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Abstract—Ethernet is extending its applications to 

data-center area, i.e. very short distance, communications 
such as CPU-CPU and CPU-I/O interconnections, where 
short end-to-end (MAC-to-MAC) data transfer delay is the 
key performance factor.  In this paper, we propose an 
extended Ethernet MAC mechanism providing end-to-end 
reliable and congestion controlled packet transfer that 
minimizes data transfer delay. The proposed MAC 
mechanism employs a packet retransmission mechanism 
and a delay-based congestion control algorithm with inline 
initial bandwidth probing. Since inline bandwidth probing 
with small number of data packets tends to overestimate 
the initial bandwidth, we introduced two extended 
mechanisms; two-stage probing and RTT prediction. The 
RTT prediction mechanism detects congestion several 
RTTs earlier than using measured RTT and thus minimize 
queuing delay. The two-stage probing mechanism 
adaptively starts up data transfers without overflowing the 
link. The simulation results show that the proposed 
mechanism achieves roughly 10 times shorter transfer 
delay compared to TCP and 2-3 times shorter delay 
compared to existing delay-based congestion controls. 

I. INTRODUCTION 
Ethernet is extending its applications to very short-distance 

communications such as CPU-CPU and CPU-I/O 
interconnections in large scale cluster systems. We have 
proposed a scalable I/O interconnection technology called 
ExpEther [1]. ExpEther transparently tunnels PCI-Express 
packets over Ethernet; thus, PCI devices are connected via 
Ethernet without any modifications to existing hardware and 
device drivers. Therefore, ExpEther provides a flexible, 
scalable and cost-effective communication method for 
computer systems connecting a large number of CPUs and 
I/Os compared to existing interconnection technologies such 
as InfiniBand or PCI-Express switches. 

One of the typical applications is remote disk mount over 
Ethernet. In contrast to a NAS (Network Attached Storage) 
system, ExpEther connects the disk as if they are locally 
mounted and thus provides fast and efficient connection. Or 
any remote I/O devices such as graphic cards or accelerators 
can be connected via Ethernet. 

Since PCI-Express is a (packetized) computer-bus 
technology and provides a channel equivalent to a physical 
wire, the challenge of ExpEther is to achieve very small data 

transfer delay, as well as high reliability without any packet 
losses or congestion. In contrast to FTP or WWW, CPU-CPU 
and CPU-I/O interconnections have very different traffic 
characteristics. Rather than generating a large burst of data, 
relatively small block of data and its acknowledgement is 
frequently exchanged. Therefore, short end-to-end (MAC-to-
MAC) delay is the key performance factor. Large data transfer 
delay would inefficiently consume link bandwidth just waiting 
for the acknowledgements from the receiver. 

TCP (Transmission Control Protocol) [2] is used to 
provide reliable communications on top of IP and Ethernet. 
Since TCP employs loss-based congestion control algorithm, 
which continues to increase sending rate until it gets packet 
losses, its queuing delay can grow till its maximum and it 
takes time to converge to the appropriate sending rate. In very 
short distance communications, larger data transfer delay adds 
up to significant performance degradation of CPU-CPU or 
CPU-I/O effective bandwidth. Recently there are a number of 
TCP variants having delay-based congestion control algorithm 
[8][10][11], but they are also not very efficient because of 
small burst sizes. Another drawback of TCP is its high 
processing cost that heavily consumes CPU resources. TOE 
(TCP Offload Engine) is often used to offload the processing 
to specialized network interface hardware. Nevertheless it 
would be too costly to have all TCP/IP/Ether protocol stacks 
on every CPU and I/O devices. 

