
A Congestion Control Algorithm for
Data Center Area Communications
Hideyuki Shimonishi, Junichi Higuchi, Takashi Yoshikawa, and Atsushi Iwata

System Platforms Research Laboratories, NEC Corporation
1753 Shimonumabe, nakahara-ku, Kawasaki, Kanagawa 211-8666, Japan

Tel +81-44-431-7633, Fax +81-44-431-7644
h-shimonishi@cd.jp.nec.com

Abstract—Ethernet is extending its applications to

data-center area, i.e. very short distance, communications
such as CPU-CPU and CPU-I/O interconnections, where
short end-to-end (MAC-to-MAC) data transfer delay is the
key performance factor. In this paper, we propose an
extended Ethernet MAC mechanism providing end-to-end
reliable and congestion controlled packet transfer that
minimizes data transfer delay. The proposed MAC
mechanism employs a packet retransmission mechanism
and a delay-based congestion control algorithm with inline
initial bandwidth probing. Since inline bandwidth probing
with small number of data packets tends to overestimate
the initial bandwidth, we introduced two extended
mechanisms; two-stage probing and RTT prediction. The
RTT prediction mechanism detects congestion several
RTTs earlier than using measured RTT and thus minimize
queuing delay. The two-stage probing mechanism
adaptively starts up data transfers without overflowing the
link. The simulation results show that the proposed
mechanism achieves roughly 10 times shorter transfer
delay compared to TCP and 2-3 times shorter delay
compared to existing delay-based congestion controls.

I. INTRODUCTION
Ethernet is extending its applications to very short-distance

communications such as CPU-CPU and CPU-I/O
interconnections in large scale cluster systems. We have
proposed a scalable I/O interconnection technology called
ExpEther [1]. ExpEther transparently tunnels PCI-Express
packets over Ethernet; thus, PCI devices are connected via
Ethernet without any modifications to existing hardware and
device drivers. Therefore, ExpEther provides a flexible,
scalable and cost-effective communication method for
computer systems connecting a large number of CPUs and
I/Os compared to existing interconnection technologies such
as InfiniBand or PCI-Express switches.

One of the typical applications is remote disk mount over
Ethernet. In contrast to a NAS (Network Attached Storage)
system, ExpEther connects the disk as if they are locally
mounted and thus provides fast and efficient connection. Or
any remote I/O devices such as graphic cards or accelerators
can be connected via Ethernet.

Since PCI-Express is a (packetized) computer-bus
technology and provides a channel equivalent to a physical
wire, the challenge of ExpEther is to achieve very small data

transfer delay, as well as high reliability without any packet
losses or congestion. In contrast to FTP or WWW, CPU-CPU
and CPU-I/O interconnections have very different traffic
characteristics. Rather than generating a large burst of data,
relatively small block of data and its acknowledgement is
frequently exchanged. Therefore, short end-to-end (MAC-to-
MAC) delay is the key performance factor. Large data transfer
delay would inefficiently consume link bandwidth just waiting
for the acknowledgements from the receiver.

TCP (Transmission Control Protocol) [2] is used to
provide reliable communications on top of IP and Ethernet.
Since TCP employs loss-based congestion control algorithm,
which continues to increase sending rate until it gets packet
losses, its queuing delay can grow till its maximum and it
takes time to converge to the appropriate sending rate. In very
short distance communications, larger data transfer delay adds
up to significant performance degradation of CPU-CPU or
CPU-I/O effective bandwidth. Recently there are a number of
TCP variants having delay-based congestion control algorithm
[8][10][11], but they are also not very efficient because of
small burst sizes. Another drawback of TCP is its high
processing cost that heavily consumes CPU resources. TOE
(TCP Offload Engine) is often used to offload the processing
to specialized network interface hardware. Nevertheless it
would be too costly to have all TCP/IP/Ether protocol stacks
on every CPU and I/O devices.

