are presented to illustrate the latency through a typical RapidIO
system. In the Þrst example, (Table 3) two end point devices are connected directly
together. Four transactions are shown representing data payloads of the smallest packet
granularity (64-bit) and a cache-line granularity (32-byte) for both read and write cases.
The latency numbers include the time to assemble a packet, transmit, receive, synchro-
nize, and disassemble. A clock frequency of 500MHz is used where data is sampled on
both edges of the clock. The reader is cautioned in comparing these numbers to tradi-
tional interfaces since the sequencing hardware necessary to generate and receive a
transaction is not usually accounted for. For read transactions the important number is
the total request and response time. For write transactions only the request latency is
necessary.

Interface Transaction Signals
Clks/

Tenure

Transaction
Overhead

(bytes)
Bytes

Transferred Efficiency
RapidIO 32B Read 20 44 35 32 48%

32B Write 20 44 35 32 48%
256B Read 20 270 37 256 87%
256B Write 20 270 37 256 87%

PPC 60x w/ MPX ext. 32B Read 133 4 34.5 32 48%
32B Write 133 4 34.5 32 48%
256B Read 133 32 276 256 48%
256B Write 133 32 276 256 48%

PCI-64 32B Read 87 6 33.25 32 49%
32B Write 87 6 33.25 32 49%
32B Deferred Read 87 9 65.875 32 33%
256B Deferred Read 87 37 146.375 256 64%
256B Write 87 34 113.75 256 69%

Notes: - Efficiency is the ratio of total bytes for a tenure to data transferred.

- PPC 60x assumes a fully pipelined 64 bit data bus
- PCI and PPC 60x do not include overhead due to bus turnarounds or arbitration

Performance

RapidIOª: An Embedded System Component Network Architecture 21 of 25

TABLE 3. RapidIO latency is considered from the assembly to extraction of the packet.

In the second example, a switch fabric device is added between the two end points
(Table 4.) It is assumed that the fabric does full store and forward. It is further
assumed a very simple port routing scheme is used in the switching fabric.

Device A Device B

Given an 8/16 LP-EP interconnect running at 500MHz clock rate (1Gb/s/pin)
- Estimated time required to assemble, transmit and disassemble packet.

- Does not include device latency outside of RapidIO interfaces.

Width Transaction Total (ns)

Req / Resp
Assembly

Disassembly
Packet

Transmit

Req / Resp
Assembly

Disassembly

8-bit 64 bit NREAD 80
Request 38 12 12 14
Response 42 14 16 12

64 bit NWRITER 80
Request 46 12 20 14
Response 34 14 8 12

32 byte NREAD 104
Request 38 12 12 14
Response 66 14 40 12

32 byte SWRITE 116
Request 68 12 42 14

16-bit 64 bit NREAD 66
Request 32 12 6 14
Response 34 14 8 12

64 bit NWRITER 66
Request 36 12 10 14
Response 30 14 4 12

32 byte NREAD 78
Request 32 12 6 14
Response 46 14 20 12

32 byte SWRITE 48
Request 48 12 22 14

Example 1: Direct device to device

Performance

22 of 25 RapidIOª: An Embedded System Component Network Architecture

TABLE 4. The addition of a cross bar fabric between devices adds additional latency

Finally Table 5 summarizes a comparison of different bus latencies. In this case
RapidIO is compared to a PCI bus and PowerPC bus. The 64-bit read is shaded to con-
trast the different interconnect latencies with a similar transaction. For both the PCI and
PowerPC bus it is assumed that an arbitration sequence must be completed before a
cycle is issued. The PCI bus does not allow split transactions. If a PCI target can not ser-
vice a read transaction immediately, it must retry the master. After retrying the master,
the target is allowed to complete the read transaction in the background so that when the
master attempts the transaction in the future the data will be available. This is called a
deferred read transaction. Deferred read transactions are shown since a PCI target
device can rarely service a read before being forced to disconnect.

Device A Fabric Device B

Example 2: Device to store and forward
 crossbar fabric to device

Given an 8/16 LP-EP interconnect running at 500MHz clock rate (1Gb/s/pin)
- Estimated time required to assemble, transmit and disassemble packet.
- Does not include device latency outside of RapidIO latency