In this paper, we propose an extended Ethernet MAC 
mechanism, which we call EFL (Ethernet with Flow Label). 
To provide an end-to-end (MAC-to-MAC) reliable path over 
Ethernet, EFL extends MAC with packet retransmission 
mechanism and congestion control mechanism. The 
retransmission mechanism is a simple one consists of block 
data transfer, rather than byte data transfer of TCP, and Go-
back-N ARQ mechanism. The congestion control algorithm 
employs a delay-based congestion control because it has an 
advantage of maintaining small queuing delay. To improve 
transfer delay of short data transfer, we introduced an initial 
bandwidth probing mechanism. The mechanism is a quick 
inline bandwidth measurement introduced for agile rate 
adaptation at the beginning of a data transfer. The mechanism 
measures an appropriate sending rate as soon as a new data 
transfer starts and quickly adjusts the sending rate. Since we 
assume applications that generate a series of relatively short 
data transfers, agile rate adaptation is very important to 
improve communication efficiency. 
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Inline bandwidth measurement, which uses data packets as 
a probe, has been proposed in some literatures [6][9]. 
However, the measurement requires large number of packets 
and long time interval, typically several RTTs, to get accurate 
bandwidth information. In fact, it is shown that the 
measurement with a small number of probe packets tends to 
overestimate the bandwidth [6]. To get bandwidth information 
quickly with a small number of probing packets and still avoid 
overloading the path with inaccurate bandwidth estimation, we 
propose the following two mechanisms. The first one is two-
stage probing mechanism, which sends a small number of 
packets, e.g. 10 or 20 packets typically, at the beginning and 
continues to send packets at a very small rate until first ACK 
packet arrives. The first group of packets is used to measure 
the bandwidth roughly and quickly, and the subsequent 
packets are used to verify and adjust the measured bandwidth. 
After the initial bandwidth probing, the second mechanism is 
used with delay-based congestion control. Since delay-based 
congestion control relies on RTT measurements and it takes 
time to observe increased RTT after a congestion period 
actually starts, reaction to the congestion is delayed. Thus, to 
minimize queuing delay, the second mechanism utilizes the 
observation that the change of receiving rate precedes the 
change of measured RTT, and predicts RTT changes. 

Explicit congestion feedback mechanisms like XCP [3], 
IEEE 802 Congestion Management [4], or Quick-Start [5] 
would be useful to quickly obtain accurate congestion 
information or appropriate initial sending rate. However, the 
need for design new Ethernet switches having such 
mechanism would spoil the advantage of using standard 
Ethernet for CPU-CPU and CPU-I/O interconnection. 

II. REALABLE ETHERNET TRANSPROT 
EFL extends MAC with packet retransmission mechanism 

and congestion control mechanism. As shown in Fig. 1, end 
points having EFL MAC, either at server (CPU) or I/O 
device side, are connected via Ethernet. When there are any 
packet losses in the network, sender side EFL MAC 
recognizes the losses and retransmits the lost packets. Also, 
when there is any congestion in the network, the sender side 
EFL MAC regulates its sending rate to mitigate such 
congestion. 

As shown in Fig. 2, EFL defines an extended MAC header 
having sequence number and time stamp. It also defines a new 
MAC packet for acknowledgement having acknowledged 
sequence number. The sequence numbers are used for packet 
loss detection and retransmission. They are defined as packet 
count, rather than byte count, because EFL encapsulate PCI-
Express packet with MAC headers and do not re-segment byte 
data stream. Time stamps, which records the time the packet is 
sent, in both forward data packet and ACK packet are used to 
measure RTT. In our implementation, the size of the extension 
header is 9 bytes, whereas TCP/IP header is 40 bytes. This 
small header overhead is significant especially for PCI-
Express tunneling because typical length of PCI-Express 
packets is as small as 128 or 256 bytes. 

In our implementation, we use Go-back-N ARQ 
mechanism for packet retransmission because it does not 

requires reorder buffers at a receiver and thus the receiver 
hardware is greatly simplified. Since we assume that packet 
loss events are exceptional very rate through delay-based 
congestion control, the simple Go-back-N mechanism would 
not significantly deteriorate the efficiency. Selective repeat 
may further improve the efficiency, but it would be minor 
with the assumption. For detecting packet loss, we employed 
both fast retransmission mechanism triggered by duplicate 
ACKs and retransmission timeout. Since we assume local 
Ethernet where packet reordering rarely happens, we employ 
double duplicate ACKs, rather than triple duplicate ACKs.  
For detecting retransmission timeout, as well as for RTT 
measurement, we have very fine grain timers, an order of 
100nsec.We also employed delayed ACK mechanism to 
reduce the number of ACK packets. Since PCI-Express packet 
is very small, we configured that an ACK packet is sent for 
every ten data packets. 

III. CONGESTION CONTROL ALGORITHM FOR VERY SHORT 
DISTANCE COMMUNICATIONS 

As shown in Fig. 3 and 4, the congestion control algorithm 
has four states for sending rate control: 1) idle state, 2) 
bandwidth probing state, 3) delay probing state, and 4) 
congestion avoidance state. In the following, sending rate 
control in each state is explained. 

1) Idle state 
If there are no data to send, a sender is in this state. When 

the sender finishes sending all data packets and receives all 
acknowledgements for the data packets, the sender switches to 
this state. 

2) Bandwidth probing state 
When a new group of packets arrives at the sender, the 

sender switches to Bandwidth probing state and sends first N 
data packets at a maximum bandwidth. These data packets are 
used as a probe to measure appropriate initial sending rate. N 
is the number of packets a sender can transmit without hearing 
from the network. It should be small enough to avoid the risk 
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of instantaneous congestion. In our implementation, we set 
N=20, i.e. 5KB of data with 256 byte encapsulated PCI-
Express packet, considering that TCP initial window size is 4 
segments, i.e. 6KB of data with 1500byte MTU. These initial 
packets are also designed to send short messages quickly 
without waiting for acknowledgements. 