In this paper, we propose an extended Ethernet MAC
mechanism, which we call EFL (Ethernet with Flow Label).
To provide an end-to-end (MAC-to-MAC) reliable path over
Ethernet, EFL extends MAC with packet retransmission
mechanism and congestion control mechanism. The
retransmission mechanism is a simple one consists of block
data transfer, rather than byte data transfer of TCP, and Go-
back-N ARQ mechanism. The congestion control algorithm
employs a delay-based congestion control because it has an
advantage of maintaining small queuing delay. To improve
transfer delay of short data transfer, we introduced an initial
bandwidth probing mechanism. The mechanism is a quick
inline bandwidth measurement introduced for agile rate
adaptation at the beginning of a data transfer. The mechanism
measures an appropriate sending rate as soon as a new data
transfer starts and quickly adjusts the sending rate. Since we
assume applications that generate a series of relatively short
data transfers, agile rate adaptation is very important to
improve communication efficiency.

mailto:h-shimonishi@cd.jp.nec.com

Inline bandwidth measurement, which uses data packets as
a probe, has been proposed in some literatures [6][9].
However, the measurement requires large number of packets
and long time interval, typically several RTTs, to get accurate
bandwidth information. In fact, it is shown that the
measurement with a small number of probe packets tends to
overestimate the bandwidth [6]. To get bandwidth information
quickly with a small number of probing packets and still avoid
overloading the path with inaccurate bandwidth estimation, we
propose the following two mechanisms. The first one is two-
stage probing mechanism, which sends a small number of
packets, e.g. 10 or 20 packets typically, at the beginning and
continues to send packets at a very small rate until first ACK
packet arrives. The first group of packets is used to measure
the bandwidth roughly and quickly, and the subsequent
packets are used to verify and adjust the measured bandwidth.
After the initial bandwidth probing, the second mechanism is
used with delay-based congestion control. Since delay-based
congestion control relies on RTT measurements and it takes
time to observe increased RTT after a congestion period
actually starts, reaction to the congestion is delayed. Thus, to
minimize queuing delay, the second mechanism utilizes the
observation that the change of receiving rate precedes the
change of measured RTT, and predicts RTT changes.

Explicit congestion feedback mechanisms like XCP [3],
IEEE 802 Congestion Management [4], or Quick-Start [5]
would be useful to quickly obtain accurate congestion
information or appropriate initial sending rate. However, the
need for design new Ethernet switches having such
mechanism would spoil the advantage of using standard
Ethernet for CPU-CPU and CPU-I/O interconnection.

II. REALABLE ETHERNET TRANSPROT
EFL extends MAC with packet retransmission mechanism

and congestion control mechanism. As shown in Fig. 1, end
points having EFL MAC, either at server (CPU) or I/O
device side, are connected via Ethernet. When there are any
packet losses in the network, sender side EFL MAC
recognizes the losses and retransmits the lost packets. Also,
when there is any congestion in the network, the sender side
EFL MAC regulates its sending rate to mitigate such
congestion.

As shown in Fig. 2, EFL defines an extended MAC header
having sequence number and time stamp. It also defines a new
MAC packet for acknowledgement having acknowledged
sequence number. The sequence numbers are used for packet
loss detection and retransmission. They are defined as packet
count, rather than byte count, because EFL encapsulate PCI-
Express packet with MAC headers and do not re-segment byte
data stream. Time stamps, which records the time the packet is
sent, in both forward data packet and ACK packet are used to
measure RTT. In our implementation, the size of the extension
header is 9 bytes, whereas TCP/IP header is 40 bytes. This
small header overhead is significant especially for PCI-
Express tunneling because typical length of PCI-Express
packets is as small as 128 or 256 bytes.

In our implementation, we use Go-back-N ARQ
mechanism for packet retransmission because it does not

requires reorder buffers at a receiver and thus the receiver
hardware is greatly simplified. Since we assume that packet
loss events are exceptional very rate through delay-based
congestion control, the simple Go-back-N mechanism would
not significantly deteriorate the efficiency. Selective repeat
may further improve the efficiency, but it would be minor
with the assumption. For detecting packet loss, we employed
both fast retransmission mechanism triggered by duplicate
ACKs and retransmission timeout. Since we assume local
Ethernet where packet reordering rarely happens, we employ
double duplicate ACKs, rather than triple duplicate ACKs.
For detecting retransmission timeout, as well as for RTT
measurement, we have very fine grain timers, an order of
100nsec.We also employed delayed ACK mechanism to
reduce the number of ACK packets. Since PCI-Express packet
is very small, we configured that an ACK packet is sent for
every ten data packets.

III. CONGESTION CONTROL ALGORITHM FOR VERY SHORT
DISTANCE COMMUNICATIONS

As shown in Fig. 3 and 4, the congestion control algorithm
has four states for sending rate control: 1) idle state, 2)
bandwidth probing state, 3) delay probing state, and 4)
congestion avoidance state. In the following, sending rate
control in each state is explained.