W idth Trans action Total (ns)
to / from
LS RU

Req / Res p
As sembly

Dis as s embly
Packet

Trans mit
F abric

Latency
P acket

Trans mit

Req / Res p
As sembly

Dis ass embly

8-bit 64 bit NREAD 160
Reques t 76 12 12 26 12 14
Res pons e 84 14 16 26 16 12

64 bit NW RITER 160
Reques t 92 12 20 26 20 14
Res pons e 68 14 8 26 8 12

32 byte NREAD 208
Reques t 76 12 12 26 12 14
Res pons e 132 14 40 26 40 12

32 byte S WRITE 136
Reques t 136 12 42 26 42 14

16-bit 64 bit NREAD 132
Reques t 64 12 6 26 6 14
Res pons e 68 14 8 26 8 12

64 bit NW RITER 132
Reques t 72 12 10 26 10 14
Res pons e 60 14 4 26 4 12

32 byte NREAD 156
Reques t 64 12 6 26 6 14
Res pons e 92 14 20 26 20 12

32 byte S WRITE 96
Reques t 96 12 22 26 22 14

Performance

RapidIOª: An Embedded System Component Network Architecture 23 of 25

TABLE 5. RapidIO transactional latency compares favorably to buses

The latency to traverse a switch fabric is considered since RapidIO devices will typi-
cally be connected with these devices. A comparison is made to that of a PCI-to-PCI
bridged system. Figure 13 summarizes the latency comparisons in a chart format. In
these examples the PowerPC bus does not have a bridge consideration. Applications
have typically not implemented processor mezzanine bridges but rather bridge to an I/O
interface such as PCI.

Interconnect Configuration Transaction
Transactional
Latency (ns)

RapidIO 500Mhz
8-bit Master to Target 64-bit Read 80

16-bit 64-bit Read 66
8-bit 64-bit Write 46

16-bit 64-bit Write 36
8-bit 32-byte Read 104

16-bit 32-byte Read 78
8-bit 32-byte Write 68

16-bit 32-byte Write 48
RapidIO 500Mhz
8-bit

Master to Target Through
1 level Switch Fabric 64-bit Read 160

16-bit 64-bit Read 132
8-bit 64-bit Write 92

16-bit 64-bit Write 72
8-bit 32-byte Read 208

16-bit 32-byte Read 156
8-bit 32-byte Write 136

16-bit 32-byte Write 96
PCI Bus, 64-bit,
66MHz Master to Target 64-bit Read 113

64-bit Deferred Read 210
64-bit Write 113
32-byte Read 158
32-byte Deferred Read 255
32-byte Write 158

PCI Bus, 64-bit,
66MHz

Through PCI to PCI
Bridge 64-bit Read 218

64-bit Deferred Read 405
64-bit Write 218
32-byte Read 308
32-byte Deferred Read 495
32-byte Write 308

PowerPC 60x/MPX
Bus, 64-bit,
100MHz

Master to Target
64-bit Read 75
64-bit Write 75
32-byte Read 105
32-byte Write 105

Summary

24 of 25 RapidIOª: An Embedded System Component Network Architecture

FIGURE 13 A graphical comparison of some latencies

It is conceivable that a RapidIO-based system with several devices could be imple-
mented with a fairly ßat topology resulting in very low transaction latency.

7 Summary

The RapidIO interconnect provides a robust packet-switched system level interconnect.
It is a partitioned architecture that can be further enhanced in the future. It enables
higher levels of system performance while maintaining or reducing the implementation
costs. A RapidIO end point can be implemented in a small silicon footprint. A proven
industry standard signaling scheme (LVDS) is used for the Þrst physical interface. Error
management includes the ability to detect multi-bit errors and survive most multi-bit
and all single bit errors. The protocol overhead and transaction latency are very compa-
rable to current bus technologies.

References

[1] A. Agarwal, et. al. ÒThe MIT Alewife Machine: Architecture and Performance,Ó
International Symposium on Computer Architecture, 1995.

0

50

100

150

200

250

300

350

Latency Comparisons

Device to Device

Device through Bridge to Device

Summary

RapidIOª: An Embedded System Component Network Architecture 25 of 25

[2] D. Lenoski, et. al., ÒThe DASH Prototype: Implementation and Performance,Ó Com-
puter Systems Laboratory, Stanford University.

[3] ÒIEEE Std. 1596-1992, IEEE Standard for Scalable Coherent Interface (SCI),Ó IEEE
Computer Society, 1992.

[4] ÒIEEE Std. 1596.3-1996, IEEE Standard for Low-Voltage Differential Signals
(LVDS) for Scalable Coherent Interface (SCI),Ó IEEE Computer Society, 31 July
1996.

[5] InÞniBand Trade Association, 5440 SW Westgate Dr, Suite 217, Portland OR,
97221.

[6] ÒPCI Local Bus SpeciÞcation, Rev.2.2,Ó PCI Special Interest Group 1999.

[7] ÒPowerPC Microprocessor Family: The Bus Interface for 32-Bit Microprocessors,Ó
G522-0291-00, Motorola Inc. 1997.