After receiving all ACK packets acknowledging the 
reception of all the packets sent in this state, the sender 
calculates the sending rate R as follows:  

 
where T1 and T2 are the reception time of the first and last 
ACK packets, respectively, and D is the amount of data sent 
by these data packets. Since T1-T2 is regarded as the time for 
the data packets to traverse through a bottleneck queue, the 
above equation estimates the bandwidth that the data packets 
went through the bottleneck link. 

3) Delay probing state 
After sending initial N data packets, the sender switches to 

Delay probing state. In this state, the sender has not heard 
from network yet and thus continues to send data packets at a 
minimum sending rate not to stress the network. As described 
above, inline measurement with a small number of probe 
packets tends to overestimate the bandwidth. Therefore, 
although the calculated initial sending rate would be useful as 
a prompt measurement; it should be beneficial to continue to 
monitor the network to verify and adjust the initial sending 
rate. The packets sent in this state are used for this purpose. 

When the sender receives an ACK packet responding to 
the data packet sent in this state, the sender measures RTT and 
updates the initial sending rate. If the ACK packet has RTT 
larger than the minimum RTT value, i.e. round trip 
propagation delay between the sender and receiver, the sender 
recognizes the existence of cross traffic and reduces the initial 

sending rate. The rate update uses the same equation used in 
the Congestion avoidance state, e.g. Eq. (2), but the 
parameters would be reconfigured, i.e. smaller alpha and 
larger beta, to be more conservative. 

4) Congestion avoidance state 
When the sender receives first ACK packet, it switches to 

Congestion avoidance state. In the beginning of this state, the 
sender starts packet transmission using the calculated initial 
sending rate, and then the rate is kept updated using RTT 
information. Like other delay-based congestion controls, such 
as TCP-Vegas [7] and FAST TCP [8], the sending rate is 
calculated based on the difference of the amount of 
backlogged data in a bottleneck queue and its target value. 
The sending rate R is updated upon each reception of each 
ACK packet as follows; 

 
 

where RTTmin is the minimum RTT value. Parameter α is the 
target value for backlogged data, and equivalently, determines 
the speed of rate increase. Parameter β is a control gain. 

5) Packet loss 
When a packet loss is detected through duplicate ACK or 

retransmission timeout, sending rate is halved, like most TCP 
algorithms do. In the bandwidth probing state, sending rate is 
reduced to 0 because the rate is not determined yet in this state. 

6) RTT prediction mechanism 
To minimize transfer delay of relatively short data 

transfers, agile rate adaptation is required and thus larger α 
value is preferred. However, we have observed that larger α 
value can result in larger or oscillated queuing delays, and 
thus non-negligible packet losses. To minimize and stabilize 
the queuing delay, it should be essential to quickly detect and 
react to congestion as soon as the congestion begins. 

Therefore, we propose a RTT prediction mechanism to 
detect an incipient congestion before measured RTT grows. 
To detect the incipient congestion, we utilize the observation 
that the receiving rate changes faster than measured RTT. The 
receiving rate can be estimated at the sender using ACK 
packets. As the traffic volume at a bottleneck queue increases 
and congestion begins, it takes time the queue length grows 
enough. The sender recognizes the increased queuing delay 
after a round-trip propagation delay plus queuing delay. Thus, 
as the queuing delay increases, it takes more time for the 
sender to recognize the increased RTT. On the other hand, the 
output rate of a flow from the queue changes immediately 
after the congestion begins, and thus, the change can be 
recognized by the sender within one RTT. 

In a steady state, we have the following relationship. 
RRECV = DFLY / RTT 

where RRECV is the receiving rate and DFLY is the amount of 
data on the fly (which corresponds to the window size of TCP). 
In a transient state, RRECV changes faster than measured RTT 
changes, thus, DFLY / RRECV can be regarded as a foregoing 
index of measured RTT. Since DFLY can be approximated by 
R·RTT, we calculate the predicted RTT, RTTp, as following 
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This equation indicates that: 

・ In a steady state when queue length is constant, the 
receiving rate is equal to the sending rate and thus 
RTTp = RTT. 

・ When congestion begins and the queue length starts 
growing, the receiving rate becomes less than the 
sending rate and thus RTTp > RTT. 

・ When congestion is ceasing and the queue length 
begins shrinking, the receiving rate becomes larger 
than the sending rate and thus RTTp < RTT. 