1) Idle state
If there are no data to send, a sender is in this state. When

the sender finishes sending all data packets and receives all
acknowledgements for the data packets, the sender switches to
this state.

2) Bandwidth probing state
When a new group of packets arrives at the sender, the

sender switches to Bandwidth probing state and sends first N
data packets at a maximum bandwidth. These data packets are
used as a probe to measure appropriate initial sending rate. N
is the number of packets a sender can transmit without hearing
from the network. It should be small enough to avoid the risk

Server

MAC with EFE

Server

MAC with EFE

I/O device

MAC with EFE

I/O device

MAC with EFE

I/O device

MAC with EFE

I/O device

MAC with EFE

Server

MAC with EFE

Server

MAC with EFE

Server

MAC with EFE

Server

MAC with EFE

Ethernet

Reliable Ethernet
Transport

Packet retransmission
at MAC layerCongestion control by

sender side MAC

Fig.1: Reliable Ethernet Transport with EFL

Fig.2: EFL frame format

Ethernet MAC EFL Extension Payload

TYPE
=data PCI-Express packet

Sequence
number

Time
stamp

Ethernet MAC EFL Extension

TYPE
=ACK

Sequence
number

Time
stamp

Data packet

ACK packet

of instantaneous congestion. In our implementation, we set
N=20, i.e. 5KB of data with 256 byte encapsulated PCI-
Express packet, considering that TCP initial window size is 4
segments, i.e. 6KB of data with 1500byte MTU. These initial
packets are also designed to send short messages quickly
without waiting for acknowledgements.

After receiving all ACK packets acknowledging the
reception of all the packets sent in this state, the sender
calculates the sending rate R as follows:

where T1 and T2 are the reception time of the first and last
ACK packets, respectively, and D is the amount of data sent
by these data packets. Since T1-T2 is regarded as the time for
the data packets to traverse through a bottleneck queue, the
above equation estimates the bandwidth that the data packets
went through the bottleneck link.

3) Delay probing state
After sending initial N data packets, the sender switches to

Delay probing state. In this state, the sender has not heard
from network yet and thus continues to send data packets at a
minimum sending rate not to stress the network. As described
above, inline measurement with a small number of probe
packets tends to overestimate the bandwidth. Therefore,
although the calculated initial sending rate would be useful as
a prompt measurement; it should be beneficial to continue to
monitor the network to verify and adjust the initial sending
rate. The packets sent in this state are used for this purpose.

When the sender receives an ACK packet responding to
the data packet sent in this state, the sender measures RTT and
updates the initial sending rate. If the ACK packet has RTT
larger than the minimum RTT value, i.e. round trip
propagation delay between the sender and receiver, the sender
recognizes the existence of cross traffic and reduces the initial

sending rate. The rate update uses the same equation used in
the Congestion avoidance state, e.g. Eq. (2), but the
parameters would be reconfigured, i.e. smaller alpha and
larger beta, to be more conservative.

4) Congestion avoidance state
When the sender receives first ACK packet, it switches to

Congestion avoidance state. In the beginning of this state, the
sender starts packet transmission using the calculated initial
sending rate, and then the rate is kept updated using RTT
information. Like other delay-based congestion controls, such
as TCP-Vegas [7] and FAST TCP [8], the sending rate is
calculated based on the difference of the amount of
backlogged data in a bottleneck queue and its target value.
The sending rate R is updated upon each reception of each
ACK packet as follows;

where RTTmin is the minimum RTT value. Parameter α is the
target value for backlogged data, and equivalently, determines
the speed of rate increase. Parameter β is a control gain.

5) Packet loss
When a packet loss is detected through duplicate ACK or

retransmission timeout, sending rate is halved, like most TCP
algorithms do. In the bandwidth probing state, sending rate is
reduced to 0 because the rate is not determined yet in this state.

6) RTT prediction mechanism
To minimize transfer delay of relatively short data

transfers, agile rate adaptation is required and thus larger α
value is preferred. However, we have observed that larger α
value can result in larger or oscillated queuing delays, and
thus non-negligible packet losses. To minimize and stabilize
the queuing delay, it should be essential to quickly detect and
react to congestion as soon as the congestion begins.