IV. PERFORMANCE EVALUATIONS 
We have evaluated the proposed mechanisms using ns2 

simulator [12]. Now, we are developing prototype MAC 
hardware and will report experimental evaluation results in the 
near future. We have confirmed that the packet retransmission 
mechanisms work properly and we will show the results for 
the congestion control algorithm in the following evaluations. 

1) Evaluation model 
Figure 5 shows the network model. In this evaluation, we 

used dumb-bell topology to investigate basic behaviors of the 
proposed algorithms. Evaluations with more complex network 
topology using simulator and/or prototype hardware system 
would be one of the future works. Evaluations using real 
CPU-CPU and CPU-I/O traffic in the testbed system, and 
discussions on parameter setting using the real traffic would 
also be our future works. 

All link bandwidth is 10 Gbps and round trip propagation 
delay between senders and receivers is 100us. Switches 
employ tail-drop buffers with 1MB capacity. Packet size is 
192 byte including extended MAC header and PCI-Express 
packet as a payload. 

We have compared the following four congestion control 
algorithms; 1) Plain, plain delay-based algorithm using Eq. (2), 
2) BW probe, delay-based algorithm with bandwidth probing 
using Eq. (1) and (2), 3) Proposed, delay-based algorithm with 
two-stage probing and RTT prediction, and 4) TCP, TCP-
NewReno. Since there are a number of delay-based protocols, 
we modeled them into 1) and 2) and tested the models to make 
the results more understandable and comparable, rather than 
testing each one of them. 

2) Evaluation of RTT prediction 
We first show an example of predicted RTT. Traces of 

actual RTT, measured RTT, and predicted RTT are shown in 
Fig. 6. The actual RTT is a theoretical RTT value calculated 
from instantaneous queue length, link bandwidth and 
propagation delay, namely actual RTT = queue length / link 
bandwidth + propagation delay. In this particular example, 
two flows are sending from the beginning of the simulation 
and extra two flows start at 10msec. 

When congestion occurs at 10msec, queuing delay 
increases first and the measured RTT increases subsequently. 
Although the raise of measured RTT and predicted RTT starts 

slightly after the raise of actual RTT by 1RTT=100usec 
(dotted circle in the figure), the increase of predicted RTT 
catches up very soon and then follows the increase of actual 
RTT. While predicted RTT and actual RTT record their peak 
value almost at the same time, measured RTT records its peak 
value 400usec afterwards. Although predicted RTT is not a 
real prediction of RTT and can not go faster than propagation 
delay, it sensitively captures the trends of the queue behavior 
by measuring the rate changes and uses them to  

3) Evaluation with long-lived flows  
 To discuss transient behavior of the proposed algorithm, 

we used several long-lived flows; first flow (flow 1) starts at 
0msec, and then, two flows (flow 2-3) start at 10msec, 4 flows 
(flow 4-7) start at 20msec, 8 flows (flow8-15) start at 30msec, 
16 flows (flow 16-31) start at 40msec. At 50msec, all flows 
except for the first one terminate. 

In Fig. 7 and Fig. 8 sending rate of individual flows in 
each group is plotted for plain and proposed algorithms, 
respectively. With the probing mechanism, sending rate of 
flow 1 quickly reaches to the link capacity as soon as it starts, 
whereas it takes 13msec for the flow to reach the link capacity 
without the probing mechanism. At 10msec, flows 2 and 3 
start with the estimated initial rate of 4Gbps and they quickly 
reduce the rate in response to the increased queuing delay. 
Then these three flows converge to the same sending rate. As 
other flows come in, they also quickly converges to the fair 
share rate. We configured that all flows measures their 
minimum RTT values before the congestion occurs and they 
actually measure the same minimum RTT value, thus, as a 
nature of delay-based protocols, sending rate of all active 
flows converges to the fair share value sometime after new 
flows are added. In a steady state, all three delay-based 
protocols, including plain, BW probe, and proposed 
algorithms, converge to the fair share rate but the Plain and 
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Probing algorithm, both without RTT prediction, oscillates the 
sending rates more than the proposed algorithm.  

 Traces of their RTTs are shown in Fig. 9. When new 
flows come in, both BW probe and proposed algorithms 
experience larger queuing delay due to larger initial sending 
rate, but the proposed algorithm roughly halves its maximum 
queuing delay. For example, when flows 2 and 3 start, the 
bandwidth probing estimates initial sending rate to be 4Gbps, 
thus, the sum of the sending rate of flow 1-3 becomes 18Gbps 
and the queue at the bottleneck link starts to built up. As a 
reaction to this sudden congestion, the proposed algorithm 
quickly reduces the sending rate than BW probe algorithm 
does, i.e. proposed algorithm takes less than 100usec to reduce 
the sending rate whereas BW probe algorithm takes 200usec. 
Their peak queuing delays at this moment are 120usec and 
250usec, respectively. This figure also shows larger oscillation 
of RTT regarding plain and BW probe algorithms. Without the 
RTT prediction mechanism, reactions to congestions are 
delayed and their maximum queuing delay in a steady state 
reaches 250usec, whereas the proposed algorithm has the 
maximum queuing delay of 100usec during steady state.  

4) Evaluation with short data transfers 
To discuss the behaviors of the proposed algorithm in 

more realistic situation, we tested the algorithms in an 
environment where a large number of on-off flows compete at 
the bottleneck link. Each flow generates a series of short data, 
whose average size is 100KB and its distribution is Pareto 
(Shape=1.2). Inter-arrival time of the data is exponentially 

distributed whose average is 10msec. The number of flows is 
150, which means the link is fairly loaded. In this evaluation, 
data transfer time is defined as a time interval from the time 
first packet is sent by a sender to the time last packet is 
received by a receiver. 

Figure 10 shows the distribution of data transfer time 
sorted by their data size. The bandwidth probing mechanism is 
effective for relatively small data transfers whose data size is 
less than 10MB, and both BW probe and proposed algorithms 
achieves 3 or 4 times smaller transfer time than the Plain 
algorithm. And the proposed algorithm achieves further 
smaller transfer time; it almost halves transfer time for very 
short transfers compared with the BW probe algorithm, 
because of the smaller queuing delays. The plain algorithm 
with its slow startup has the smallest queuing delay but, on the 
other hand, it exhibits large transfer time except for very short 
data transfers whose transmission would be finished in a few 
round trips. In this evaluation, we also tested TCP-NewReno 
with and without slow start mechanism. Since TCP with slow 
start caused frequent retransmission timeouts and resulted in 
serious performance degradation, we only show the results 
without slow start in the figure. Although TCP achieves 
comparable transfer times with other algorithms for long data 
transfers, transfer time for short data is very poor due it its 
slow convergence to the appropriate sending rate, as well as 
large queuing delay and frequent packet losses due to its loss-
based behavior. 

We also compared the distribution of data transfer time of 
those algorithms. In Fig. 11, cumulative distribution of 
transfer time is plotted for different algorithms. This figure 
shows that, with the proposed algorithm, 95% of data transfers 
are done within 0.85msec, whereas with BW probe, plain, and 
TCP, they are done within 2.3msec, 3.5msec and more than 
10msec, respectively. Also the portions of data transfers that 
are done within 1msec are 96%, 89%, 55% and 14% using the 
proposed, BW probe, plain, and TCP, respectively. 

RTT traces are shown in Fig. 12. Average queuing delay 
of the proposed, BW probe and plain algorithms is 68us, 
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140us, and 34usec, respectively. The plain algorithm has the 
smallest queuing delay. This is because, with the plain 
algorithm, flows start with a small initial sending rate and 
most of the flows finish its transmission before reaching 
maximum sending rate. The proposed algorithm almost halves 
its queuing delay compared to the BW probe algorithm. In this 
evaluation, short data transfers frequently occur and these 
cross traffic may result in inaccurate RTT prediction. Our 
investigation actually shows that the predicted RTT is not very 
accurate in tracing small oscillation of RTT, however, it 
successfully captures the major trends of queue length changes 
faster than the changes of RTT. Consequently, the proposed 
algorithm can detect major congestion quicker, which results 
in smaller RTTs. 

V. CONCLUSION 
In this paper, we proposed the extended Ethernet MAC 

mechanisms providing end-to-end (MAC-to-MAC) reliable 
transport for very short-distance communications such as 
CPU-CPU and CPU-I/O interconnections. To minimize 
queuing delay and thus data transfer time, we have proposed a 
delay-based congestion control algorithm with two-stage 
probing and RTT prediction mechanisms. The two-stage 
probing mechanism mitigates the congestion caused by 
overestimated initial bandwidth probing and the RTT 
prediction mechanism detects congestion earlier than the 
measured RTT indicates congestion. The simulation results 
have shown that the RTT prediction mechanism detects 

congestion several RTTs earlier than measured RTT increases. 
We have also shown that the proposed algorithm achieves 
roughly 10 times shorter data transfer delay compared to TCP 
and 2-3 times shorter data transfer delay compared to the plain 
delay-based congestion control. We are now developing 
prototype hardware system of the proposed mechanism, and 
will report further investigation results in the near future. 
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