Therefore, we propose a RTT prediction mechanism to
detect an incipient congestion before measured RTT grows.
To detect the incipient congestion, we utilize the observation
that the receiving rate changes faster than measured RTT. The
receiving rate can be estimated at the sender using ACK
packets. As the traffic volume at a bottleneck queue increases
and congestion begins, it takes time the queue length grows
enough. The sender recognizes the increased queuing delay
after a round-trip propagation delay plus queuing delay. Thus,
as the queuing delay increases, it takes more time for the
sender to recognize the increased RTT. On the other hand, the
output rate of a flow from the queue changes immediately
after the congestion begins, and thus, the change can be
recognized by the sender within one RTT.

In a steady state, we have the following relationship.
RRECV = DFLY / RTT

where RRECV is the receiving rate and DFLY is the amount of
data on the fly (which corresponds to the window size of TCP).
In a transient state, RRECV changes faster than measured RTT
changes, thus, DFLY / RRECV can be regarded as a foregoing
index of measured RTT. Since DFLY can be approximated by
R·RTT, we calculate the predicted RTT, RTTp, as following

 
RTT

RRTTRTTRR MIN
)(

12 TT
DR




Fig. 3: State transition diagram (1)

Idle

Bandwidth
probing

congestion
avoidance

Delay
Probing

Transmission
complete New data

arrival

N packets
sent

First ACK
packet arrive

Fig. 4: State transition diagram (2)

Sender Receiver

Data packet

ACK packet

Idle state

Bandwidth
probing state

Delay probing
state

Congestion
control state

(1)

(2)

(3)

This equation indicates that:

・ In a steady state when queue length is constant, the
receiving rate is equal to the sending rate and thus
RTTp = RTT.

・ When congestion begins and the queue length starts
growing, the receiving rate becomes less than the
sending rate and thus RTTp > RTT.

・ When congestion is ceasing and the queue length
begins shrinking, the receiving rate becomes larger
than the sending rate and thus RTTp < RTT.

IV. PERFORMANCE EVALUATIONS
We have evaluated the proposed mechanisms using ns2

simulator [12]. Now, we are developing prototype MAC
hardware and will report experimental evaluation results in the
near future. We have confirmed that the packet retransmission
mechanisms work properly and we will show the results for
the congestion control algorithm in the following evaluations.

1) Evaluation model
Figure 5 shows the network model. In this evaluation, we

used dumb-bell topology to investigate basic behaviors of the
proposed algorithms. Evaluations with more complex network
topology using simulator and/or prototype hardware system
would be one of the future works. Evaluations using real
CPU-CPU and CPU-I/O traffic in the testbed system, and
discussions on parameter setting using the real traffic would
also be our future works.

All link bandwidth is 10 Gbps and round trip propagation
delay between senders and receivers is 100us. Switches
employ tail-drop buffers with 1MB capacity. Packet size is
192 byte including extended MAC header and PCI-Express
packet as a payload.

We have compared the following four congestion control
algorithms; 1) Plain, plain delay-based algorithm using Eq. (2),
2) BW probe, delay-based algorithm with bandwidth probing
using Eq. (1) and (2), 3) Proposed, delay-based algorithm with
two-stage probing and RTT prediction, and 4) TCP, TCP-
NewReno. Since there are a number of delay-based protocols,
we modeled them into 1) and 2) and tested the models to make
the results more understandable and comparable, rather than
testing each one of them.

2) Evaluation of RTT prediction
We first show an example of predicted RTT. Traces of

actual RTT, measured RTT, and predicted RTT are shown in
Fig. 6. The actual RTT is a theoretical RTT value calculated
from instantaneous queue length, link bandwidth and
propagation delay, namely actual RTT = queue length / link
bandwidth + propagation delay. In this particular example,
two flows are sending from the beginning of the simulation
and extra two flows start at 10msec.

When congestion occurs at 10msec, queuing delay
increases first and the measured RTT increases subsequently.
Although the raise of measured RTT and predicted RTT starts

slightly after the raise of actual RTT by 1RTT=100usec
(dotted circle in the figure), the increase of predicted RTT
catches up very soon and then follows the increase of actual
RTT. While predicted RTT and actual RTT record their peak
value almost at the same time, measured RTT records its peak
value 400usec afterwards. Although predicted RTT is not a
real prediction of RTT and can not go faster than propagation
delay, it sensitively captures the trends of the queue behavior
by measuring the rate changes and uses them to

3) Evaluation with long-lived flows
 To discuss transient behavior of the proposed algorithm,

we used several long-lived flows; first flow (flow 1) starts at
0msec, and then, two flows (flow 2-3) start at 10msec, 4 flows
(flow 4-7) start at 20msec, 8 flows (flow8-15) start at 30msec,
16 flows (flow 16-31) start at 40msec. At 50msec, all flows
except for the first one terminate.

In Fig. 7 and Fig. 8 sending rate of individual flows in
each group is plotted for plain and proposed algorithms,
respectively. With the probing mechanism, sending rate of
flow 1 quickly reaches to the link capacity as soon as it starts,
whereas it takes 13msec for the flow to reach the link capacity
without the probing mechanism. At 10msec, flows 2 and 3
start with the estimated initial rate of 4Gbps and they quickly
reduce the rate in response to the increased queuing delay.
Then these three flows converge to the same sending rate. As
other flows come in, they also quickly converges to the fair
share rate. We configured that all flows measures their
minimum RTT values before the congestion occurs and they
actually measure the same minimum RTT value, thus, as a
nature of delay-based protocols, sending rate of all active
flows converges to the fair share value sometime after new
flows are added. In a steady state, all three delay-based
protocols, including plain, BW probe, and proposed
algorithms, converge to the fair share rate but the Plain and

RECVR
R

RTTRTTp 

Fig. 5: Network model

Round trip propagation delay = 100usec
Bandwidth = 10Gbps

Sender MAC Receiver MAC

1MB buffer with tail-drop

Switches

Fig. 6: Predicted / measured / actual RTTs
(2+2 long-lived flows)

Predicted RTT
Measured RTT

Actual RTT

(4)

Probing algorithm, both without RTT prediction, oscillates the
sending rates more than the proposed algorithm.

 Traces of their RTTs are shown in Fig. 9. When new
flows come in, both BW probe and proposed algorithms
experience larger queuing delay due to larger initial sending
rate, but the proposed algorithm roughly halves its maximum
queuing delay. For example, when flows 2 and 3 start, the
bandwidth probing estimates initial sending rate to be 4Gbps,
thus, the sum of the sending rate of flow 1-3 becomes 18Gbps
and the queue at the bottleneck link starts to built up. As a
reaction to this sudden congestion, the proposed algorithm
quickly reduces the sending rate than BW probe algorithm
does, i.e. proposed algorithm takes less than 100usec to reduce
the sending rate whereas BW probe algorithm takes 200usec.
Their peak queuing delays at this moment are 120usec and
250usec, respectively. This figure also shows larger oscillation
of RTT regarding plain and BW probe algorithms. Without the
RTT prediction mechanism, reactions to congestions are
delayed and their maximum queuing delay in a steady state
reaches 250usec, whereas the proposed algorithm has the
maximum queuing delay of 100usec during steady state.

4) Evaluation with short data transfers
To discuss the behaviors of the proposed algorithm in

more realistic situation, we tested the algorithms in an
environment where a large number of on-off flows compete at
the bottleneck link. Each flow generates a series of short data,
whose average size is 100KB and its distribution is Pareto
(Shape=1.2). Inter-arrival time of the data is exponentially

distributed whose average is 10msec. The number of flows is
150, which means the link is fairly loaded. In this evaluation,
data transfer time is defined as a time interval from the time
first packet is sent by a sender to the time last packet is
received by a receiver.

Figure 10 shows the distribution of data transfer time
sorted by their data size. The bandwidth probing mechanism is
effective for relatively small data transfers whose data size is
less than 10MB, and both BW probe and proposed algorithms
achieves 3 or 4 times smaller transfer time than the Plain
algorithm. And the proposed algorithm achieves further
smaller transfer time; it almost halves transfer time for very
short transfers compared with the BW probe algorithm,
because of the smaller queuing delays. The plain algorithm
with its slow startup has the smallest queuing delay but, on the
other hand, it exhibits large transfer time except for very short
data transfers whose transmission would be finished in a few
round trips. In this evaluation, we also tested TCP-NewReno
with and without slow start mechanism. Since TCP with slow
start caused frequent retransmission timeouts and resulted in
serious performance degradation, we only show the results
without slow start in the figure. Although TCP achieves
comparable transfer times with other algorithms for long data
transfers, transfer time for short data is very poor due it its
slow convergence to the appropriate sending rate, as well as
large queuing delay and frequent packet losses due to its loss-
based behavior.

We also compared the distribution of data transfer time of
those algorithms. In Fig. 11, cumulative distribution of
transfer time is plotted for different algorithms. This figure
shows that, with the proposed algorithm, 95% of data transfers
are done within 0.85msec, whereas with BW probe, plain, and
TCP, they are done within 2.3msec, 3.5msec and more than
10msec, respectively. Also the portions of data transfers that
are done within 1msec are 96%, 89%, 55% and 14% using the
proposed, BW probe, plain, and TCP, respectively.

RTT traces are shown in Fig. 12. Average queuing delay
of the proposed, BW probe and plain algorithms is 68us,

Fig. 7: Throughput of individual flows (Plain)

Flow 2

Flow 1

Flow 4
Flow 8 Flow 16

Fig. 8: Throughput of individual flows (Proposed)

Flow 2

Flow 1

Flow 4 Flow 8
Flow 16

Fig. 9: Traces of RTTs (long-lived flows)

Plain

BW probe

Proposed

140us, and 34usec, respectively. The plain algorithm has the
smallest queuing delay. This is because, with the plain
algorithm, flows start with a small initial sending rate and
most of the flows finish its transmission before reaching
maximum sending rate. The proposed algorithm almost halves
its queuing delay compared to the BW probe algorithm. In this
evaluation, short data transfers frequently occur and these
cross traffic may result in inaccurate RTT prediction. Our
investigation actually shows that the predicted RTT is not very
accurate in tracing small oscillation of RTT, however, it
successfully captures the major trends of queue length changes
faster than the changes of RTT. Consequently, the proposed
algorithm can detect major congestion quicker, which results
in smaller RTTs.

V. CONCLUSION
In this paper, we proposed the extended Ethernet MAC

mechanisms providing end-to-end (MAC-to-MAC) reliable
transport for very short-distance communications such as
CPU-CPU and CPU-I/O interconnections. To minimize
queuing delay and thus data transfer time, we have proposed a
delay-based congestion control algorithm with two-stage
probing and RTT prediction mechanisms. The two-stage
probing mechanism mitigates the congestion caused by
overestimated initial bandwidth probing and the RTT
prediction mechanism detects congestion earlier than the
measured RTT indicates congestion. The simulation results
have shown that the RTT prediction mechanism detects

congestion several RTTs earlier than measured RTT increases.
We have also shown that the proposed algorithm achieves
roughly 10 times shorter data transfer delay compared to TCP
and 2-3 times shorter data transfer delay compared to the plain
delay-based congestion control. We are now developing
prototype hardware system of the proposed mechanism, and
will report further investigation results in the near future.

REFERENCES
[1] J. Suzuki, et. al., “ExpEther – Ethernet-Based Virtualization

Technology for Reconfigurable Hardware Platform”, to be
presented at HOT Interconnects 14, 2006.

[2] S. Floyd, et. al., “The NewReno Modification to TCP's Fast
Recovery Algorithm”, RFC 2582, IETF, 1999.

[3] D. Katabi, et. al., “Congestion Control for High Bandwidth-
Delay Product Networks.”, SIGCOMM02

[4] IEEE 802.1Qau - Congestion Notification
[5] S. Floyd, et. al., “Quick-Start for TCP and IP”, RFC 4782, IETF,

2007.
[6] Ren Wang, et. al., "Adaptive Bandwidth Share Estimation in

TCP Westwood", In Proc. of Globecom 2002,
[7] L. Brakmo, et. al., “TCP Vegas: New techniques for congestion

detection and avoidance.” SIGCOMM94
[8] David Wei, et. al., “FAST TCP: motivation, architecture,

algorithms, performance”, IEEE/ACM Trans. on Networking,
14(6), 2006.

[9] Cao Le Thanh Man, Go Hasegawa and Masayuki Murata,
"ImTCP: TCP with an inline measurement mechanism for
available band-width," Computer Communications Special
Issue: Monitoring and Measurements of IP Networks,
September 2004.

[10] D. Leith, et. al., "Delay-based AIMD congestion control", In
PFLDnet 2007, 2007.

[11] H. Shimonishi, T. Hama, and T. Murase, “TCP-AdaptiveReno:
Improving Efficiency-Friendliness Tradeoffs of TCP
Congestion Control Algorithm”, In Proc. of PDLFnet, 2005

[12] The network simulator– ns-2, http://www.isi.edu/nsnam/ns

Fig. 10: Transfer time of individual data (on-off flows)

Plain

Proposed

BW Probe

TCP

Fig. 11: Cumulative distribution of transfer time
(on-off flows)

Plain
Proposed BW Probe

TCP

Fig. 12: Traces of RTTs (on-ff flows)

Plain

BW probe

Proposed

http://www.isi.edu/nsnam/ns

